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Abstract: The Nrf2 (nuclear factor E2-related factor or nuclear factor (erythroid-derived 2)-like 2)
transcription factor is a key player in cytoprotection and activated in stress conditions caused
by reactive oxygen species (ROS) or electrophiles. Inflammasomes represent central regulators
of inflammation. Upon detection of various stress factors, assembly of the inflamasome protein
complex results in activation and secretion of proinflammatory cytokines. In addition, inflammasome
activation causes pyroptosis, a lytic form of cell death, which supports inflammation. There is growing
evidence of a crosstalk between the Nrf2 and inflammasome pathways at different levels. For example,
Nrf2 activating compounds inhibit inflammasomes and consequently inflammation. This review
summarizes what is known about the complex and predominantly antagonistic relationship of both
stress-activated pathways.
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1. Introduction

Many cells of our body are regularly exposed to various kinds of stress. This is particularly—but
not only—true for epithelial cells, such as those of the skin, which are in permanent contact with the
environment [1]. Upon detection of stress factors, cells activate different pathways, which help them and
the affected tissue to cope with the stressor and to restore a new homeostatic state. This can result in
the induction of inflammation, which is considered to be an attempt of the tissue to restore a stress-free
state [2]. Both the Nrf2 (nuclear factor E2-related factor or nuclear factor (erythroid-derived 2)-like 2)
system and inflammasomes represent stress-activated pathways [3,4]. Nrf2 is a transcription factor, whose
activation results in expression of cytoprotective proteins and enzymes, which support the survival
of Nrf2-activating cells under stress conditions, for example during inflammation [5,6]. In contrast,
inflammasome activation induces inflammation, which might be beneficial for the tissue (this is true for
acute but not for chronic inflammation) and the whole organism. However, inflammasome activation
causes death of the cells, in which the inflammasome has been activated. Therefore, both stress-induced
and inflammation-associated pathways are beneficial for the tissue. However, the consequences of their
activation at the level of the individual cells are opposite. This review addresses the complex relationship
of the Nrf2 and inflammasome pathways. Both are associated with many inflammatory conditions,
including acute and chronic inflammation. In addition, they are linked to reactive oxygen species (ROS)
and autophagy. Finally, the Nrf2 system regulates expression of downstream genes of inflammasomes,
and both complexes might physically interact. The fact that Nrf2 and inflammasomes are connected to
each other at different levels and that they are involved in many and common inflammatory diseases
points to a special importance of the crosstalk of both pathways.
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After an introduction of the Nrf2/Keap1 system (Sections 2–4) and inflammasomes (Sections 5 and 6),
a description of the crosstalk of both pathways follows (Sections 7 and 8). Possible molecular mechanisms
underlying or contributing to this crosstalk are also discussed (Section 9).

2. The Nrf2 Transcription Factor

Nrf2 is a key regulator of expression of cytoprotective genes required for stress resistance [3,6,7].
It belongs to the Cap’n’collar family of bZIP (basic leucine zipper) transcription factors. Transcription
of the Nrf2 coding Nfe2l2 gene is induced by a positive feedback loop mediated by Nrf2, by NF-κB. by
the aryl hydrocarbon receptor upon binding to polycyclic aromatic hydrocarbons, as well as by several
oncogenic pathways [6]. Although Nfe2l2 spans only 2.2 kb, the protein migrates at an apparent size
of more than 100 kDa by SDS-PAGE for unknown reasons [8]. Nrf2 consists of seven Neh (Nrf2-EHC
homology) domains, which regulate its activity by binding to other proteins or to DNA (Figure 1).
The Neh1 domain is essential for Nrf2’s transcriptional activity, since it contains the bZIP DNA binding
region and mediates interaction with sMAF (small masculoaponeurotic fibrosarcoma) proteins [9].
Upon sMAF binding, Nrf2 targets so-called AREs (antioxidant response elements) in the promoter
region of several hundred genes, including many that code for cytoprotective proteins [7]. These gene
products include essential proteins of the glutathione (e.g., glutamate-cysteine ligase) and thioredoxin
(e.g., thioredoxin reductase) system, which comprise the most important cellular redox buffers [10].
In addition, Nrf2 regulates genes whose products are required for detoxification of ROS and xenobiotics
(e.g., NQO1 (NAD(P)H dehydrogenase [quinone] 1)), NADPH regeneration (e.g., glucose-6-phosphate
dehydrogenase), and heme and iron metabolism (e.g., HO-1 (heme oxygenase 1)) [6]. Since inflammation
is associated with oxidative stress, the Nrf2 pathway is believed to play an important role in the
pathogenesis of cancer and common inflammatory and neurodegenerative diseases [11,12]. In general,
Nrf2 protects from infection, and an inverse correlation between infection and a decline in Nrf2
activity has been demonstrated [13]. For example, viruses, such as hepatitis C virus or HIV, inhibit or
decrease Nrf2 [14,15]. In contrast, Marburg virus and hepatitis B virus induce Nrf2 expression [16–18].
Recently, it has been established that Nrf2 directly prevents transcription of genes encoding the
pro-inflammatory cytokines IL-6, proIL-1β and proIL-1α (see also Section 9.3), although the underlying
molecular mechanisms are incompletely understood [7,19].

In addition, to the above-mentioned modes of regulation of Nrf2 and—in turn of Nrf2 target gene
expression, other mechanisms of control of Nrf2 activity are important. Most of these mechanisms
regulate Nrf2 activity upon its protein stability, which is reflected by Nrf2’s short half-life of
only 10–30 min under homeostatic conditions [6].
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Figure 1. Structure of the Nrf2 (nuclear factor E2-related factor or nuclear factor (erythroid-derived 
2)-like 2) transcription factor. Nrf2 consists of seven Neh domains. Neh1 is the CNC-bZIP domain 
mediating DANN binding and interaction with sMAFs. The latter are required for transcription. 
Neh3, 4 and 5 are transactivation domains. Neh6 is rich in serine residues and regulates the stability 
of Nrf2. β-TrCP interacts with Nrf2 via this domain, particularly after phosphorylation by GSK-3β. 
Neh2 mediates the interaction and regulation with Keap1 via the DLG and ETGE motifs. This binding 
results in ubiquitination of Nrf2 and in its proteasomal degradation. bZIP: basic leucine zipper. CNC: 
Cap’n’collar. GSK-3β: glycogen synthase kinase-3β. Keap1: Kelch-like ECH-associated protein 1. Neh: 
Nrf2-ECH homology. sMAF: small musculoaponeurotic fibrosarcoma. β-TrCP: β-transducing repeat-
containing protein. Adopted and modified from [6]. 

Figure 1. Structure of the Nrf2 (nuclear factor E2-related factor or nuclear factor
(erythroid-derived 2)-like 2) transcription factor. Nrf2 consists of seven Neh domains. Neh1 is the
CNC-bZIP domain mediating DANN binding and interaction with sMAFs. The latter are required
for transcription. Neh3, 4 and 5 are transactivation domains. Neh6 is rich in serine residues and
regulates the stability of Nrf2. β-TrCP interacts with Nrf2 via this domain, particularly after
phosphorylation by GSK-3β. Neh2 mediates the interaction and regulation with Keap1 via the DLG
and ETGE motifs. This binding results in ubiquitination of Nrf2 and in its proteasomal degradation.
bZIP: basic leucine zipper. CNC: Cap’n’collar. GSK-3β: glycogen synthase kinase-3β. Keap1: Kelch-like
ECH-associated protein 1. Neh: Nrf2-ECH homology. sMAF: small musculoaponeurotic fibrosarcoma.
β-TrCP:β-transducing repeat-containing protein. Adopted and modified from [6].
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3. Canonical Nrf2 Activation

Keap1 (Kelch-like ECH-associated protein 1) is the most important regulator of Nrf2 activity [3,7].
In the cytoplasm, two molecules of this E3 ubiquitin ligase substrate adaptor bind to the amino
terminal Neh2 domain of Nrf2 and mediate its polyubiquitination by interaction with the E3
ubiquitin ligase complex Cul3/Rbx1 (Cullin 3/RING-box protein 1). This results in constant
Nrf2 degradation by the proteasomal pathway. Small amounts of Nrf2 escape Keap1-dependent
degradation, causing constitutive and weak expression of Nrf2 target genes upon nuclear
translocation. The Keap1-dependent ubiquitin ligase activity is regulated in a redox-sensitive manner.
Oxidative stress or electrophiles oxidize specific cysteine residues of Keap1, causing a conformational
change of the adaptor protein and an inhibition of the E3 ubiquitin ligase activity, although Cul3
remains bound to Keap1 [7]. Then, newly synthesized Nrf2 bypasses Keap1, translocates to the nucleus
and induces target gene expression. Nrf2 activation upon oxidation of cysteine residues of Keap1 is
termed canonical Nrf2 activation [20]. Interestingly, the oxidation of Keap1 by the many different
Nrf2 activators seems to be a highly specific process. These activators can be grouped into different
classes, depending on the preferentially targeted cysteine residues of Keap1. For example, the Nrf2
activator sulforaphane (SFN), which is a component of broccoli sprouts, or dimethyl fumarate (DMF),
an approved anti-inflammatory drug for the treatment of patients suffering from psoriasis or multiple
sclerosis, oxidize mainly cysteine 151 of Keap1 [21,22].

4. Non-Canonical Nrf2 Activation

Binding of Keap1 to p62/SQSTM1 (sequestosome 1) causes non-canonical Nrf2 activation [20,23].
p62 is a multi-domain and multi-functional protein that protects cells from stress by autophagic
clearance and Nrf2 activation [24]. It acts as a cargo receptor for the autophagic machinery and its
degradation correlates with autophagic flux [25]. The Kir domain of p62 binds to the same stretch of
amino acids of Keap1 as Nrf2 and, thereby, releases Nrf2 from its inhibitor, resulting in expression
of Nrf2 target genes. In autophagy-deficient cells, phosphorylated p62 aggregates with Keap1 in the
cytoplasm, causing constant Nrf2 activation [26–28]. This results in a positive feedback loop as Nrf2
induces p62 expression [25]. In addition, p62 regulates NF-κB that, in turn, increases Nrf2 expression.

In different types of cancer, Nrf2 is activated as a consequence of epigenetic silencing of the Keap1
gene by promoter methylation [6,29,30]. Increased Nrf2 target gene expression supports the stress
resistance of the cancer cells and induces changes in metabolic pathways [31].

PGAM5 (phosphoglycerate mutase family member 5) is a mitochondrial phosphatase that was
originally shown to interact with Keap1 resulting in its Keap1-dependent ubiquitination and subsequent
proteasomal degradation [32]. Later, it turned out that PGAM5 also interacts with Nrf2 and negatively
regulates Nrf2’s transcriptional activity [33]. Interestingly, PGAM5 is a central player in necroptotic cell
death [34]. In addition, several other proteins, such as DPP3 (dipeptidyl-peptidase 3) or WTX (Wilms
tumor gene on X chromosome), can interact with Keap1 and modulate the Nrf2-Keap1 pathway [6].

Nrf2 activation upon perturbation of the Nrf2-Keap1 complex can also be mediated by Nrf2
targeting. PKC (protein kinase C) phosphorylates Nrf2 at serine 40, causing its dissociation from
Keap1, translocation to the nucleus, and induction of target gene expression [35,36]. This has been
shown to occur in response to oxidative stress, which activates PKC and most likely supports canonical
Nrf2 activation [37].

Another example is p21, a major p53 target and cell cycle inhibitor, which interacts with Nrf2 and
thereby liberates it from Keap1 [38]. This p21-mediated Nrf2 activation antagonizes anti-cancer drugs
in a murine model of skin cancer [39].

5. Inflammasomes

Caspases are cysteine proteases that play essential roles in apoptosis [40,41]. They act either
upstream as initiators of apoptosis—in this case they possess a long prodomain—or downstream as
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executioners. Initiator caspases are activated in large molecular complexes due to protein-protein
interactions mediated by their prodomain. Caspase-1 does also contain a large prodomain (a CARD
(caspase recruitment domain)) but is rarely associated with apoptosis. In contrast, caspase-1 plays a
fundamental role in inflammation [4]. It is the central molecule of multimeric protein complexes,
termed inflammasomes. These complexes include an upstream sensor protein such as NLRP3
(nucleotide-binding oligomerization domain (NOD)-like receptor containing pyrin domain 3),
the adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD), and caspase-1
(Figure 2). Whereas NLRP3, NLRP1, AIM2 (absent in melanoma 2), NLRC4 (NLR family CARD
domain containing protein 4), and pyrin are well established inflammasome sensors, more sensors
have been identified during the last years [42]. These sensors identify certain stress factors, such as
pathogens, but also endogenous molecules, and subsequently induce the oligomerization of ASC
in large complexes, called ASC specks. Upon caspase-1 binding, the protease is activated by an
autocatalytic process and in turn activates the proinflammatory cytokines proIL-1β and -18. Secretion of
the mature and active forms of the cytokines induces inflammation [4]. In addition, caspase-1 cleaves
gasdermin D, whose N-terminal fragment translocates to the outer membrane where it forms large
pores resulting in a lytic form of cell death (pyroptosis) [43,44]. Inflammasomes are associated with
numerous autoimmune, autoinflammatory, metabolic, and infectious diseases [4,42].
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Figure 2. The NLRP3 inflammasome. LPS (lipopolysaccharide) (and other compounds) induces
TLR4 (Toll-like receptor 4)-dependent activation of the transcription factor NF-κB, resulting in NLRP3,
proIL-1β and proIL-18 expression. By an unknown mechanism, NLRP3 senses different PAMPs and
DAMPs, which induce NLRP3 inflammasome assembly (NLRP3, ASC and caspase-1). Caspase-1
is activated and cleaves the pro-inflammatory cytokines proIL-1β and -18. Secretion of the mature
and active cytokines induces inflammation. Caspase-1-dependent cleavage of gasdermin D causes
pore formation in the plasma membrane upon oligomerization of its N-terminal part. This facilitates
IL-1β and -18 release and causes a lytic form of cell death (pyroptosis), which supports inflammation.
The NLRP3 is one of several similar inflammasome complexes. ASC: apoptosis-associated speck-like
protein containing a CARD (caspase activation and recruitment domain). DAMPs: danger-associated
molecular patterns. IL: interleukin. NLRP3: Nod-like receptor family pyrin domain containing
3. NF-κB: nuclear factor κ-light-chain-enhancer of activated B-cells. PAMPs: pathogen-associated
molecular patterns.
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6. The NLRP3 Inflammasome and ROS

Even before the identification of inflammasomes [45] it was known that mutations of the NLRP3
encoding gene cause an autoinflammatory disease characterized by fever and urticaria-like skin
lesions [46]. Meanwhile an involvement of the NLRP3 inflammasome in many inflammatory diseases
is discussed [4,47]. In addition, the NLRP3 inflammasome is activated by many different stress factors
as well as upon non-canonical inflammasome activation mediated by gasdermin D [44]. However, it is
still a matter of debate which molecular mechanisms govern NLRP3 inflammasome activation [42]. It is
accepted that two signals are involved (Figure 2). LPS (lipopolysaccharide) stimulation of immune cells
represents a well established “signal one” that induces expression of NLRP3, proIL-1β and proIL-18,
mediated by NF-κB activation downstream of TLRs [42]. Then, danger- and pathogen-associated
molecular patterns (DAMPs, PAMPs) can activate the NLRP3 inflammasome (“signal two”), including
ATP, released from injured and dying cells. Interestingly, regulatory T cells (Tregs) express only low levels
of Nrf2 and undergo apoptosis induced by high levels of ROS in the tumor environment [48]. These dying
Tregs convert ATP to adenosine, which strongly enhances their ability to suppress T cell activation and
avoids inflammasome activation [48]. The discussed mechanism(s) underlying “signal two” are diverse
and include changes in ion homeostasis, lysosomal rupture, cardiolipin or a role of mitochondrial
DNA [42,49]. In addition, a role of ROS in NLRP3 inflammasome activation has been suggested.

Many different and structurally diverse molecules activate the NLRP3 inflammasome, and it is very
unlikely that this is mediated in all cases by a direct physical interaction with NLRP3. Therefore, it was
hypothesized that ROS, whose generation often occurs in cells exposed to these molecules, integrate all
these signals and induce NLRP3 inflammasome activation [50,51]. How NLRP3 senses changes in ROS
is not known, but two different pathways have been suggested [52]. TXNIP (thioredoxin-interacting
protein), which is bound to thioredoxin under homeostatic conditions, is liberated by ROS and can
then interact with NLRP3 resulting in inflammasome assembly and activation [53]. There are different
sources of ROS. The most important are NADPH oxidases and mitochondria, and a role of the latter
in inflammasome activation has been suggested [54]. The mitochondrial adaptor protein MAVS
(mitochondrial antiviral signaling protein) associates with NLRP3, localizes it to mitochondria, and
supports NLRP3 inflammasome activation [55]. There are also very interesting reports suggesting a
biphasic and more complex role of the cellular redox state in inflammasome activation [56]. In addition,
the NLRP3 inflammasome is blocked in mice lacking expression of SOD1 (superoxide dismutase 1),
which are characterized by strongly increased ROS levels [57]. However, it should be pointed out that
a contribution of ROS to NLRP3 inflammasome activation is controversially discussed and might be
species-, cell type-, context-, and stimulus-dependent [52].

7. Nrf2 Expression Supports Inflammasome Activation

Atherosclerosis is associated with ROS causing lipid oxidation and its accumulation in the arterial
wall. This induces recruitment of leukocytes and inflammation, where particularly IL-1 is supposed to
play a central role [58,59]. Consequently, it can be anticipated that Nrf2 and its activation, which induces
expression of ROS detoxifying proteins, ameliorates atherosclerosis. Surprisingly, the opposite is true,
as ablation of Nrf2 expression protects from atherosclerosis in a mouse model of this disease [58,60].
Cholesterol crystals, which are found in atherosclerotic lesions, are able to activate the NLRP3
inflammasome, which is required for atherogenesis [58,61]. Similarly, an inflammasome-dependent
model of chronic kidney disease is also dependent on Nrf2 expression [62]. Later it was shown
that Nrf2 expression supports NLRP3 and AIM2 inflammasome activation in murine immune
cells, NLRP1/NLRP3 inflammasome activation in human primary keratinocytes and the latter
inflammasome type also in THP-1 cells [63–65]. In contrast, NLRC4 inflammasome activation is not
affected by Nrf2 ablation [64]. Mechanistically, a physical crosstalk between both pathways has been
suggested [63], and Nrf2 has been shown to colocalize with ASC specks [64]. Although Nrf2 ablation
only dampens inflammasome activation rather than completely inhibiting it, these results demonstrate
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an unexpected proinflammatory role of the transcription factor [63,66,67]. Interestingly, Nrf2 is quickly
degraded upon inflammasome activation [63].

8. Nrf2 Activation and Inflammasome Inhibition

In general, Nrf2 activation is considered to have anti-inflammatory effects, although Nrf2
target genes are not directly—for example via regulation of genes encoding proinflammatory
cytokines—involved in inflammation [3,7]. However, inflammation is associated with oxidative
stress and ROS, which is required for the destruction of or prevention from invasion of pathogens.
It is reasonable to assume that Nrf2 activation limits the negative effects of ROS for the cells of an
inflamed tissue and, eventually, inflammation. In addition, the assumption that NLRP3 inflammasome
activation is regulated by ROS and oxidative stress offers an even more direct explanation for the
anti-inflammatory activity of Nrf2 signaling (Figure 3) [50]. Consequently, since the presentation
of the concept that ROS regulates NLRP3 inflammasome activation, several studies have been
published, which demonstrate a correlation between Nrf2 activation and NLRP3 inflammasome
inhibition in many different disease models associated with inflammation (Table 1). Most of these
studies used substances isolated from plants, known in the Eastern, traditional Chinese medicine
for their efficacy for patients suffering from inflammatory conditions. It is not known whether
all these compounds are canonical Nrf2 activators, but for some of them this is well established
(Table 1). Nevertheless, in each case treatment of cells or animals with these compounds causes
Nrf2 activation and NLRP3 inflammasome inhibition. Since most of the studies are based on animal
models for inflammatory diseases, where whole tissues were analyzed, in most cases it is not identified
whether Nrf2 activation and NLRP3 inflammasome repression occur in the same cells, in neighboring
cells, or even in different cell types. In addition, about one third of the studies demonstrate a
reduction of NF-κB activation in association with Nrf2 activation and NLRP3 inflammasome inhibition.
However, from these publications (Table 1) it cannot be concluded that NLRP3 inflammasome
inhibition is beneficial in the corresponding diseases in human. This would be the case, if indeed
the pathological situation in human would rely on the NLRP3 inflammasome rather than only the
(artificial) induction of the disease state in the animal model. In conclusion, the high number of reports
demonstrating anti-inflammatory effects of Nrf2-activating substances in different disease models
associated with NLRP3 inflammasome inhibition (and in part with NF-κB inhibition) suggests that the
crosstalk between these pathways is of high relevance.
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Figure 3. ROS links Nrf2 and NLRP3 inflammasome activation. Proposed model of NLRP3
inflammasome inhibition by Nrf2 activation. Nrf2 activation, e.g., upon modification of regulatory
cysteine residues of its inhibitor Keap1, results in expression of several different proteins, which detoxify
ROS. Since ROS is required for NLRP3 inflammasome activation, this detoxification antagonizes the
NLRP3 inflammasome and inflammation. ROS: reactive oxygen species.
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9. Possible Mechanisms Underlying the Crosstalk between Nrf2 and Inflammasomes

9.1. Nrf2 Activation and Inflammasome Inhibition

Why is Nrf2 activation accompanied with NLRP3 inflammasome inhibition in so many different
inflammatory disease models (Table 1)? Substances such as sulforaphane, prostaglandin 15d-PGJ2

or curcumin are well-established Nrf2 activators via inhibition of its regulator Keap1 upon covalent
modification of regulatory cysteine residues (canonical Nrf2 activation) [3,5]. In contrast, xanthohumol
for example is supposed to stabilize Nrf2 independently of Keap1, but activates AMPK (p38 MAP
kinase), which in turn inhibits Gsk-3β (glycogen synthase kinase 3β) [68]. This enhances Nrf2
activity, since phosphorylation of the transcription factor in the nucleus by Gsk-3β causes its
Keap1-independent degradation [69]. Arsenic activates Nrf2 upon the inhibition of autophagy and the
accumulation of p62. Then, p62 binds to Keap1 and liberates Nrf2 [20]. The molecular mechanisms
underlying Nrf2 activation caused by several other substances is only poorly defined (Table 1).
Most authors argue that Nrf2 activation—irrespective of the underlying mechanisms—induces
upregulation of antioxidant target genes, whose expression causes a reduction of intracellular
ROS levels (Figure 3). In turn, this inhibits NLRP3 inflammasome activation, which is caused by
ROS-induced dissociation of thioredoxin from TXNIP and the binding of the latter to NLRP3 supporting
inflammasome activation [53,54]. If this order of events underlies NLRP3 inflammasome inhibition by
Nrf2 activators, then inflammasome inhibition should be dependent on Nrf2 expression, the induction
of Nrf2 target gene expression, and a reduction in ROS. In general, it is well known that Nrf2 knockout
mice suffer from a more severe phenotype in different inflammatory disease models compared to
wild type mice [70]. Concerning NLRP3 inflammasomes, a knockdown of Nrf2 expression enhanced
NLRP3 inflammasome activity in a model of cerebral ischemia reperfusion injury and in brain injury
after intracerebral hemorrhage [71,72]. In addition, it was reported that the anti-inflammatory effect
of sulforaphane is reduced in THP-1 cells upon a knockdown of Nrf2 expression [73] and that the
protective effect of Nrf2 activation in a colitis model is dependent on NLRP3 expression [74].

Interestingly, there is also evidence for anti-inflammatory activity of Nrf2-activating compounds
independently of Nrf2 expression, Nrf2 target gene expression, and Nrf2-dependent ROS regulation.
The Nrf2 activating compounds sulforaphane and 15d-PGJ2 also inhibit NLRP3 inflammasome
activation in Nrf2 knockout cells [63,66,67]. Additionally, sulforaphane inhibits NLRP3 inflammasome
activation even in Keap1 knockout cells [63]. DMF, which is used as a drug for patients suffering
from multiple sclerosis, has anti-inflammatory activity in a mouse model of experimental autoimmune
encephalomyelitis, irrespectively of Nrf2 expression [75]. The Nrf2 activator xanthohumol is protective
in a mouse model of acute lung injury, and this effect is only slightly reduced in Nrf2 knockout mice [68].
An involvement of ROS is only discussed for NLRP3 inflammasome activation, but sulforaphane
blocks also AIM2, NLRP1, and NLRC4 inflammasome activation [67]. In addition, neither expression of
Nrf2 target genes nor protein synthesis is needed for inflammasome inhibition by sulforaphane [63,67].

These results suggest that Nrf2 activators do not only target Nrf2 via covalent modifications of
Keap1’s cysteine residues, but also other pathways. An obvious candidate is NF-κB (Table 1), which is
linked to Nrf2 in a complex manner [6,70]. NF-κB activation is required for NLRP3 inflammasome
priming and particularly for induction of proIL-1β expression [42]. Interestingly, several publications
suggest a suppression of proIL-1β expression and priming by Nrf2 activating compounds [74,76–80].
In addition, it is known that strong Nrf2 activating electrophiles, such as 15d-PGJ2, can also inhibit the
NF-κB pathway [70,81,82].
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It is also conceivable that Nrf2 activating compounds directly target inflammasome proteins.
It has been excluded that caspase-1 is modified, as the purified enzyme cannot be inhibited
by sulforaphane [67]. Since sulforaphane prevents ASC speck formation, it is more likely that
inflammasome activation is inhibited upstream of inflammasome assembly [63]. During the last
years, several factors, which contribute to inflammasome activation and which represent principal
targets for inflammasome inhibition by Nrf2 activating compounds, have been identified [42,83].

9.2. Non-Canonical Nrf2 Activation and Inflammasome Inhibition

The multi-functional and multi-domain protein p62 is supposed to be a critical regulator of
the Nrf2, NF-κB and NLRP3 inflammasome pathways (Figure 4) [25,84,85]. Since p62 supports
Nrf2 and NF-κB activity but antagonizes the NLRP3 inflammasome, p62 might represent a link
between the three pathways responsible for their crosstalk. Originally, p62 was identified as an
important mediator of NF-κB [25]. With its aminoterminal PB1 domain, which is also required for
self-oligomerization, p62 interacts with aPKC (atypical protein kinase C). In addition, p62 binds
TRAF6 via its TRAF6 binding domain and it can also activate RIP1 [25]. In turn, IKK (Iκ B kinase)
is activated, which induces NF-κB translocation upon phosphorylation and inhibition of its inhibitor
IκBα (Figure 4). However, knockdown or ablation of p62 also antagonizes Nrf2 (see above in Section 4)
and supports inflammasome activation [84,85]. Inflammasome activation in macrophages triggers
autophagosome formation [84]. Inflammasome activation and IL-1β production is limited upon
Lys63-linked polyubiquitination of inflammasomes, followed by autophagosomal delivery upon
interaction with the autophagic adaptor p62 [84]. Alternatively or in addition, it has been reported
that p62 is required for the elimination of damaged mitochondria via autophagy (Figure 4) [85]. It is
believed that NLRP3 inflammasome agonists induce inflammasome complex assembly upon damage of
mitochondria and the release of inflammasome activating signals [85]. Upon p62-dependent destruction
of these damaged mitochondria, NLRP3 inflammasome activation is restricted. Oxidation of cysteine
residues of p62 by a poorly characterized mechanism increases autophagy [86]. However, it is not known,
whether p62 is also regulated by oxidation with Nrf2 activating compounds [86]. Interestingly, NF-κB
has a central role in controlling this crosstalk. Its activation is not only required for priming of the
NLRP3 inflammasome (induction of NLRP3 and proIL-1β expression), but also for the induction of p62
expression, which limits inflammasome activation. As p62 supports NF-κB as well as Nrf2 activation, a
positive feedback loop results via induction of p62 expression by Nrf2 (Figure 4). It is likely that this
loop is more relevant before than after inflammasome assembly, since Nrf2 is quickly degraded upon
inflammasome activation [63].
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Figure 4. SQSTM1/p62 (sequestosome-1) connects Nrf2, the NLRP3 inflammasome and NF-κB. p62
causes non-canonical Nrf2 activation via interaction and destruction of Keap1. In addition, p62 is
a well-known activator of NF-κB. NF-κB as well as Nrf2 induce p62 and Nrf2 expression (positive
feedback loop). In contrast, p62 antagonizes the NLRP3 inflammasome pathway by its targeting
of ubiquitinated inflammasome components to autophagosomes. In addition, p62 supports the
elimination of damaged mitochondria, which are believed to support NLRP3 inflammasome activation.
See Section 9.2 for details. aPKC: atypical protein kinase C. IKK: IκB kinase. TRAF6: tumor necrosis
factor receptor-associated factor 6.

The phosphatase PGAM5, which is able to interact with Keap1 as well as with Nrf2, is an inhibitor
of Nrf2’s transcriptional activity (see above in Section 4). In contrast, it supports necroptotic cell
death [34], a form of cell death termed oxeiptosis [87], and promotes inflammasome activation in
macrophages, which causes pyroptosis [88]. Therefore, PGAM5 could play a role in the antagonistic
crosstalk between Nrf2 and the NLRP3 inflammasome (Figure 5).
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Figure 5. PGAM5 links the NLRP3 inflammasome and Nrf2 pathway. PGAM5 inhibits Nrf2’s
transcriptional activity and, thereby, suppresses expression of ROS detoxifying proteins. This increase
in ROS might support NLRP3 inflammasome activation. PGAM5 expression is required for NLRP3
inflammasome activation. See Sections 4 and 9.2 for details. PGAM5: serine/threonine-protein
phosphatase PGAM5, mitochondrial, phosphoglycerate mutase family member 5.

9.3. Transcriptional Repression by Nrf2

As mentioned above, the general opinion is that Nrf2 dampens inflammation as an indirect
consequence of its role in the regulation of antioxidative and ROS-detoxifying genes, such as NQO1,
HO-1 or enzymes and proteins associated with the glutathione and thioredoxin system (see in Section 2
and Figure 3). Interestingly, it has been recently suggested that Nrf2 is directly involved in the
regulation of expression of proinflammatory genes [19]. These genes include those encoding the
inflammasome effector proteins proIL-1β and proIL-1α—the latter is among others also secreted
upon inflammasome activation—as well as IL-6, which is often released downstream of IL-1 [19,89].
The molecular mechanisms underlying this novel activity of Nrf2 are only partially characterized [7].
However, Nrf2 activation in macrophages upon a knockout of Keap1 expression or treatment of cells
with strong electrophiles, such as diethyl maleate or 15d-PGJ2, suppressed the expression of a number
of genes, including IL6, IL1b, IL1a and IL12b [19]. Chromatin immunoprecipitation (ChIP)-seq and
ChIP-qPCR revealed that Nrf2 binds in regions proximal to the promoter of these genes and inhibits
their LPS-induced expression. This binding of Nrf2 occurs independently of ROS and does not require
the known Nrf2-binding motifs [19]. It has been suggested that Nrf2 binding inhibits recruitment of
RNA Polymerase II to the transcriptional start site of the above-mentioned pro-inflammatory genes
and thereby suppresses their expression, since binding of other transcription factors was not affected.
A reduction of proIL-1β protein expression upon a knockout of Keap1 expression in THP-1 cells
was also reported in a second publication, as was suppression of NLRP3 expression [63]. Although
these data suggest for the first time a direct anti-inflammatory activity of Nrf2, they have to be
carefully interpreted before the underlying molecular mechanisms are elucidated. It is important
to keep in mind that Nrf2 activating compounds might have several additional independent effects
of Keap1 and Nrf2 targeting other proteins and pathways (see in Section 9.1). In addition, Keap1 is
not only a regulator of Nrf2, but interacts with several other proteins. Nevertheless, transcriptional
repression of proinflammatory and NLRP3 inflammasome-associated genes by Nrf2 or, in other words,
NLRP3 inflammasome priming, represents a very attractive explanation for the anti-inflammatory
activity of this transcription factor.
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Table 1. Compounds, which activate Nrf2 and inhibit the NLRP3 inflammasome in different disease models. It is not established for all substances, whether they activate
Nrf2 by the modification of cysteine residues of Keap1 (canonical Nrf2 activation). In part, an inhibition of NF-κB has been observed in these studies. ND: no data.

Compounds Disease Model Nrf2 Activation NLRP3 Inflammasome Inhibition NF-κB Suppression Literature

epigallocatechin-3-gallate (polyphenol in green tea) lupus nephritis yes yes yes [90]

antroquinonol from fungal Antrodia camphorata (folk medicine
in Taiwan) IgA nephropathy yes yes ND [91]

osthole (from Cnidiummonnieri (L.) Cusson seeds) IgA nephropathy yes yes yes [92]

sodium arsenite (NaAsO2), arsenic trioxide (As2O3-Trisenox) peritonitis not shown in the study, but well established yes (plus NLRP1 and NLRC4) ND [93]

mangiferin (flavonoid) sepsis-induced acute kidney injury yes yes [94]

SMA-12b (sulfone, similar to phosphorylcholine from
glycoprotein of Acanthocheilonema viteae) collagen-induced arthritis yes yes yes [95]

prostaglandin 15d-PGJ2 peritonitis not shown in the study, but well established yes (plus NLRP1) ND [66]

sulforaphane (from vegetables such as broccoli sprouts) peritonitis not shown in the study, but well established. yes (plus NLRP1; NLRC4 and AIM2) ND [67]

(-)schisandrin B (phytochemical) peritonitis yes yes yes [96]

mangiferin (glucosylxanthone from Mangifera indica) acute liver injury yes yes ND [97]

sulforaphane (from vegetables such as broccoli sprouts) Alzheimer’s disease yes yes ND [73]

epigallocatechin-3-gallate (from green tea) contrast-induced renal injury yes yes ND [98]

wogonoside (flavonoide from Scutellaria baicalensis Georgi) acute liver injury yes yes ND [99]

asiatic acid (triterpenoid from Centella asiatica) spinal cord injury yes yes ND [100]

biochanin A (isoflavone from red clover, cabbage or alfalfa) acute liver injury yes yes yes [80]

asiatic acid (triterpenoid from Centella asiatica) spinal cord injury-induced acute lung injury yes yes ND [101]

minocycline (tetracycline derivative) diabetic nephropathy yes yes ND [102]

Ecklonia cava polyphenol extract renal inflammation yes yes yes [103]

tert-butylhydrochinone ischemia/reperfusion yes yes ND [79]

luteolin (flavonoid) ischemia-reperfusion injury yes yes ND [104]

«compound 1» DSS-induced colitis yes yes (priming) ND [74]

citral (from Litsea cubeba) lupus nephritis yes yes ND [77]

sulforaphane acute pancreatitis yes yes yes [105]

dimethyl fumarate gout yes yes ND [63]

Berberine (alkaloid) gouty arthritis yes yes ND [106]

daphnetin (coumarine derivative) «mitochondrial dysfunction» yes yes ND [107]

xanthohumol (flavonoid from Humulus lupulus L.) acute lung injury yes yes yes [68]

diosmetin (3′,5,7-trihydroxy-4′-methoxyflavone) acute lung injury yes yes yes [78]

puerarin (from Kudzu root) age-related macular degeneration yes yes ND [108]
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Table 1. Cont.

Compounds Disease Model Nrf2 Activation NLRP3 Inflammasome Inhibition NF-κB Suppression Literature

isoliquiritigenin (from Glycyrrhiza uralensis) brain injury after intracerebral hemorrhage yes yes yes [71]

curcumin (from Curcuma longa) osteoarthritis not shown in the study, but well established yes ND [76]

Zn2+ «NLRP3 inflammasome activation in peritineal
mesothelial cells» yes yes ND [109]

mangiferin (from different plants) early brain injury after subarachnoid hemorrhage yes yes yes [110]

tert-butylhydrochinone cerebral ischemia reperfusion injury yes yes ND [72]

carnosic acid (from rosemary) DSS-induced colitis yes yes yes [111]
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10. Conclusions

The Nrf2 transcription factor and the NLRP3 inflammasome are both associated with stress
and inflammatory conditions. Whereas NLRP3 inflammasome activation induces inflammation and
eventually death of the inflammasome-activating cell, Nrf2 activation supports cell survival and rather
prevents inflammation. During the last few years, a crosstalk and inverse correlation of both pathways
in regulating inflammation became evident. However, the underlying molecular mechanisms are only
partially understood. ROS represents a link between both pathways, since proteins expressed upon
Nrf2 activation detoxify ROS, whereas ROS is supposed to activate the NLRP3 inflammasome [3,50].
Therefore, it is reasonable to assume that Nrf2 activation causes NLRP3 inflammasome inhibition.
The transcription factor NF-κB is also associated with both pathways. NF-κB is required for priming
of the NLRP3 inflammasome [42] and it also induces Nrf2 expression [6]. Most importantly, some Nrf2
activating compounds suppress NF-κB activation independently of the Nrf2/Keap1 pathway [70,81,82].
In addition, Nrf2 might directly suppress transcription of NLRP3 inflammasome associated genes,
including those coding for NLRP3, proIL-1β, and proIL-1α [19,63]. p62 and PGAM5 are regulators
of the Nrf2/Keap1 as well as of the NLRP3 inflammasome pathway. p62 supports activation of
Nrf2 [20,23] and antagonizes NLRP3 inflammasome activation [84,85], whereas PGAM5 is required for
inflammasome activation [88] and negatively influences Nrf2 activity [33]. Whether both proteins play a
major role in the antagonistic crosstalk of Nrf2 and the NLRP3 inflammasome remains to be determined.
The reasons why Nrf2 expression is required for full activation of the NLRP3 inflammasome are not
understood at all, but it might be that both complexes physically interact [63,64]. The antagonistic
relationship of Nrf2 and the NLRP3 inflammasome is also reflected by the fast and Keap1-independent
degradation of Nrf2 upon NLRP3 inflammasome activation (Figure 6) [63].

The Nrf2 and NLRP3 inflammasome pathways are interconnected at different levels and
mainly in an opposite or mutually antagonistic manner, suggesting that this crosstalk is of
physiological importance. Both pathways are critically involved in several common inflammatory and
neurodegenerative diseases and, in addition, the Nrf2 pathway is involved in cancer. The elucidation
of the molecular mechanisms underlying this crosstalk is not only of scientific interest, but might also
contribute to the development of novel and better treatment options for patients suffering from the
numerous conditions, which involve one or both of these stress-associated pro-inflammatory pathways.
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