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Allergies and asthma are a major cause of chronic disease whose prevalence has

been on the rise. Allergic disease including seasonal rhinitis, atopic dermatitis, urticaria,

anaphylaxis, and asthma, are associated with activation of tissue-resident mast cells

and circulating basophils. Although these cells can be activated in different ways, allergic

reactions are normally associated with the crosslinking of the high affinity Fc receptor

for Immunoglobulin E, FcεRI, with multivalent antigen. Inflammatory mediators released

from cytoplasmic granules, or biosynthesized de novo, following FcεRI crosslinking

induce immediate hypersensitivity reactions, including life-threatening anaphylaxis,

and contribute to prolonged inflammation leading to chronic diseases like asthma.

Thus, inappropriate or unregulated activation of mast cells and basophils through

antigenic crosslinking of FcεRI can have deleterious, sometimes deadly, consequences.

Accordingly, FcεRI has emerged as a viable target for the development of biologics that

act to inhibit or attenuate the activation of mast cells and basophils. At the forefront

of these strategies are (1) Anti-IgE monoclonal antibody, namely omalizumab, which

has the secondary effect of reducing FcεRI surface expression, (2) Designed Ankyrin

Repeat Proteins (DARPins), which take advantage of the most common structural motifs

in nature involved in protein-protein interactions, to inhibit FcεRI-IgE interactions, and (3)

Fusion proteins to co-aggregate FcεRI with the inhibitory FcγRIIb. This review presents

the published research studies that support omalizumab, DARPins, and fusion proteins

as, arguably, the three most currently viable strategies for inhibiting the expression and

activation of the high affinity FcεRI on mast cells and basophils.
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INTRODUCTION

Allergic disease refers to a variety of disorders that include seasonal allergies, atopic dermatitis,
urticaria, life-threatening anaphylaxis reactions to food, and allergic asthma. Curiously, the
incidence of allergic disease has increased dramatically in recent decades, and continues to rise
in developed countries. Allergies and asthma are among the most prevalent chronic diseases
worldwide (1, 2). The culprits are a variety of pre-formed inflammatory mediators including
histamine, serine proteases, proteoglycans, and other enzymes, that are stored in cytoplasmic
granules and released from mast cells and basophils immediately following “degranulation,”
and eicosanoids like prostaglandins and leukotrienes that are very rapidly biosynthesized from
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arachidonic acid. Prolonged stimulation also induces the
activation of various transcription factors, and synthesis of new
cytokines that contribute to inflammation and recruitment of
other cell types.

Mast cells can be activated by a variety of agents. However,
allergic reactions are generally associated with crosslinking of
the high affinity Fc receptor for immunoglobulin E (IgE), FcεRI,
with multivalent antigen (3). High affinity FcεRI is comprised
of an IgE-binding α chain, a signal enhancing β chain, and
two signal transducing γ chains. The tetrameric receptor, αβγ2,
is expressed predominantly on tissue-resident mast cells and
circulating basophils (4). However, in a proportion of human
subjects, mostly atopic patients, a trimeric form of the receptor
lacking the β chain, αγ2, is expressed on other cell types including
airway smoothmuscle (5), bronchial and intestinal epithelial cells
(6, 7), Langerhan cells (8, 9), dendritic cells (10, 11), monocytes
(12), and eosinophils (13), neutrophils and platelets (14–16).

Binding of IgE to FcεRI on mast cells and basophils enhances
FcεRI expression (17–21). It is thought that IgE binding to FcεRI
protects the receptor from being internalized and degraded.
On the other hand, IgE binding to FcεRI on dendritic cells
and monocytes (but not basophils) facilitates the internalization
and degradation of IgE-bound FcεRI within endolysosomal
compartments (22). In addition to showing that IgE levels are
important in stabilizing FcεRI expression, these observations also
indicate a role for FcεRI in clearance of serum IgE. Moreover,
they suggest that αβγ2 expressed on mast cells and basophils
is predominantly involved in signal transduction leading to
mast cell and basophil activation or degranulation, whereas αγ2
on antigen presenting cells is mostly involved in IgE-FcεRI
internalization.

The role of FcεRI as the primary activator of mast cells
and basophils leading to the release of allergic/inflammatory
mediators resulting in IgE-mediated immediate hypersensitivity
reactions and allergic inflammation is well-documented (3).
Accordingly, FcεRI has emerged as a target of biologics for
regulating allergic reactions. Currently, anti-IgE monoclonal
antibody omalizumab, DARPins, and fusion proteins that co-
aggregate FcεRI and FcγRIIb are at the forefront of the strategies
currently employed or actively being investigated as a means
of regulating the expression and/or activation of FcεRI for
the therapeutic purpose of inhibiting mast cells and basophils
(Figure 1).

OMALIZUMAB

Perhaps the most studied strategy directed against allergic disease
is the use of anti-IgE antibodies. Omalizumab (Xolair R©) is a
humanized anti-IgE mouse monoclonal antibody that is FDA-
approved for the treatment of mild to severe allergic asthma and
chronic spontaneous urticaria (23–26). Omalizumab works by
binding to circulating free IgE, thereby, reducing the amount
that would normally be available to bind FcεRI on mast cells and
basophils. In an early Phase I study of 15 allergic and asthmatic
patients with serum levels of IgE between 187 and 1,210 ng/ml,
intravenous injection of omalizumab resulted in reduction of

IgE to 1% of pre-treatment levels (27). It is widely reported that
omalizumab competes with FcεRI for the C3ε domain of IgE, thus
preventing it from binding FcεRI-bound IgE (28, 29). However,
another study reported that steric hindrance by C2ε domain,
rather than direct competition for site binding, was responsible
for the inability of omalizumab to bind FcεRI-bound IgE (30).
Regardless, omalizumab cannot bind IgE bound to FcεRI on
mast cells or basophils, and, therefore, does not crosslink IgE-
bound FcεRI to induce the release of allergic mediators. Since
binding of IgE to FcεRI on mast cells and basophils enhances
the expression of FcεRI (17–21), the reduction in free IgE by
omalizumab leads to diminished expression of FcεRI on the
surface of mast cells, basophils, and dendritic cells (21, 27, 31, 32).
In one study, treatment of atopic individuals with omalizumab
for 3 months reduced the expression of FcεRI on basophils by
∼97% from ∼220,000 to ∼8,300 receptors per basophil (27).
An in vitro study with in situ-matured mast cells from human
skin demonstrated that IgE-dependent enhancement of FcεRI
on human skin mast cells was both prevented and reversed
by omalizumab (21). In this study, omalizumab prevented the
upregulation of FcεRI by 90% when added simultaneously with
polyclonal IgE at a molar ratio of 2.9 (omalizumab to IgE).
Omalizumab also dose-dependently decreased FcεRI expression
on human skin mast cells when added to cultures after FcεRI had
already been upregulated with IgE, suggesting that omalizumab
could disassemble pre-formed IgE:FcεRI complexes. This was
later confirmed with a cell-free system and human basophils
(30, 33). The exact mechanism by which omalizumab “strips” IgE
off of FcεRI is not exactly known, but allosteric destabilization
and facilitated dissociation of the IgE:FcεRI complex, at least
at high concentrations of omalizumab, are suspected (33–36).
Human skin mast cells with IgE-enhanced FcεRI levels were
more sensitive to stimulation with a low dose of anti-FcεRI
mAb compared to mast cells with basal levels of FcεRI in terms
of degranulation, PGD2 biosynthesis, and cytokine production.
Reduction of FcεRI levels with omalizumab restored sensitivity
to stimulation, and mediator release, to basal levels.

The efficacy and safety of omalizumab as treatment against
allergic asthma and urticaria has clearly been demonstrated,
including as an add-on therapy with traditional treatments
such as glucocorticoids (23, 24). The therapeutic potential of
omalizumab in other IgE-mediated disorders in which FcεRI
plays a role, including food allergy (37–39), allergic rhinitis (40,
41), and atopic dermatitis (42, 43) has also been demonstrated.
However, one major concern is the duration of the positive
effects of omalizumab post-treatment. In one study (44), serum
free IgE was reduced by 96–98%, and wheal-and-flare reactions
to skin prick tests were significantly reduced in 40 patients
with allergic rhinitis who were treated with omalizumb for
28 weeks. However, serum free IgE levels and skin reactivity
increased following a reduction in the amount of omalizumab
administered, and returned to baseline when therapy was
completely discontinued. In another study (45), loss of control
of asthma symptoms following discontinuation of omalizumab
was recorded in 57% of the participants with a median time-
point of 13 months after discontinuation. In these studies,
FcεRI levels on mast cells or basophils was not monitored, but
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FIGURE 1 | Current strategies to inhibit FcεRI signaling in allergic disease.

given that omalizumab decreases FcεRI expression on these cell
types (21, 27, 31, 32), it is expected that receptor expression
increased when treatment was terminated. Thus, treatment
with omalizumab could require personalized optimization in
terms of dosage and duration of treatment to yield maximal
benefits.

Omalizumab as an adjunct to allergen immunotherapy (AIT)
against IgE-mediated food allergy and allergic asthma is also
currently under investigation (46–50). The main types of AIT
are subcutaneous immunotherapy (SCIT) and sublinguinal
immunotherapy (SLIT) (51). SCIT and SLIT have been shown
to be efficacious for perennial and seasonal allergic respiratory
disease (50, 52, 53). However, SCIT or SLIT are contraindicated
for severe or uncontrolled asthma (54). It is thought that pre-
treatment with omalizumab of patients with severe uncontrolled
asthma, which has been shown to be efficacious, could allow
AIT in patients that previously could not tolerate it (48,
55). However, studies to investigate AIT in combination with
omalizumab are currently lacking. With regard to food allergies,
omalizumab treatment in conjunction with oral immunotherapy
(OIT) has shown promise in desensitizing allergic patients to
peanuts, milk, and multiple food allergens (56–60). Overall,
the few reported studies have shown promise for the use
of omalizumab in combination with AIT for IgE-mediated
disease.

Other anti-IgE antibodies have also been developed and tested
including Ligelizumab (QGE031), Quilizumab (MEMP1972A),
XmAb7195, and MEDI4212 that might provide additional
opportunities for anti-IgE therapy in the future (61). To date,
however, none have been shown to be clinically superior
to omalizumab, or data is still coming out. In some cases,
for example QGE031 for asthma, development has been
discontinued. Nevertheless, these or other anti-IgE antibodies
could provide additional opportunities for anti-IgE therapy in the
future.

DARPINS

DARPins (designed ankyrin repeat proteins) are a class of small
(14–21 kDa) binding proteins comprised of a varying number
of stacked ankyrin repeat domains (62), which are one of the
most common structural motifs involved in protein-protein
interactions in nature. Natural ankyrin repeats are 33 residue
motifs comprised of two α-helical structures connected by a
loop that stack one on top of the other to form ankyrin repeat
domains (63). A single DARPin library module is comprised
of a 33 residue repeat of which seven residues are randomized
and non-conserved. Typically, two to four library modules are
genetically fused and flanked by N-cap and C-cap repeats to form
one protein domain (64, 65). Binding of ankyrin repeat domains
can affect stability and effector function of the target protein. The
motivation for engineering DARPins was to generate binding
proteins that could be used to target proteins with high affinity
and specificity, essentially replacing the use of monoclonal
antibodies (62).

In one of the first studies (66), two monovalent DARPins
(B-A4-85 and C-A3-30) capable of binding two different
epitopes of human FcεRIα were identified and successfully
fused to each other with the flexible linker [Gly4-Ser]4. A
bispecific DARPin (30/85) was identified as being capable of
simultaneously binding FcεRIα at both epitopes with affinity
for FcεRIα greater than that of IgE. In in vitro studies,
DARPin 30/85 blocked IgE binding to FcεRI, and inhibited
IgE-induced degranulation of human FcεRIα-transfected RBL-
2H3 cells to a similar extent as omalizumab. In a similar
study (67), two monovalent DARPins, E2_79 and E3_54, that
were specific for IgE, and could inhibit IgE-FcεRI interactions,
were identified. Bivalent proteins were genetically engineered
by coupling the monovalent DARPins with the glycine-serine
linker. E2_79/E2_79, at 5-fold molar excess with IgE, inhibited
the binding of IgE to FcεRIα by >90%, comparable binding
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by omalizumab. E2_79/E2_79 also effectively bound free IgE
in serum. The researchers further demonstrated that both
the monovalent and bivalent DARPins inhibited IgE-mediated
degranulation of FcεRIα-transfected RBL-2H3 cells. Bivalent
DARPin E2_79/E2_79 was particularly effective, exhibiting an
IC50 of 0.54 nM compared to 1.77 nM for omalizumab. It
was later shown that E2_79, in addition to binding free IgE,
could also stimulate the dissociation of pre-formed IgE:FcεRI
complexes by a facilitated dissociation mechanism at one of
two binding sites identified for E2_79 on the IgE:FcεRI complex
(36). In a separate study, treatment with E2_79 significantly
reduced surface expression of FcεRI on human ex vivo isolated
primary basophils, and inhibited FcεRI-induced activation and
leukotriene C4 (LTC4) biosynthesis (30). Further, a biparatopic
DARPin, bi53_79, which was engineered by fusing the disruptive
E2_79 with non-disruptive E3_53 anti-IgE DARPins exhibited
a >10-fold increase in capacity to disrupt FcεRI:IgE complexes,
and was more effective at inhibiting anaphylactic reactions
in vivo compared with E3_79 alone. Noteworthy, E2_79 and
bi53_79 acted faster and were more effective than omalizumab in
parallel experiments. These studies demonstrate the therapeutic
potential of DARPins as inhibitors of FcεRI-induced allergic
reactions. Thus, supporting the notion that DARPins have the
potential to supplant monoclonal antibodies such as omalizumab
as treatment for allergic asthma and other allergic diseases
(62, 65).

However, DARPins are protein structures, and the potential
for immunoreactivity resulting from the production of anti-
DARPin antibodies should be met with extreme caution.
Clearly the immune response to DARPin proteins could be
a major limitation in the use of DARPins as therapeutic
agents. In addition, the possibility of negative or deleterious
effects of inhibiting the activation of FcεRI-expressing cell
types should also be considered. For example, mast cells and
eosinophils play a major role in the clearance and expulsion of
parasites particularly helminths. Likewise, mast cell mediators
also protect against insect and reptile venom. Thus, blocking
the activation of mast cells could inhibit the positive or
protective effects associated with FcεRI activation. This might
be particularly relevant in countries where parasitic infections
are endemic. It is argued that DARPins would be more cost
effective than monoclonal antibodies because they can be
produced in large scale in bacteria; however, the relative cost
to human safety must be considered. Importantly, in July
2018, Allergan and Molecular Partners announced that Abicipar
pegol, a DARPin engineered to target vascular endothelial
growth factor (VEGF), had reached the primary end point
in two Phase III trials for the treatment of neovascular age-
related macular degeneration (AMD). In two trials, Abicipar
pegol demonstrated non-inferiority to the approved anti-VEGF
ranibizumab (Lucentis R©). Of significant concern, however, was
a significantly greater incidence of ocular inflammation with
Abicipar pegol than Lucentis R©. Allergan is expected to file
Abicipar pegol with the FDA in early 2019. Thus, whether
DARPins are safe and efficacious in humans is currently being
determined.

CO-AGGREGATION OF FCεRI WITH
FCγRIIB

Given the requirement for tyrosine phosphorylation events in
the initiation and propagation of FcεRI signaling in mast cells
and basophils (68–72), one strategy to inhibit FcεRI-mediated
reactions has been to take advantage of the inhibitory property of
FcγRIIb. FcγRIIb is the only known inhibitory IgG Fc receptor
(73, 74). In contrast to FcεRI, which utilizes immunoreceptor
tyrosine-based activation motif (ITAM), FcγRIIb utilizes the
inhibitory counterpart (ITIM) that, upon receptor activation,
recruits SH2-domain containing phosphatases including SHIP.
The phosphatases interfere with the tyrosine-based activation
of early signaling molecules resulting in the inhibition of
signal transduction (75–77). FcγRIIb is expressed on human
basophils and cord blood-derived mast cells (78–80). It is
not constitutively expressed on human skin mast cells (81),
but FcγRIIb expression can be induced in human intestinal
mast cells with interferon γ (82) and on human basophils
with IL-3 (79) suggesting that it could be induced in tissue-
derived mast cells. Various experiments have been performed
demonstrating that co-aggregation of FcεRI and FcγRIIb inhibits
IgE-dependent activation and mediator release from mast cells
and basophils. In one study (83), it was demonstrated that
serotonin release from mouse bone marrow-derived mast cells
(BMMCs) sensitized with anti-ova IgE, and then challenged with
ova, was dose-dependently inhibited when the BMMCs were
challenged with DNP-ova complexed with anti-DNP IgG. The
requirement for co-aggregation of FcεRI and FcγRIIb to inhibit
mast cell mediator release was further tested and confirmed in rat
basophilic leukemia cells (RBL-2H3) transfected with FcγRIIb.
Another study (84) used a bispecific antibody expressing one
Fab fragment specific for human IgE, and the other for FcγRIIb,
to show that simultaneous crosslinking of FcεRI and FcγRIIb
inhibited antigen induced histamine release from human cord
blood-derived mast cells and peripheral blood basophils. Cassard
et al. (79) used an IgG anti-IgE, which binds FcεRI-bound
IgE via its Fab, and FcγR via their Fc domain, to demonstrate
that co-aggregation of FcεRI and FcγRIIb negatively regulates
IgE-induced activation of human and mouse basophils, and
release of histamine and IL-4. Furthermore, a comprehensive
in vivo study utilizing passive and active immunization of
mice determined that FcεRI-FcγRIIb crosslinking contributed
significantly to the inhibition of IgE-mediated anaphylaxis by
IgG blocking antibodies particularly under low concentrations of
IgG blocking antibody (85). Collectively, these studies support
the notion that co-aggregation of FcεRI and FcεRIIb is a viable
strategy to limit allergic responses.

Over the years, Fcε-Fcγ fusion proteins to co-aggregate FcεRI
and FcγRIIb have been investigated. One of the earliest bi-
functional fusion proteins that was engineered, termed GE2,
is comprised of the hinge-Cγ2-Cγ3 domains of the human
IgG Fc and Cε2-Cε4 domains of human IgE Fc connected
by a 15 amino acid (Gly4-Ser)3 linker (86). Human GE2 was
shown to bind to both FcεRI and FcγRII at levels equivalent to
human IgE and IgG, respectively. Functionally, GE2 inhibited
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IgE-dependent degranulation of human basophils in time-
and dose-dependent manner with maximal inhibition observed
when the cells were sensitized with antigen-specific IgE and
GE2 simultaneously. GE2 co-aggregation of FcεRI and FcγRII
inhibited Syk phosphorylation, a critical event in FcεRI signaling
(87, 88), and in vivo IgE-induced passive cutaneous anaphylaxis
in transgenic mice expressing a human FcεRIα. Kepley, et al.
(78) subsequently used GE2 to further demonstrate that co-
aggregation of FcεRI and FcγRII on human umbilical cord
blood-derived mast cells inhibited degranulation and cytokine
production. In a similar study, Mertsching et al. (89) created
a murine homolog of human GE2, termed mGE, consisting
of Cγ2a2-Cγ2a3 and Cε2-Cε3-Cε4 domains connected by the
(Gly4-Ser)3 linker. mGE was shown to inhibit IgE-dependent
degranulation and cytokine production from wild type but
not FcγRIIb-deficient mice BMMCs. mGE also inhibited in
vivo passive cutaneous and systemic anaphylaxis in mice, with
extended protection. Conversely, mGE treatment increased
FcγRIIb phosphorylation and its association with SHIP and
SHP1/2 phosphatases.

In an effort to enhance the efficacy of FcεRI-FcγRIIb
co-engagement while eliminating the possibility of FcεRI
crosslinking, Cemerski et al. (90) engineered a tandem Fcε-Fcγ
fusion protein comprised of a murine Fcε domain linked to
a human Fcγ domain IgG1, which, due to S267E and L328F
amino acid substitutions at the Fcγ domain, exhibited >100-
fold greater affinity for human FcγRIIb compared to the native
IgG Fc composition (91, 92). This fusion protein was shown
to inhibit IgE-dependent degranulation of human FcγRIIb
transgenic BMMCs. However, in the reported experiments, the
tandem fusion protein containing the native IgG Fc domain
inhibited mast cell degranulation to a similar extent as a control
tandem fusion protein lacking affinity for FcγRIIb. The authors
concluded that inhibition of mast cell degranulation by co-
engagement is more potently suppressed when the tandem fusion
protein has higher affinity for FcγRIIb. To our knowledge, the
tandem Fc fusion protein with enhanced affinity for FcγRIIb has
not been compared to the other reported FcεRI-FcγRII fusion
proteins, GE2 (86) and hGE2 (89).

Two pre-clinical studies in non-human primates have
demonstrated the potential clinical applicability of FcεRI-
FcγRIIb fusion proteins in inhibiting allergic reactions. Zhang
et al. (93) first demonstrated that GE2 could inhibit mediator
release frommast cells and basophils that had been pre-sensitized
with IgE before treatment with GE2 as would be the case
in allergic individuals undergoing treatment. The researchers
demonstrated that GE2 inhibited Fel d 1 (cat allergen)-induced
histamine release from human basophils and lung mast cells
from cat allergic patients. Mirroring this, GE2 blocked Fel
d 1-induced passive cutaneous anaphylaxis in human FcεRIα
transgenic mice that were sensitized with serum from cat allergic
subjects. GE2 itself was shown to not induce mediator release or
induce anaphylaxis. In their pre-clinical study, GE2 was shown
to inhibit skin test reactivity to dust mite (Dermatophagoides
farinae) allergen in Rhesus monkeys that were naturally allergic
to the D. farina allergen. In a later study, Mertsching et al. (89)
generated another FcεRI-FcγRIIb fusion protein, termed hGE2,

based on the GE2 construct of Zhu et al. (86) absent of any non-
native sequences. hGE2, administered to cynomolgus monkeys
that had been sensitized with the roundworm Ascaris suum,
was shown to protect the monkeys from cutaneous anaphylaxis
induced with A. suum extract. The monkeys were reportedly
protected from local anaphylaxis for up to three weeks.

Interestingly, a humanized monoclonal anti-IgE antibody
(XmAb7195) was reported to have an IgE-binding affinity 5.3-
fold greater than omalizumab, and 400 times greater binding
affinity for FcγRIIb due to mutations in its Fc region (94).
XmAb7195 was shown to block free IgE and inhibit IgE
production in B cells by co-engaging IgE and FcγRIIb. Although
XmAb7195 did not bind FcεRI-bound IgE (94), this study
supports the notion of using anti-IgE IgG antibodies to co-
aggregate FcγRIIb and FcεRI to inhibit allergic disease. First-
in-Human Phase 1 clinical trials have been conducted with
XmAb7195, but results on safety, tolerability and bioavailability
have not been reported (61).

DARPins have also been used to co-aggregate FcεRI and
FcγRIIb. Eggel et al. (95) generated an anti-IgE DARPin fusion
protein in which DARPin E53, which showed reactivity against
a non-FcεRIα epitope capable of binding free and receptor-
bound IgE, was joined via the (Gly4-Ser)3 linker to a human
IgG1 Fc region. DE53-Fc, as it was named, was shown to not
be anaphylactogenic, and inhibited allergen-induced activation
of basophils in whole blood samples from allergic donors. In
a subsequent study (96), a DE53-Fc mutant construct with
increased affinity for FcγRIIb due to a single site-directed point
mutation in the IgG Fc region was shown to be more efficient
at co-aggregating FcεRI and FcγRIIb, resulting in enhanced
inhibition of basophil activation. Recently, Zellweger et al.
(97) generated DARPin D11_E53, which simultaneously bound
human FcγRIIb and FcεRI-bound IgE. The bispecific molecule
was shown to inhibit allergen-induced degranulation and
LTC4 biosynthesis in human primary basophils and huFcεRIα-
expressing mouse BMMCs in vitro, and decreased in vivo
passive systemic anaphylaxis induced in huFcεRIα transgenic
mice. This study demonstrated that FcγRIIb-mediated inhibition
of degranulation requires direct ligation with FcεRI, and that
DARPins, at least D11_E53, could safely be applied to animals
to inhibit anaphylaxis.

CONCLUDING COMMENTS

The dramatic increase in prevalence of allergies warrants
additional research to develop new strategies and therapies to
treat allergic disease. At the forefront are the anti-IgEmonoclonal
antibody omalizumab, DARPins, and fusion proteins that
directly or indirectly alter FcεRI expression and activation. In
order to maximize the use of omalizumab, additional clinical
studies are needed to identify allergic diseases against which
omalizumab could be effective beyond asthma and spontaneous
urticaria. The development of newer anti-IgE antibodies could
also have an impact. The development of DARPins hold the
promise of targeting FcεRI or IgE with greater specificity
and better efficacy than monoclonal antibodies without the
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hurdles associated with development of humanized monoclonal
antibodies. As potential clinical therapeutics, DARPins also have
the potential to reach a broader population since allotypic
differences associated with the use of monoclonal antibodies
might not factor in their development. However, safety issues
regarding immunogenicity due to anti-DARPin antibodies and
unwanted effects due to inhibiting positive effects of mast cell
activation must be considered. Whether DARPins can supersede
monoclonal antibodies remains to be determined. Harnessing
the inhibitory properties of FcγRIIb to inhibit FcεRI with fusion
proteins also shows promise as evidenced in pre-clinical studies
with non-human primates. It is hoped that these strategies will

lead to therapeutics that provide relief to the millions of people
worldwide suffering from allergic disease.
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