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Mucin 1 (MUC1), a well-known tumor-associated antigen and attractive target for tumor
immunotherapy, is overexpressed in most human epithelial adenomas with aberrant
glycosylation. However, its low immunogenicity impedes the development of MUC1-
targeted antitumor vaccines. In this study, we investigated three liposomal adjuvant
systems containing toll-like receptor 4 (TLR4) agonist monophosphoryl lipid A (MPLA)
and auxiliary lipids of different charges: cationic lipid dimethyldioctadecylammonium (DDA),
neutral lipid distearoylglycerophosphocholine (DSPC) or anionic lipid
dioleoylphosphatidylglycerol (DOPG), respectively. ELISA assay evidenced that the
positively charged DDA/MPLA liposomes are potent immune activators, which induced
remarkable levels of anti-MUC1 antibodies and exhibited robust Th1-biased immune
responses. Importantly, the antibodies induced by DDA/MPLA liposomes efficiently
recognized and killed MUC1-positive tumor cells through complement-mediated
cytotoxicity. In addition, antibody titers in mice immunized with P2-MUC1 vaccine were
significantly higher than those from mice immunized with P1-MUC1 or MUC1 vaccine,
which indicated that the lipid conjugated on MUC1 antigen also played important role for
immunomodulation. This study suggested that the liposomal DDA/MPLA with lipid-MUC1
is a promising antitumor vaccine, which can be used for the immunotherapy of various
epithelial carcinomas represented by breast cancer.
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INTRODUCTION

Mucin1 (MUC1), a transmembrane glycoprotein highly overexpressed and aberrantly glycosylated
on many tumor tissues including ovarian, breast, pancreatic, prostate and ovarian carcinomas
(Hollingsworth and Swanson, 2004; Kufe, 2009; Nath and Mukherjee, 2014; Chen et al., 2021).
MUC1 glycoprotein contains a variable number of tandem repeats (VNTRs) region
(HGVTSAPDTRPAPGSTAPPA) in its extracellular domain (Gaidzik et al., 2013; Pillai et al.,
2015; Li and Li, 2020). With its unique biological features, tumor-associated antigen MUC1
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glycoprotein has been considered as one of the favorable targets
for the development of cancer immunotherapy (Barratt-Boyes,
1996; Singh and Bandyopadhyay, 2007; Pillai et al., 2015;
Dhanisha et al., 2018; Brockhausen and Melamed, 2021).
However, the weak immunogenicity of MUC1 limits its
development and clinical application (Tang et al., 2008; Tang
et al., 2018; Chen et al., 2021). To increase its immunogenicity,
co-delivery of immunostimulating components and antigens
establish an effective strategy for cancer vaccine (Ingale et al.,
2007; Cai et al., 2014; Yin et al., 2017; Wu X. et al., 2018; Wu J.-

J. et al., 2018; Supekar et al., 2018; Liu et al., 2021; Wu et al., 2021;
Zhu et al., 2021).

TLRs present on diverse cells like macrophages, Dendritic cells
(DCs), B cells and natural killer (NK) cells (Adams, 2009;
Baxevanis et al., 2013; Li et al., 2017; Gao and Guo, 2018;
Owen et al., 2021; Zhou et al., 2022). Monophosphoryl lipid A
(MPLA), a TLR4 agonist optimized from Salmonella minnesota
lipopolysaccharide (LPS), is a promising immunostimulant
licensed for use in human vaccines preventing viral infections
(Alderson et al., 2006; Vacchelli et al., 2012; Gao and Guo, 2018;

FIGURE 1 | Design of a liposomal vaccine consisting of auxiliary lipids, MUC1 lipoglycopeptides and MPLA adjuvant. (A) Design of a liposomal vaccine against
MUC1; (B) Induction of immune responses and evaluation of binding affinity.

SCHEME 1 | Synthesis of MUC1 glycopeptide and lipoglycopeptides by solid phase peptide synthesis (SPPS).
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Shetab Boushehri and Lamprecht, 2018; Romerio and Peri, 2020).
MPLA plays an important role in stimulating the maturation of
DCs, inducing the upregulation of major histocompatibility
complex (MHC) class I and II molecules, and promoting the
migration of DCs to CD4 T cells (Akira and Takeda, 2004). In
addition, MPLA is being actively investigated as a potent
immunostimulatory adjuvant to cancer vaccines (Cluff et al.,
2005; Didierlaurent et al., 2009; Wang et al., 2017; Zhou et al.,
2017; Facchini et al., 2021).

Lipid modification of peptides can promote self-assembly and
formation of liposomes, which can enhance their
immunogenicity by presenting the multivalent antigens and
increasing uptake by antigen presenting cells (APCs)
(Eskandari et al., 2017; Aiga et al., 2020). In addition, our
previous studies showed that co-delivery of adjuvants and
antigens via liposomes significantly increased the
immunogenicity of antigen (Du et al., 2019). As liposomal
adjuvant, MPLA can also effectively participate in the
formation of liposomes and enhance immune responses
(Figure 1).

Based on the above considerations, we developed liposomal
vaccines using the amphiphilic lipidated MUC1 glycopeptides as
target antigens and TLR4 agonist MPLA as immunoadjuvant.
Considering that the negative charge of the MPLA adjuvant may
affect the assembly of liposomes (Brandt et al., 2000; Korsholm
et al., 2010; Wang et al., 2013), we designed three commonly
applied auxiliary lipids of different charges including cationic
lipid dimethyldioctadecylammonium (DDA) (Hilgers and
Snippe, 1992; Korsholm et al., 2007), neutral lipid
distearoylglycerophosphocholine (DSPC) and anionic lipid
dioleoylphosphatidylglycerol (DOPG), respectively. DDA could
efficiently form a kind of cationic liposome, which facilitated the
antigen presentation and further induced Th1-biased immune
responses (Qu et al., 2018). Phospholipid DSPC (Nakamura et al.,
2015) or DOPG (Yanasarn et al., 2011) is used as the key
component in the formation of liposomes. Its stability is
affected by phospholipid charge, which can influence drug

delivery efficiency. The DDA cationic liposome-forming lipid
has been reported to enhance the antigen uptake and presentation
to T cells as a potent adjuvant (Yu et al., 2012; Wang et al., 2013).
In addition, in order to determine the best lipid anchor, four
MUC1 glycopeptides were constructed: MUC1, P1-MUC1, P2-
MUC1 and P3-MUC1, then the structure-activity relationship
between the lipid-tailed MUC1 and the liposomal adjuvant
system was studied.

RESULTS AND DISCUSSION

Chemical Synthesis of MUC1 Glycopeptide
and Lipoglycopeptides
The resin-bound peptide MUC1 with Tn glycosylation on the
PDTRP motif was synthesized via the solid phase methodology
using Fmoc strategy (Scheme 1 and Supplementary Schemes
S1–S4). Then the palmitic acid was directly conjugated to the
resin-bound peptide as described previously (Du et al., 2019).
After deprotection and work up, the MUC1 glycopeptide and
lipoglycopeptides were isolated in yields of 10–35% and
characterized by high performance liquid chromatography
(HPLC) and ESI mass spectrometry (Supplementary Figures
S6–S13).

Design and Preparation of Vaccine
Candidates
The design of a liposomal adjuvant based on MPLA and auxiliary
lipids of different charges was described in Supplementary Table
S1. In this strategy, two issues are mainly discussed: 1) the
interaction between auxiliary lipids of different charges and
the adjuvant MPLA (Figure 2); 2) the influence of different
numbers of lipid chain on the immune activity of vaccines.
Liposomes composed of antigens, adjuvant and auxiliary lipids
were produced using the lipid-film hydration method (Du et al.,
2019). The mole ratio of MUC1 antigen, agonist (MPLA),

FIGURE 2 | The structures of MPLA adjuvant (A) and auxiliary lipids including cationic DDA (B), neutral DSPC (C) and anionic DOPG (D).
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auxiliary lipid was maintained at 1:1:8 (Karlsen et al., 2014).
Subsequently, in order to compare the effect of different auxiliary
lipids on vaccine efficacy, positive charged DDA, neutral DSPC
and negatively charged DOPG were introduced. Finally, to
explore the influence of lipid modification, equimolar amounts
of MUC1 glycopeptide (10 nmol, 22 μg), Pam(P1)-MUC1
(10 nmol, 25 μg), Pam2(P2)-MUC1 (10 nmol, 28 μg) and
Pam3(P3)-MUC1 (10 nmol, 32 μg) were employed in the
vaccine design. After hydration of a lipid film that contained
all components in a 10 mM Tris buffer (pH 7.4), the liposomes
were prepared by ultrasound for 20 min.

Immunization of Mice
Female BALB/c mice (aged 6–8 weeks) were inoculated on
day 0, and again on days 14 and 28. Two weeks after each
immunization, sera were collected for immune activity
assessment (Supplementary Scheme S6). All animal

studies were carried out according to National Institute of
Health and institutional guidelines. During the
immunization period, no weight loss and other abnormal
physiological phenomena (such as changes in hair, behavior
and appetite) (Supplementary Figure S5) were observed
in mice.

Characterization of Vaccines
As shown in Figure 3A, the dynamic light scattering (DLS)
showed that these liposomes have homogeneous particle sizes
with diameters of approximately 100 nm, which may facilitate
transport to the lymph nodes (Jiang et al., 2017; Zhang et al.,
2018). In addition, zeta potential showed that liposomal DDA/
MPLA along with P2-MUC1 antigen had a higher value of
positive zeta potential than other liposomes (DSPC/MPLA or
DOPG/MPLA) (Figure 3B). The charge of liposomes is mainly
caused by a combination of auxiliary lipids andMPLA. Due to the

FIGURE 3 | DLS (A) and zeta potential (B) results for vaccines. Values are presented as the mean ± SD (n = 3). The secretions of cytokines (C), MUC1-specific IgG
antibody (D) and antibody isotypes (E)were detected by enzyme-linked immunosorbent assay (ELISA) (n = 5). Control: phosphate-buffered saline (PBS). ****, p < .0001,
***, p < .001, **, p < .01, and *, p < .05 compared with the control group by one-way analysis of variance (ANOVA) with the Tukey’s HSD test. Comparisons between
different groups were also conducted by ANOVA using Tukey’s HSD test. Data represent the mean ± SD of five mice from three separate experiments.
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mole ratio of DDA and MPLA at 8:1, the cationic DDA makes its
corresponding liposome positively charged.

Liposomal DDA/MPLA Induced a Stronger
Immune Response
To assess the interaction between MPLA agonist and auxiliary
lipids of different charges, the secretion level of IL-6 after the first
immunization was evaluated (Figure 3C). The results showed
that all groups containing MPLA agonist produced high levels of
IL-6 compared to the control group. This rapid production of

cytokines indicated that the TLR signaling pathways were
activated in mice immunized with these vaccines. Interestingly,
IL-6 cytokines induced by the co-administration of cationic DDA
and MPLA was higher than those induced by DSPC/MPLA and
DOPG/MPLA. This may be attributed to the better electrostatic
attraction between the positively charged DDA and the negatively
charged MPLA agonist (Hilgers and Snippe, 1992; Korsholm
et al., 2007), which increased uptake of liposomes by APCs.

As DDA/MPLA showed a great ability to induce cytokine
secretion, we next explored its potential in stimulating antibody
responses in vivo. The MUC1-specific IgG antibody titers in sera

FIGURE 4 |MUC1-specific antibodies recognize MUC1-positive breast cancer cell line (MCF-7). (A) Confocal fluorescence microscopy images of the cells stained
with pre-immunization sera, sera from PBS and the third immunization antisera collected from P2-MUC1/DDA/MPLA, P2-MUC1/DSPC/MPLA, P2-MUC1/DOPG/MPLA
and P2-MUC1/MPLA group. (Scale bar = 25 μm). (B)MTT test for complement-dependent cytotoxicity. Differences were determined by one-way ANOVA and Tukey’s
HSD test (PBS was used as control). Asterisks indicate statistically significant differences (****p < .0001, **p < .01). Data are the mean SD of five mice and are
representative of five independent experiments.

FIGURE 5 | The secretions of cytokines (A) andMUC1-specific IgG antibody (B)were detected by ELISA (n = 5). (C) Flow cytometry histograms of the cells stained
with sera from PBS and the third immunization antisera collected from P2-MUC1/DDA/MPLA, P2-MUC1/DDA, P2-MUC1/DSPC, P2-MUC1/DOPG and P2-MUC1 group.
Control: phosphate-buffered saline (PBS). ****, p < .0001 and **, p < .01 compared with the control group by one-way analysis of variance (ANOVA) with the Tukey’s HSD
test. Comparisons between different groups were also conducted by ANOVA using Tukey’s HSD test. Data represent the mean ± SD of five mice from three
separate experiments.
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were measured by enzyme-linked immunosorbent assay (ELISA).
Compared with P2-MUC1/DSPC/MPLA and P2-MUC1/DOPG/
MPLA liposomal vaccines, the P2-MUC1/DDA/MPLA liposomal
vaccine induced higher anti-MUC1 IgG antibody titers
(Figure 3D, 2-fold higher than P2-MUC1/DSPC/MPLA, 5-fold
higher than P2-MUC1/DOPG/MPLA). In terms of antibody
isotypes, IgG3 titers were greatly increased in mice immunized
with DDA/MPLA/P2-MUC1 (Figure 3E), which suggested that
DDA/MPLA liposome could promote antigen deposition at the
injection site and induce prominent Th1-biased response
(Henriksen-Lacey et al., 2011). In addition, P2-MUC1/DDA/
MPLA liposomal vaccine induced higher levels of IgG
antibody titers than P2-MUC1/MPLA without any auxiliary
lipids (6-fold).

Meanwhile, the ability of antisera to recognize human MCF-7
breast cancer cell line was detected by confocal fluorescence
microscopy and flow cytometry techniques. As shown in

Figure 4A and Supplementary Figure S2, on one hand, P2-
MUC1/DDA/MPLA vaccine induced higher levels of antibodies
that recognized MUC1 positive MCF-7 cancer cells relative to P2-
MUC1/DSPC/MPLA and P2-MUC1/DOPG/MPLA vaccine. On
the other hand, P2-MUC1/MPLA vaccine without any auxiliary
lipids not only generated lower levels of IL-6 cytokines and
antibodies, but also showed low binding affinity. This result
indicated that the positively charged liposomes with DDA and
MPLA were important to enhance the recognition ability of
antibodies to cancer cells.

In addition, to evaluate the potential of antisera to activate the
complement system, the complement-dependent cytotoxicity
(CDC) assay was performed and the percentage of lysed cells
was determined by applying a tetrazolium bromide (MTT) assay.
As shown in Figure 4B, when P2-MUC1 was used as an antigen,
the antisera from DDA/MPLA gourp could more effectively
activate the complement system and kill MCF-7 cells than

FIGURE 6 | The secretions of MUC1-specific IgG antibody (A), antibody isotypes (B) and cytokines (C)were detected by ELISA (n = 5). (D) Confocal fluorescence
microscopy images of the cells stained with sera from PBS and the third immunization antisera collected from MUC1/DDA/MPLA, P1-MUC1/DDA/MPLA, P2-MUC1/
DDA/MPLA, P3-MUC1/DDA/MPLA. The images are representative of five independent experiments (Scale bar = 25 μm).
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DSPC/MPLA and DOPG/MPLA group. These result reflected
that the antigen-specific antibodies induced by cationic DDA/
MPLA liposomes can effectively activate the complement system.
The co-delivery of adjuvant and antigen was guaranteed by stable
liposomes. There is a better electrostatic attraction between the
positively charged DDA and the negatively charged MPLA
agonist, which enhances the stability of the liposomes (Brandt
et al., 2000; Korsholm et al., 2010; Wang et al., 2013) and
facilitated the uptake of antigen by antigen presenting cells
(APCs). On the other hand, positively charged liposomes may
be more easily absorbed and swallowed by negatively charged cell
membranes. Therefore, the immune responses were enhanced by
P2-MUC1/DDA/MPLA liposomal vaccine.

To determine the role of MPLA adjuvant in vaccines, mice
were immunized with P2-MUC1/DDA, P2-MUC1/DSPC, P2-
MUC1/DOPG and P2-MUC1. As shown in Figure 5, the
results showed that only administration with MPLA increased
the secretion levels of IL-6 cytokines (Figure 5A) and IgG
antibody titers (Figure 5B) in mice. Moreover, the recognition
potential of different groups was also assessed (Figure 5C). Only
the antisera of mice vaccinated with MPLA showed a strong
binding ability to the target cells MCF-7, which indicated that
MPLA played an important role to enhance the anti-MUC1
immune responses and improve the recognization ability of
antibodies to MCF-7 cells.

Lipid Modification of MUC1 Glycopeptide
Improved Immune Responses
To explore the influence of lipid modification, equimolar
amounts of MUC1 glycopeptide, P1-MUC1, P2-MUC1 and P3-
MUC1 were employed in the DDA/MPLA vaccines design. The
results indicated that P2-MUC1/DDA/MPLA induced stronger
anti-MUC1 specific IgG antibody responses in mice (110 and 38-
fold higher IgG titers than MUC1/DDA/MPLA and P1-MUC1/
DDA/MPLA at day 42, respectively). The IgG antibodies elicited
by P3-MUC1/DDA/MPLA was comparable to P2-MUC1/DDA/
MPLA (Figure 6A).

Meanwhile, the sera on day 14 of P2-MUC1/DDA/MPLA
group also showed high IgG antibody titers, indicating that
P2-MUC1/DDA/MPLA could rapidly elicit robust immune
responses (Supplementary Figure S4). Next, the anti-MUC1
IgG antibody subclasses (IgG1, IgG2a, IgG2b, and IgG3) titers
on day 42 were also analyzed (Figure 6B). Except for groups
immunized with P2-MUC1/DDA/MPLA and P3-MUC1/DDA/
MPLA, other groups were unable to induce an effective antibody
immune response. No significant difference was observed
between P2-MUC1/DDA/MPLA and P3-MUC1/DDA/MPLA
in IgG subtypes titers. Interestingly, the level of IgG3 was
remarkably higher than that of IgG1, which may be partly
attributed to the fact that MPLA is a T helper type 1-like
(Th1) adjuvant (Korsholm et al., 2010; Gao and Guo, 2018).

In addition, P2-MUC1/DDA/MPLA produced higher levels of
IL-6 cytokines compared to MUC1, lipidated P1-MUC1 or P3-
MUC1 with positively charged DDA and MPLA adjuvant
(Figure 6C). As shown in Figure 6D, compared with P3-
MUC1/DDA/MPLA group, P2-MUC1/DDA/MPLA group

showed a similar fluorescence intensity, which was
significantly stronger than other vaccine candidates (MUC1/
DDA/MPLA and P1-MUC1/DDA/MPLA). This may be due to
the fact that lipid modification of MUC1 glycopeptides promoted
self-assembly and formation of liposomes, which enhanced
immune responses by presenting the multivalent antigens and
increasing uptake by APCs. Given that P2-MUC1 is easier to
synthesize and prepare than P3-MUC1 and can be assembled into
liposomes with smaller particle sizes (Supplementary Figure S1),
dipalmitoyl lipid anchors are the best lipid anchors.

CONCLUSION

In conclusion, we developed liposomal vaccines containing
auxiliary lipids of different charges, MUC1 lipoglycopeptides
and MPLA adjuvant. Compared with the negatively charged
DOPG and the neutral DSPC, the positively charged DDA
induced stronger antigen-specific immune responses. In
addition, we confirmed that the amphiphilic P2-MUC1
glycopeptide promoted the assembly of liposomal vaccines
and significantly enhanced the recognition ability of
antibodies to MCF-7 cells. More importantly, the sera from
P2-MUC1/DDA/MPLA gourp could effectively activate the
complement system and kill MCF-7 cells. The results showed
that the strategy of coadministration of lipoglycopeptide and
liposomal DDA/MPLA is a convenient platform for building
antitumor vaccines.
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