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Interface topology for 
distinguishing stages of sintering
Gaku Okuma1, Daiki Kadowaki1, Tsuyoshi Hondo2, Satoshi Tanaka2 & Fumihiro Wakai   1

Sintering is a common process during which nanoparticles and microparticles are bonded, leading to 
the shrinkage of interstitial pore space. Understanding morphological evolution during sintering is 
a challenge, because pore structures are elusive and very complex. A topological model of sintering 
is presented here, providing insight for understanding 3-D microstructures observed by X-ray 
microtomography. We find that the topological evolution is described by Euler characteristics as 
a function of relative density. The result is general, and applicable not only to viscous sintering of 
glasses but also to sintering of crystalline particles. It provides criteria to distinguish the stages of 
sintering, and the foundations to identify the range of applicability of the methods for determining the 
thermodynamic driving force of sintering.

Sintering of small particles is common in nature, and provides an engineering process for the production of 
ceramics, metals, glasses, polymers and composites. A huge number of particles undergoes a change in shape at 
elevated temperatures by matter transport driven by surface tension, the kinetics of which is controlled by viscous 
flow for amorphous particles1–3 or diffusion mechanisms for crystalline particles4–6. Since sintering occurs so as 
to decrease the total interface energy, surface area per unit volume decreases with time. Concurrently, the total 
pore volume decreases, thereby, the sintering process is described as densification using the relative density as 
a state parameter. Coble5 illustrated the evolution of particle-pore structure schematically, and identified three 
stages of sintering. The initial stage is characterized as the formation and growth of contact between neighboring 
particles, where relative density increases from 0.5 to 0.6. In the intermediate stage, the pore structure evolves into 
an interconnected channel with cylindrical pores lying primarily along three grain edges. The final stage begins 
when the pinch-off of interconnected pore channel forms closed pores at the relative density of 0.9. The final stage 
of sintering of crystalline particles is usually accompanied by coarsening and grain growth7, 8. Classical sintering 
theories, which predict the rate of density change, have been proposed with the assumption of simplified geomet-
rical model for each stage5, 6.

Recent advances in X-ray microtomography revealed that the three-dimensional (3D) microstructural evolu-
tion during sintering is far more complicated than the simplified model. This limits the applicability of classical 
models in real situations. The direct measurement of a 3D structure, which is now readily available from X-ray 
microtomography, provides a basis for the statistical analysis of microstructural characteristics, such as relative 
density, specific surface area, surface curvature, particle size, neck radius9, 10, coordination number10, hetero-
geneous particle displacement11, 12, particle rotation13, pore orientation14, pore coarsening15, 16, grain growth17, 
and microstructural anisotropy18. The knowledge of microstructure is the first step to understand the realistic 
property-microstructure relationship during sintering.

Macroscopically, shrinkage is a response of porous body to mechanical stress and a thermodynamic driving 
force, i.e., sintering stress19, 20. The shrinkage rate is inversely proportional to the bulk viscosity. The macroscopic 
quantities such as sintering stress21–23 and bulk viscosity20, 24 can be determined rigorously for some idealized 
microstructures in equilibrium. However, for real porous structures which are nonequilibrium, non-periodic, 
and nonuniform, it is still a challenge to estimate macroscopic quantities from microstructures observed by X-ray 
microtomography25–27. It is recognized that the most appropriate method for determining sintering stress should 
be selected depending on sintering stage27. However, no theoretical criterion exists for distinguishing stages of 
sintering by using relative density and specific surface area, which are metric properties and vary monotonically 
during sintering.

Alternatively, topological properties are required to quantify the complex microstructural changes in three 
stages of sintering. Rhines, DeHoff, and Aigeltinger28–30 made a pioneering attempt to analyze the topological 
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properties (e.g., the connectivity or genus per unit volume, and the number of pores per unit volume) by using 
a stereological method. But, their analysis has not been used widely in the sintering community due to the diffi-
culty in the analysis of two dimensional cross sectional data. The aim of the present work is to obtain quantitative 
knowledges on topological properties, which provide insights for distinguishing stages in sintering. The micro-
structural evolution in sintering is an example of morphogenesis, defined as the ensemble of mechanisms respon-
sible for the formation of patterns and shapes31. The observation of interface topology by X-ray microtomography 
affects our thinking on sintering significantly. While most of sintering studies are concerned with distinguishing 
matter transport mechanisms, we show that the evolution of interface topology shows remarkable similarity 
between viscous sintering of glass and diffusional sintering of crystalline particles.

Results
Microstructural evolution in sintering.  The viscous sintering of spherical glass particles was observed by 
X-ray microtomography (see Methods). The microstructural evolution is illustrated in Fig. 1 and Supplementary 
Movies 1 and 1c. In the loose packing of particles (relative density ρ = 64%, Fig. 1a), individual particles have con-
tacts with neighbor particles, but some neighbors are not touching yet. In the pore space view (Fig. 1b), particles, 
which intersect with the bounding box, are seen as concave surface, where circular apertures indicate contacts 
with neighbor particles. For example, in sintering of a cluster of four particles (A, B, C, and D), three apertures 
(arrows) can be seen on the surface of particle A.

Figure 1.  Microstructural evolution in viscous sintering of spherical glass particles. (a) solid phase at the 
initial relative density ρ of 64%, (b–i) pore space view as seen in the direction of arrow in (a). Particle surfaces 
are shown in white, while pore surfaces are shown in yellow. The size of the reconstructed subvolume is 
500 × 500 × 500 µm.
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The arrangement of spherical particles reconstructed from a tomography image at ρ = 74% is illustrated in 
Fig. 2a (see also Supplementary Movie 2a), and the topology of solid phase is schematically shown in Fig. 2b (see 
also Supplementary Movie 2b). A point (node, vertex) represents each particle. A contact between two particles is 
represented by an arc (branch, edge) between the representative points. A face is defined by a polygon composed 
of these vertices and edges. A cell is defined by a 3-D space partitioned by these faces32. There is a void in each 
cell, from which a closed pore may be formed during sintering. The irregular bond network can be characterized 
by a combination of faces and partial polyhedral cells. Some local structure models depicted in Fig. 2c–e consist 
of triangular, rectangular, and pentagonal faces, respectively. There is a hole at the center of each face, then, the 
porous solid phase structure is a continuous network with numerous holes. In the pore space view, this structure 
is represented as voids inside cells which are connected by pore channels passing through faces.

The cluster of four particles (Fig. 2c) is indeed observed by X-ray microtomography (particles A, B, C, and 
D in Fig. 1b). As the contact radius (i.e., neck radius) grows with time, the size of a hole in the ring of three 
particles becomes smaller, and can be seen as a pore channel or a ligament (red arrows in Fig. 1c). The breakup 
of pore channel among three particles (A, B, and D) has already occurred in Fig. 1c. When two remaining pore 
channels are pinched off, a single small closed pore is formed at the center of the tetrahedral particle cluster. But, 
the formed pore disappears quickly. The shrinkage of a tetrahedral pore, which is the characteristics of the “final 
stage” in the classical sintering model, takes place in very early stage actually.

The cross section of a pore channel is a polygon with rounded corners, where the number of edges is the 
number of particles surrounding the channel. For example, the pore channel outlined in red (Fig. 1e) is formed 
by five particles (A, E, F, G, H). The size of the pore channel decreases with densification, and becomes zero at the 
pinch-off finally. The initial size of a pore channel usually increases with the number of particles surrounding it. 

Figure 2.  Packing model of spherical particles. (a) Sphere packing at ρ = 74%. (b) The bond network model 
consisting of vertices, edges, faces, and cells. A quadrilateral face and a pentagonal face are shown for example. 
Some polyhedral cells ((c) tetrahedron, (d) cube, and (e) dodecahedron) illustrate that voids inside cells are 
connected by pore channel (or hole) at the center of each face.
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The pore channel formed by the ring of three spheres has a small initial size, and can be seen in the early stage (red 
arrows, Fig. 1c). But, such pore channel along three-grain junction is pinched off quickly. Large pore channels 
surrounded by many particles are important in the intermediate stage. An example of pore channel formed by the 
ring of four spheres (G, H, I, J) is seen in Fig. 1e (blue arrow). Such large pore channel remains up to the relative 
density of 94% before the pinch-off (Fig. 1g). When a pore channel is pinched off, one hole is closed, thereby 
decreasing the number of holes.

Many tetrahedral cells form small closed pores by the pinch-off of pore channels, and these small tetrahedral 
pores shrink and disappear quickly. The size of a cell, and its void space, usually increases with the number of 
particles surrounding it, or pore coordination number33. The closed pores larger than the particle size are formed 
from large voids preexisting in the random packing of particles. Such voids are connected with open pore chan-
nels initially, and are separated later through consecutive pinch-offs. Closed pores formed by viscous sintering in 
air become spherical (Fig. 1i), and shrink by gas diffusion in the glass. The number of spherical pores decreases to 
zero ultimately in the final stage of sintering.

Euler characteristic for describing interface topology.  The naturally evolving interface changes its 
topology during sintering. The topological transitions are summarized as follows: (1) Formation of contacts 
among particles leading to the increase of number of holes G in the networks, (2) Pinch-off of pore channels, 
i.e., the decrease of G by the closure of holes, (3) Formation of closed pores, i.e., the increase of number of pores 
N, (4) Disappearance of closed pores, i.e., the decrease of N. The term “holes” is used for pore channels between 
porous cells throughout this paper, then, “hole closure” means the pinch-off of pore channel. The topology of a 
surface is characterized by its genus g; roughly speaking it is the number of holes in the surface. A single sphere 
has g = 0, and a torus (doughnut shape) has g = 1. The genus is mathematically related to the Euler characteristic 
as χ = 2 − 2 g. For partially sintered particle clusters, tetrahedron (Fig. 2c), cube (Fig. 2d), and dodecahedron 
(Fig. 2e), the Euler characteristic is −4, −8, and −20, respectively. Here, we consider the half of total Euler char-
acteristic X/2 as a sum of Euler characteristics of all pores

X g/2 (1 )
(1)n

N

1
∑= −
=

Since the sum of genus ∑g  is approximately equal to the total number of holes G, Eq. (1) becomes X/2 ≈ N − G. 
The evolution of interfacial topology is, then, described by using the total Euler characteristic.

Using the Gauss-Bonnet theorem, the total Euler characteristic is calculated from the integral of Gaussian 
curvature K = κ1κ2 over all pore surfaces

∫π
= .X KdA/2 1

4 (2)A

The normalized Euler characteristic per unit volume V is given as

X V KS/2 /4 (3)V π=

where K  is the average Gaussian curvature (Supplementary Fig. S1), SV = Apore/V is the specific surface area (Fig. 3 
in ref. (27)), and Apore is the total surface area in the unit volume. X/2V is calculated from the microtomography 
data, and is plotted as a function of relative density in Fig. 3a. The unit volume V is defined as a cube with edge 
length L = 20r0, where r0 is the initial particle radius. Three stages of sintering can be distinguished by using Euler 
characteristic. In the initial stage of sintering, Euler characteristic is negative, and decreases slightly with relative 
density up to ρ = 74%. The intermediate stage is the region where Euler characteristic increases with relative den-
sity until it has a maximum value (positive) at ρ = 96%. The final stage is characterized as a region where Euler 
characteristic decreases to zero ultimately. These quantitative criteria for distinguishing stages of sintering agree 
to the classical qualitative definition based on microstructures fairy well (see Fig. 1).

The changes of Euler characteristic can be analyzed by comparing the number of closed pores N/V, which is 
plotted in Fig. 3b. The increase in the number of closed pores shows that they are formed continuously during 
both the initial and the intermediate stages, although formation rate is limited during the initial stage (<ρ = 74%). 
This result indicates that the slight decrease of Euler characteristic occurs because the rate of formation of holes is 
higher than that of hole closure in the initial stage. New holes are created as new contacts with neighbor particles 
are formed during densification. At the beginning of intermediate stage the increase of Euler characteristic occurs 
due to hole closures. The rate of hole closure decreases with densification, while the number of closed pores 
increases. The maximum Euler characteristic at ρ = 96% is almost the same with the number of closed pores. 
The ratio of open porosity to total porosity (1-ρ) is also plotted in Fig. 3b. The ratio of open porosity decreases 
significantly as large closed pores are formed. In the final stage of sintering, the Euler characteristic decreases as 
the number of closed pores decreases.

Transition between different stages.  The transition from the initial to the intermediate stage is related 
to an evolution towards a system of interconnected channels with more or less constant curvature in the conven-
tional approach. However, the areal distribution functions of mean curvature and Gaussian curvature (Fig. 4) 
show that the heterogeneity in curvature does not seem to be a pertinent parameter for distinguishing stages of 
sintering. Both mean curvature (Fig. 4 in ref. (27)) and Gaussian curvature (Supplementary Fig. S1) increase with 
relative density monotonously, so that they do not distinguish stages. On the other hand, the transition from the 
initial to the intermediate stage can be distinguished clearly as an augment of the Euler characteristic.
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Discussion
Comparison with other sintering mechanisms.  Aigeltinger and DeHoff29 analyzed the number of holes 
G and the number of pores N in sintering of copper particles by using quantitative microscopy. We calculated the 
Euler characteristic by using their data, and plotted in Fig. 3a for comparison. The Euler characteristic curves 
are of similar shape, when they are normalized by the average particle size. Three stages of sintering can be dis-
tinguished by using Euler characteristic not only for viscous sintering of glass but also for sintering of copper 
particles by diffusion.

It should be noted that sintering of amorphous and sintering of crystalline materials are rather dif-
ferent. The particle coarsening results from the surface motion in sintering of crystalline materials by 
evaporation-condensation and surface diffusion. The grain growth results from grain boundary motion by cur-
vature. Although both coarsening and grain growth affects microstructure evolution in sintering of crystalline 
materials7, such effects are not involved in viscous sintering. Nevertheless, as far as we focus on topological nature 
of microstructure, common features are observed for sintering of both amorphous and crystalline materials.

The effect of particle size on viscous sintering of glass particles can be predicted by using scaling law of 
Herring34, thereby, we suppose the microstructure is self-similar for different particle size. In Fig. 3a, the nor-
malized X/2V in viscous sintering of large glass particles (r0 = 80 μm, present work) was compared with that in 
sintering of small glass particles (r0 = 4 μm), which was observed by synchrotron X-ray microtomography25. Euler 
characteristic vs relative density curves were self-similar despite the difference in particle size.

The sintering of crystalline materials is affected significantly with the decrease of particle size into the nanom-
eter range35. The particle rotation and sliding contribute to densification in the initial stage of sintering of loosely 
packed nanocrystalline powder36. Common features observed in sintering of coarse particles may not be observed 
in sintering of such loosely packed powder. For example, Schleef and co-workers37 reported that Euler character-
istic increased monotonically in sintering of fresh snow with relative density of 0.1. However, at present, the voxel 
resolution (0.28–2.5 μm) of X-ray microtomography is insufficient to study sintering of nanocrystalline particles.

Figure 3.  Euler characteristics and number of pores. (a) Normalized Euler characteristic per unit volume X/V 
and stages of sintering. ((I) Initial stage, (II) intermediate stage, and (III) final stage). (b) Number of closed 
pores per unit volume and the ratio of open porosity. The unit volume is a cube with edge length L, which is 10 
times of the average particle diameter.
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Euler characteristic per unit volume.  Consider the initial stage of sintering of identical spheres peri-
odically arranged in a simple cubic lattice. Because there is one unique interconnected pore (N = 1 in Eq. (1)), 
the half of total Euler characteristic is a sum of genus made on the porous cells = − ∑X g/2 1 . The periodic 
cubic cell structure is topologically the same with Schwartz P surface, which has the genus 3 for a unit cell 
(Supplementary Fig. S3a). The average number of particles P in the unit volume is given as P = 6000ρ/π where 
ρ is the relative density. At ρ = 0.6, the normalized Euler characteristic per unit volume X/2V is about −2800, 
which is in good agreement with experimental results in Fig. 3a. The Euler characteristic per unit volume 
depends on the particle shape, the distribution function of particle size, and that of pore size. It is clearly shown 
that the number of small pores, where the pore size is normalized by the average particle radius, is larger in 
sintering of large particles than in the sintering of small particles (see Supplementary Fig. S2). This is partly due 
to the difference in relative resolution (the ratio of voxel size to the particle radius), which is 0.03 and 0.07 for 
the sintering of large particles (present work) and the sintering of small particles, respectively. It should be 
noted that Euler characteristic is sensitive to the relative resolution, because small bodies are weighted equally 
with large bodies.

Simulation of topological evolution.  In order to visualize the topological evolution in sintering, we performed 
a computer simulation using a mathematically simple model for the case the grain boundary energy is zero, so 
as to compare with the microstructure evolution in viscous sintering. The computer simulation of sintering was 
conducted by assuming a case where the bulk diffusion is so fast that the sintering rate is controlled by the rate 
of creation/annihilation of vacancies on the surface38, 39 (See Supplementary Methods). Closed pores shrink by 
bulk diffusion from surface to pore surface6. Figure 5a and Supplementary Movie 3 show the evolution of pore 
structures in sintering of a cluster of 128 spheres. The movie clearly shows that large closed pores are formed by 
consecutive pinch-off of pore channels in a similar way to the microstructural evolution in viscous sintering. 
Supplementary Figures S4 illustrate how a void and pore channels evolve from the topological cell of particles. 
Figure 5b shows the Euler characteristic varies with a dimensionless time. The Euler characteristic increased after 

Figure 4.  Distribution function of curvatures on pore surface. (a) Mean curvature H = (κ1 + κ2)/2, (b) 
Gaussian curvature K = κ1κ2. The mean curvature is defined as positive for a spherical pore and negative for a 
spherical particle.
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a plateau region, reached to a maximum, and decreased toward zero. This topological feature agreed with experi-
mental observations qualitatively, although sintering mechanisms differed with each other.

Topology and sintering mechanics.  The sintering mechanics depends on the topology of microstructure. For 
the initial stage, large scale simulations of sintering of many particles have been successfully achieved by using 
discrete element method (DEM) recently40–42. The mechanics underlying this method is a relationship between 
the relative velocity of particles and the sintering force acting among neighbor particles in both sintering by 
grain boundary diffusion20, 43 and in viscous sintering44. The macroscopic sintering stress can be estimated 
from the microscopic sintering force, which is a function of the average contact radius and the average particle 
coordination number27. In the final stage where closed pores are dispersed randomly, each pore has a local 
sintering stress38. For viscous sintering, the macroscopic sintering stress is defined as a volume average of 
local sintering stress of pores45. It is simply calculated from the relative density and the specific surface area25. 
The present authors have shown that sintering stress can be derived as functions of relative density directly 
from the knowledge of microstructure observed by X-ray microtomography25, 27, and proposed a method to 
calculate the sintering stress in the intermediate state by using the average curvature of pore surface. The range 
in application of these three methods can be clearly defined by distinguishing stages of sintering from Euler 
characteristic.

We conclude that three stages of sintering are distinguished by using Euler characteristic, which is given as the 
number of closed pores minus the genus. The random packing of particles is expressed as vertices, edges, faces, 
and cells topologically. The genus is the number of holes, which is equivalent to the number of pore channels con-
necting voids inside each cell. The elementary processes in morphological transformation of pore structure is the 
creation and annihilation of pore channels and those of closed pores. Although the Euler characteristic vs relative 
density curve was studied only for viscous sintering of silicate glass particles here, we believe the result is general 
and may explain the sintering behavior of many ceramic and metallic particles.

These results may open the way to control internal defects formed during sintering, because it is crucial to 
understand the evolution of heterogeneous pore structures for improving the mechanical reliability of products. 
The interfacial topology provides a description of stages of sintering, and helps to recognize the roles of forces 
behind the microstructural evolution.

Methods
Materials.  Sintering of glass particles and X-ray microtomography have been fully described in ref. 27 and 
will be outlined here. The soda lime glass powder used in this work consisted of spherical particles (Spheriglass 
GB-AD, Potters Industries). It had a composition of 72.0 wt% SiO2, 13.5 wt% Na2O/K2O, 9.0 wt% CaO, 3.4 wt% 
MgO, 2.0 wt% Al2O3, and 0.1 wt% Fe2O3. The glass particles were sieved to obtain a homogeneous particle size 
distribution between 155 and 183 μm in diameter. We assumed the average radius of 80 μm for the polydispersed 
particles. This powder was mixed with polyvinylalcohol (PVA) and surfynol, and the resulted aqueous slurry 
(60 vol% solid content) was casted on an alumina substrate using a doctor blade. The dried green sheets were 
removed from the substrate and cut to the desired sample size (4.5 × 6.8 × 3.0 mm). Binder burnout and calcina-
tion were conducted by heating the sample at a rate of 3 °C/min up to 450 °C, and 5 °C/min up to 690 °C, then held 
for 30 minutes. The isothermal sintering treatment was performed in an external furnace, and then, taken off for 
microtomography measurement. This step was repeated for one sample. In each step, the sample was heated at 
5 °C/min and held at 690 °C in air for 30 minutes.

Figure 5.  Computer simulation of sintering by bulk diffusion. (a) Snap shot at the initial stage, (b) Euler 
characteristic.



www.nature.com/scientificreports/

8Scientific RepOrTS | 7: 11106  | DOI:10.1038/s41598-017-11667-2

Tomography.  The sample was analyzed by X-ray computed microtomography (Bruker, SKYSCAN 1172). 
The X-ray source was set at a voltage of 80 kV and a current of 100 μA. The sample was rotated by steps of 0.1° up 
to 180°. The 3-D mappings with voxel size 2.5 × 2.5 × 2.5 μm were reconstructed from the acquired data by using 
the filtered back-projection method. The 3-D visualization and geometrical measurements were performed using 
Amira (VSG), and a Gaussian filtering was applied to reduce the noise in 2-D images. Local thresholding method 
was used to segment the gray value image into pore and material, so as to determine the pore volume. The pore 
surface was discretized using triangular meshing, from which the pore area was calculated. Curvature on each 
triangle was calculated from the eigen-values and eigen-vectors of the quadratic form.
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