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Abstract: In vitro diagnosis (IVD) has become a hot topic in laboratory research and achievement
transformation. However, due to the high cost, and time-consuming and complex operation of
traditional technologies, some new technologies are being introduced into IVD, to solve the existing
problems. As a result, IVD has begun to develop toward point-of-care testing (POCT), a subdivision
field of IVD. The pandemic has made governments and health institutions realize the urgency of
accelerating the development of POCT. Microfluidic paper-based analytical devices (µPADs), a
low-cost, high-efficiency, and easy-to-operate detection platform, have played a significant role in
advancing the development of IVD. µPADs are composed of paper as the core material, certain
unique substances as reagents for processing the paper, and sensing devices, as auxiliary equipment.
The published reviews on the same topic lack a comprehensive and systematic introduction to µPAD
classification and research progress in IVD segmentation. In this paper, we first briefly introduce
the origin of µPADs and their role in promoting IVD, in the introduction section. Then, processing
and detection methods for µPADs are summarized, and the innovative achievements of µPADs in
IVD are reviewed. Finally, we discuss and prospect the upgrade and improvement directions of
µPADs, in terms of portability, sensitivity, and automation, to help researchers clarify the progress
and overcome the difficulties in subsequent µPAD research.

Keywords: in vitro diagnosis; paper-based microfluidics; colorimetric analysis; fluorescence; chemi-
luminescence; electrochemical signal

1. Introduction

Microfluidic technology is a technique for the precise control and manipulation of
microscale fluids. A microfluidic device is a platform to realize this technology. Researchers
have studied and applied microfluidic devices in medicine [1–4], food safety [5], and
environmental monitoring [6].

The core component of microfluidic devices is microfluidic chips. Traditional microflu-
idic chips are based on glass, a silicon wafer, polymer, and control fluid, using microscopic
fluid properties. Paper-based microfluidic chips are mainly made of paper fiber, and control
the fluid using capillary force. Traditional microfluidic chips have some advantages that
paper-based microfluidic chips cannot replicate. For example, some microscopic fluid
properties exploited in traditional microfluidic chips are not available on paper-based
chips. Of course, the application of traditional microfluidic chips is not facile, due to their
disadvantages, such as complex operation, poor flexibility, and high requirements for the
manufacturing environment. However, paper-based microfluidic chips can overcome these
disadvantages [7].
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µPADs are developed from paper-based microfluidic chips. Owing to their advantages,
µPADs have gradually attracted the interest of researchers [8,9], and the annual number
of related papers in the past 12 years is shown in Figure 1. They use specific materials
to draw the graphics of functional units and channels on the paper substrate, to realize
the directional flow of liquid in the hydrophilic channels with the help of the capillary
action of a cellulose skeleton. Paper is not only cheap and easy to manipulate but also has
better biocompatibility and provides a good background contrast for colorimetric reactions.
The prototype of paper-based microfluidic chips can be traced back to the 1940s, when
Muller’s research group used paraffin to form channels on filter paper and observed the
diffusion and separation of a pigment solution on paper. In addition, immunochromatog-
raphy, which appeared in the 1980s, can also be regarded as one of the early paper-based
microfluidic technologies. In most existing reviews, Whiteside’s research group at Harvard
University [10] is recognized as the first team reporting paper-based microfluidic chips.
Since their report, paper-based microfluidic chips and devices with different functions
and processing methods have emerged. Whitesides’ research group combined paper chips
with scanning devices to create a µPAD for quantitative analysis [11] and made a three-
dimensional (3D) paper chip for the first time, by stacking multiple layers of paper chips
with double-sided tape [12]. In 2009, Whitesides’ research group [13] and Lin’s research
group [14] proposed using the wax printing method to fabricate paper-based microfluidic
chips. Their method is widely used because of its simplicity and low cost. In the same year,
Dungchai et al. produced a paper chip based on electrochemical signal detection, by first
printing electrodes on filter paper [15]. This method significantly improves the detection
sensitivity of paper-based microfluidic chips. In 2011, Liu et al. realized the fabrication of
3D paper chips using the folding method [16], which is more convenient and efficient than
the fabrication method provided by Whitesides’ research group.
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were not low enough, susceptible to contamination, and mechanically weak. To solve
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these problems, new nanomaterials, sealing devices, and advanced sensors are used in
µPADs by researchers [17,18]. Among these, adding sensors is a research hotspot. Many
research teams have explored the construction of fluorescence sensing [19], electrochemical
sensing [20], and colorimetric sensing [21] on the paper chip platform. They then studied
and designed a series of low-cost, convenient, and rapid µPADs [22–27], which promoted
the application and development of paper-based microfluidic technology in biological and
environmental analysis.

IVD refers to the analysis of samples from the human body, to obtain corresponding
biochemical and molecular parameters for diagnosis and treatment. Traditional IVD
technology generally requires the operation of complex and large analytical instruments,
which hinders the popularization and application of this technology. Therefore, IVD began
to develop towards POCT, a refined field. POCT is characterized by its fast detection speed,
low cost, and simple operation. µPADs are growing rapidly in this field because they meet
part of the demand of the POCT market [28,29].

With the increasing research on paper-based microfluidic chips in IVD, it is helpful
to systematically understand the development situation and future trends in this field, by
summarizing and categorizing its achievements. Previous reviews of paper-based microflu-
idic chips mainly focused on fabrication methods and there is a lack of reviews on the main
applications of the devices in specific disease detection and diagnosis processes [24,30,31].
In this paper, we first briefly introduce the origin of µPADs and their role in promoting
IVD, in the introduction section. Then, the processing and detection methods of µPADs
are summarized, and the innovative achievements of µPADs in IVD are reviewed. Finally,
we discuss and prospect the upgrade and improvement directions of µPADs, in terms of
portability, sensitivity, and automation, to help researchers clarify the progress made and
overcome difficulties in subsequent µPADs research.

2. Processing Methods of µPADs

The channel patterns of µPADs are generally completed by printing and modifying
fluid boundaries drawn on paper. The formed channel controls liquid transmission in the
devices and provides a location and conditions for biochemical reactions. µPADs were two-
dimensional (2D) chips during their early development. There are two processing methods
for 2D paper chips: the first method is direct hydrophilic treatment; the second is to conduct
a comprehensive hydrophobic treatment, followed by a hydrophilic treatment. Researchers
can create three-dimensional chips by superimposing modified paper chips [32].

At present, several methods, including photolithography [33], wax printing [13],
inkjet printing [34], plasma etching [35], knife cutting [36], laser cutting [37], flexographic
printing [38], and wax screen printing [39], have been developed for fabricating and
modifying the channels of µPADs for varied applications (Figure 2a). Researchers used
these methods to accomplish different purposes and to discover their advantages and
disadvantages in practice (Table 1). Of these methods, the most commonly used methods
are the first three (Figure 2b).

At the beginning of the development of paper-based microfluidic technology, photore-
sists were one of the primary materials for making channel boundaries. Its principle is to
block the porous structure of the paper material physically. The photoresist used in µPADs
is mainly the SU-8 photoresist, an epoxy, near-ultraviolet negative photoresist produced
using microlithography chemicals. Martinez et al. used SU-8 photoresist-coated patterned
paper to create millimeter-sized channels [10].

However, photolithography is complicated and costly. Thus, wax printing became a
popular modification method. Although one group prepared a negative epoxy photoresist
with SU-8, triaryl thio-hexafluorophosphate, and propylene glycol methyl ether acetate,
which reduced the cost of preparing a µPAD by lithography, these manufacturing steps
are too cumbersome and complex. As a hydrophobic material, wax can be physically
deposited in paper materials, to form a barrier [40]. When the wax material is heated
above the melting point, it will penetrate the gap of the paper fiber and form a three-
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dimensional hydrophobic barrier after solidification, to complete the production of the
channel pattern. In some cases, to ensure the accuracy of channel pattern creation, the wax
printing technology needs to adjust the heating time and temperature according to the
melting point of the wax and the porosity and thickness of the paper materials.
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Figure 2. (a) Diagram showing the main application field (inner ring) and manufacturing methods
(outer ring) of µPADs. (b) Schematic diagram of the three usual processing methods for paper-based
microfluidic channels. Principle of photolithography: this melts the photoresist outside the mask into
the inner pores of the paper material and forms a physical barrier after re-solidification. Wax printing
principle: it is melted by heating the wax material, generating a physical barrier to the void of the
paper material in the uncovered area of the mold. Inkjet printing principle: the hydrophilic material
is printed on the paper, to form a specific channel after the paper material hydrophobic treatment.

Table 1. This table summarizes the processing methods for µPADs and their main advantages
and disadvantages.

Production Method Materials Advantages Disadvantages

Photolithography SU-8 photoresist high-resolution high cost, complex operation, easy deformation
Wax printing wax low cost, simple operation low resolution

Inkjet printing alkyl ketene dimer fast speed, good uniformity requiring relatively large external equipment
Plasma etching polymer layer fast speed, small reagent consumption high cost
Laser cutting paper material high precision, high efficiency limited cutting thickness
Knife cutting paper material low cost, simple operation low precision, poor uniformity

Flexographic printing paper material good flexibility, environmentally friendly high cost, limited applications
Wax screen printing wax low cost, easy to operate high occurrence of defects

Inkjet technology is also frequently used in the manufacture of µPADs, because of
its high speed, precision, and automation [41]. However, it should be noted that the
resolution of some printers may be problematic, because of the inkjet printer’s design when
printing multiple layers. In addition, many solvents that are necessary to dissolve the
sensing reagents may be volatile, which will lead to the printing of the wrong amount
of reagent [42]. These shortcomings make the standardization benefits of inkjet printing
inferior to flexographic printing.

The cutting method is becoming increasingly popular, because of its simple operation
and lack of chemical reagents. From the initial handheld device [43] to the current laser
cutting [44], the accuracy of the cutting method is improving with the progress of technology.

Some researchers have also attempted to combine certain production methods. Yu et al.
combine inkjet printing and paper cutting to make paper devices. Experiments showed
that the technique has excellent reproducibility and sensitivity [45].

3. µµµPADs Based on Different Detection Methods

The detection method used is particularly significant for the performance of µPADs. At
present, there are more paper-based detection products using colorimetry and fluorescence,
and fewer using chemiluminescence. However, researchers have developed many excellent
µPADs using various detection methods in published papers. Representative research on
detection sensitivity in µPADs is presented in Table 2. The immunocapture approach is
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frequently utilized in µPADs, because of its excellent specificity, and these example studies
are no exception. Although some research has achieved low detection limits, sample
processing techniques need to be improved because they are time-consuming. Next, we
will discuss the detection methods used in µPADs.

Table 2. This chart shows the comparison of various methods used by µPADs.

Methods Samples Biomarkers Capturing
Principle

Limit of
Detection Test Time Reference

Colorimetric analysis Human
serum CEA immunology 0.03 ng/mL 7 min [46]

Fluorescence
Human
serum

CEA
immunology

0.03 ng/mL
5 min [47]AFP 0.05 ng/mL

CA199 0.09 U/mL

Chemiluminescence
Human
serum

H-FABP
immunology

0.06 pg/mL
30 min [48]cTnI 0.30 pg/mL

copeptin 0.40 pg/mL

Electrical signal Human
serum

SARS-CoV-2 IgG immunology 0.96 ng/mL
30 min [49]SARS-CoV-2 IgM 0.14 ng/mL

Electrochemiluminescence
Human
serum

CEA

immunology

0.5 ng/mL

2 h [50]
AFP 0.15 ng/mL

CA125 0.6 U/mL
CA199 0.17 U/mL

Surface-enhanced Raman
spectroscopy

Human
serum

IL-10 immunology 0.1 pg/mL
4 h [51]MCP-1 0.1 pg/mL

3.1. µPADs Based on Colorimetric Analysis

Colorimetric analysis is one of the most commonly used methods in µPAD [52], and
usually refers to the generation or change of color to present the detection results. The
colorimetric method is widely used in µPADs because it is intuitive when reading. As early
as 1961, colorimetry was applied to paper-based detection [53]. The most common paper-
based detection products in life are colloidal gold immunochromatographic strips, with
gold nanoparticles (AuNPs) and immune proteins binding as probes (Figure 3a). However,
products are less sensitive [54]. As a result, some developers have begun to build matching
reading devices, to improve sensitivity (Figure 3b). The data compiled by Calabria et al.
showed that reading devices reduced the LOD of colloidal gold immunochromatographic
strips from 50 ng/mL to 2 ng/mL [55]. Additionally, some researchers have replaced
AuNPs with other nanomaterials (Figure 3c) or added detection devices after replacement
(Figure 3d). Preechakasedkit et al. developed a µPAD with a LOD of 1 ng/mL of alpha-
fetoprotein (AFP), by combining enzyme-linked immunosorbent assay (ELISA) with lateral
flow immunoassay (LFIA) (Figure 4a) [56]. Liu et al. [57] reported a µPAD using an
oxidation-reduction method. The device achieved a LOD of 0.37 µmol/L for dopamine
with the help of Photoshop software (Figure 4b).

Although colorimetry has many advantages in the qualitative case, it is unsatisfactory
in the quantitative case. In addition, some subtle color changes need to be observed
by reading devices, which to some extent hinders the portability of µPADs. Thus, the
simultaneous improvement of colorimetry-based µPAD sensitivity and portability may
require the help of more accurate and compact color analysis equipment.
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Figure 3. (a) Structure and principle of the traditional colloidal gold immunochromatographic strip.
Its detection principle is as follows: (1) the markers combine with gold-probes on the conjugate
pad, to form complexes after the user drops positive samples; (2) then complexes are captured by
the antibodies at the test line and generate a red line; (3) the gold-probes without binding marker
are captured by the goat-anti-mouse antibodies at the control line. If the control line is not red, the
gold-probes may be invalid. (b) Demonstrated a method for achieving sensitivity enhancement
through an external detection device. (c) Represents a class of methods using other nanomaterials
(such as carbon nanoparticles, carbon nanotubes, and gold nanocages) instead of AuNPs, to improve
detection sensitivity. (d) Shows a combination of the methods shown in (b,c).

Biosensors 2022, 12, 485 7 of 27 
 

 
Figure 4. (a) Schematic diagram of μPAD structure and principle [56]. Before dropping the sample, 
ALP-labeled mouse antibody is in the no-barrier region, and BCIP/NBT is in the wax-formed barrier 
region. After dropping the positive sample, the ALP-labeled antibody reaches the detection line 
first, followed by BCIP/NBT, and chromogenic reactions occur. (Copyright © 2022 Published by 
Elsevier B.V.) (b) Channel structure of a μPAD for dopamine detection [57]. The structure includes 
a hydrophilic channel, uptake area, and test area around a hydrophobic wax barrier. The uptake 
area I and test area colors are reaction products (ferric chloride and dopamine) and phenanthroline. 
(Copyright © 2022 Elsevier B.V. All rights reserved.) (c) Detection process of 4MC-loaded μPAD 
[58]. The device is simple to operate and has a wider range of applications. (Copyright © 2022–2022 
John Wiley & Sons, Inc. All rights reserved). 

3.2. μPADs Based on Fluorescence 
With the development of fluorescent nanoparticles [59–64], such as quantum dots, 

fluorescent-silica nanoparticles, and fluorescent-polystyrene microspheres, fluorescence 
has been widely used in the detection field [65,66]. Researchers have used physical or 
chemical methods to attach fluorescent nanoparticles to biomolecules that bind 
specifically to the target molecule. The inspector can detect the target molecule by 
observing the fluorescence emitted from the detection area. Luo et al. developed a paper-
based ratio fluorescence analyzer for high-precision detection of human serum albumin 
(HSA) [58]. The device was loaded with 4MC (2′-hydroxychalcone derivative), and HSA-
induced decomposition of 4MC nanoaggregates into 4MC-HSA complexes resulted in the 
fluorescence changing from red to green (Figure 4c). In devices based on LFIA, many 
strips use fluorescent particles to replace AuNPs in the colloidal gold 
immunochromatographic strips. They are equipped with corresponding detection 
equipment, which improves the detection sensitivity and allows quantitative analysis. In 
addition to its combination with immunoassays, fluorescence is also used as a primer 
marker for paper-based nucleic acid assays [67]. 

However, this method relies heavily on external devices (fluorescence excitation and 
detection devices), making the μPADs less portable. This disadvantage will make it hard 
to apply relevant products for home self-examination, resulting in a reduced market 
capacity. In addition, the production conditions of some fluorescent nanomaterials are 
very demanding. In the case of QDs, their synthesis requires high temperatures, and the 

Figure 4. (a) Schematic diagram of µPAD structure and principle [56]. Before dropping the sample,
ALP-labeled mouse antibody is in the no-barrier region, and BCIP/NBT is in the wax-formed barrier
region. After dropping the positive sample, the ALP-labeled antibody reaches the detection line
first, followed by BCIP/NBT, and chromogenic reactions occur. (Copyright © 2022 Published by
Elsevier B.V.) (b) Channel structure of a µPAD for dopamine detection [57]. The structure includes
a hydrophilic channel, uptake area, and test area around a hydrophobic wax barrier. The uptake
area I and test area colors are reaction products (ferric chloride and dopamine) and phenanthroline.
(Copyright © 2022 Elsevier B.V. All rights reserved). (c) Detection process of 4MC-loaded µPAD [58].
The device is simple to operate and has a wider range of applications. (Copyright © 2022–2022 John
Wiley & Sons, Inc. All rights reserved).
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3.2. µPADs Based on Fluorescence

With the development of fluorescent nanoparticles [59–64], such as quantum dots,
fluorescent-silica nanoparticles, and fluorescent-polystyrene microspheres, fluorescence has
been widely used in the detection field [65,66]. Researchers have used physical or chemical
methods to attach fluorescent nanoparticles to biomolecules that bind specifically to the
target molecule. The inspector can detect the target molecule by observing the fluorescence
emitted from the detection area. Luo et al. developed a paper-based ratio fluorescence
analyzer for high-precision detection of human serum albumin (HSA) [58]. The device was
loaded with 4MC (2′-hydroxychalcone derivative), and HSA-induced decomposition of
4MC nanoaggregates into 4MC-HSA complexes resulted in the fluorescence changing from
red to green (Figure 4c). In devices based on LFIA, many strips use fluorescent particles to
replace AuNPs in the colloidal gold immunochromatographic strips. They are equipped
with corresponding detection equipment, which improves the detection sensitivity and al-
lows quantitative analysis. In addition to its combination with immunoassays, fluorescence
is also used as a primer marker for paper-based nucleic acid assays [67].

However, this method relies heavily on external devices (fluorescence excitation
and detection devices), making the µPADs less portable. This disadvantage will make it
hard to apply relevant products for home self-examination, resulting in a reduced market
capacity. In addition, the production conditions of some fluorescent nanomaterials are
very demanding. In the case of QDs, their synthesis requires high temperatures, and
the absence of oxygen and water. Therefore, in addition to small and sensitive detection
devices, researchers also need to develop stable and simple fluorescent nanomaterials.

3.3. µPADs Based on Chemiluminescence

As a detection and analysis method, chemiluminescence has a development history of
many years. It works by making a chemical reaction in which electrons jump from their
ground state to an excited state, and then return to the ground state to emit light [68]. Many
chemiluminescence-based microfluidic detection devices have been reported [69,70]. The
combination of chemiluminescence and low-cost µPADs has been reported [71,72]. Among
them, the µPAD made by Li et al. can simultaneously detect three significant markers
of acute myocardial infarction: heart-type fatty acid-binding protein (H-FABP), cardiac
troponin I (cTnI), and copeptin [48] (Figure 5a). The sensitivity is excellent, and the LOD of
the three markers are 0.06 pg/mL, 0.3 pg/mL, and 0.4 pg/mL, respectively.
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Chemiluminescence analysis not only has strong anti-interference and quantitative
analysis ability but also does not require an excitation light. These features are well suited
for µPADs. While there are many advantages to a µPAD based on this method, few related
products are available. This may be caused by the fact that they are not competitive with
other techniques in price.

3.4. µPADs Based on Surface-Enhanced Raman Spectroscopy

Surface-enhanced Raman spectroscopy (SERS) is a technology that enhances the
surface sensitivity of Raman scattering using molecules adsorbed on rough metal surfaces
or nanostructures, such as plasma magnetic silica nanotubes [73]. This technology has
a high sensitivity [74,75] and enables detection at a single-molecule level [76]. However,
due to the complex composition of clinical samples, the enhanced surface often does not
function as expected on paper materials. Therefore, the application of SERS in µPADs
is limited to a certain extent. Siebe et al. developed a simple, novel spray-deposition
technique, to manufacture SERS-active paper substrates [77]. The technology achieved a
high purity of the sample and strength of surface enhancement on a single paper. This
work extended the application of SERS in µPADs.

3.5. µPADs Based on Electrochemical Signal

Dungchai et al. produced the first µPAD based on electrochemical signals and using
photolithography and screen printing [15] (Figure 5b). Electrochemistry has significantly
improved the sensitivity of µPADs, and researchers in this field have published many
results. [78,79]. The method can be divided into two categories: one is electrical signal
detection, and the other is electrochemiluminescence.

An electrical signal is a voltage or current that changes over time. Some biochemical
reactions at an electrode can cause a change in current. By detecting current changes, a
biological analysis can be implemented. The detection method does not depend on color
and avoids the interference of some colored substances in the sample. In recent years, the
most representative result of this method in paper-based detection is a device for detecting
SARS-CoV-2 antibodies [49]. The device can detect antibodies in human serum with high
sensitivity. However, because of the need for external electrical signal detection equipment,
there is still room to optimize its portability.

Electrochemiluminescence (ECL) is a high-efficiency analysis technology [80], which
not only has no background light noise, as in chemiluminescence, but can also control
the reaction using an electric current [81]. The selectivity of ECL analysis is improved by
changing the electrode voltage to prevent oxidized/reduced substances from participating
in electrochemiluminescence reactions. This usually uses ruthenium compounds, especially
tris (bipyridine) ruthenium chloride (II) ([Ru (bpy) 3]2+) (releasing photons at ~620 nm)
and reacts with tripropylamine to achieve regeneration. ECL has a more straightforward
optical setting than photoluminescence. Compared with chemiluminescence, this process
can realize reasonable control of time and space. The use of ECL makes µPADs excellent
for metal ion identification [82] and biomarker detection [83].

4. Applications of µPADs in IVD

IVD refers to detecting certain samples (urine, blood, secretions, free cells, etc.) outside
the human body, to obtain diagnostic information [84]. IVD-related technologies have
developed rapidly, from the cellular level to the molecular level. The rise of POCT [85]
in recent years, has brought IVD to a new level, making it time-effective and easy to
operate [86].

The introduction of microfluidic technology has observably promoted the progress
and market development of POCT. Especially paper-based microfluidic devices, effectively
reducing the cost of POCT, making the detection process more straightforward [87,88] and
the possible uses broader [89].
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4.1. Main Applications of µPADs in Microbial Infection Diagnosis

Infectious diseases are a significant threat to human health in today’s world [90].
Most contagious diseases are local or systemic inflammation or organ dysfunction caused
by pathogens, such as pathogenic bacteria and viruses, and having greater harmfulness
and higher mortality. At present, the incidence rate of infectious diseases has increased,
and pathogens are showing a trend of diversification and increased complexity [91,92].
Severe acute respiratory syndromes, such as COVID-19, and H7N9 avian influenza, are
emerging. Some broad-spectrum drug-resistant pathogens have revived or developed
new pathogenic features. For infectious diseases, timely detection is critical for disease
treatment and epidemic prevention and control. However, some pathogens are mutating
and spreading faster than they can be controlled. Therefore, the requirements for the
accuracy and timeliness of the diagnosis of infectious diseases are higher in clinical practice,
and the development of instant diagnosis caters to this demand [93].

Traditional methods for identifying pathogenic microorganisms, such as smear mi-
croscopy, in vitro culture, and mass spectrometry, have the disadvantages of a long cycle,
high cost, complex operation, and limited detection location [94]. However, µPADs have
excellent potential in microbial infection detection. They directly use human body fluids to
complete real-time diagnosis, without a complex operation.

The microfluidic devices used for microbial infection detection mainly adopt im-
munoassay and nucleic acid assay. After the pathogen infects the body, the body will
generate corresponding antibodies, according to the antigen determinant of the pathogen.
Therefore, the infection of the detected person can be indirectly known by detecting the
specific antibodies in human blood [95,96]. Colloidal gold immunochromatographic strips
used to detect IgG and IgM in human blood samples were reported soon after the out-
break [97]. However, unlike nucleic acid tests, antibody tests cannot be used in the early
stages of infection, because the body does not produce enough antibodies for detection until
3–5 days after infection with the pathogen. µPADs for nucleic acid detection, combining
isothermal nucleic acid amplification technology, have also been developed [98–100]. For ex-
ample, Reboud et al. reported on a unique µPAD, used to detect viral DNA (Figure 6a) [99].
The device is divided into three functional areas: buffer room, foldable strip, and lateral
flow strip. The buffer chamber provides power for the liquid to flow when pressed. The
foldable strip is for DNA extraction and isothermal amplification, with holes of different
shapes and functions in each layer. The lateral flow strips use LFIA to present detection re-
sults. This method, which combines isothermal nucleic acid amplification technology with
LFIA, enables µPADs for nucleic acid detection that are simpler to operate, faster to detect,
and can be used in a broader area. However, additional heating apparatuses are needed
to reach temperatures suitable for isothermal nucleic acid amplification. The trend is to
improve the independent operational capability of these µPADs. Designing self-heating
materials (such as reduced iron powder) into the µPADs will help solve this problem.
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Figure 6. (a) A schematic diagram of an µPAD used for nucleic acid detection [99]. 1 is a buffer
chamber: it generates power by pressing. 2 is a lateral flow test strip. 3 is an acetic acid film, its role is
to seal the chip. 4 is the paper valve, it prevents the LAMP reaction system from interfering with other
areas. 5 is the origami area for LAMP reaction. (Copyright © 2022 the Author(s). Published by PNAS)
(b) There is a schematic illustration of the device components, detection principle, and detection
procedure of the device [49]. (Copyright © 2022 Elsevier B.V. All rights reserved). (c) The µPAD
operation principle and steps [101]. (1) The serum is mixed with dried lysis buffer after dropping the
serum sample. The cleaved virus releases RNA molecules. (2) Distilled water (D.W.) is dropped for
washing. RNA from the serum sample is transported to the amplification zone by the lateral flow.
(3) The target RNA is purified and concentrated on a chitosan-dried binding pad at the bottom part
of the amplification zone. (4) Target RNA is released by increasing the pH. During the lateral flow,
Tris-HCl components induce a pH increase, to release the target RNA from chitosan. (5) RT-LAMP
reactions for specific targets are conducted in each reaction pad. (Copyright © 2022 Elsevier B.V. All
rights reserved).

4.1.1. Viral Infection

In IVD, rapid detection of infectious viruses is an important task. Especially during
a global pandemic, government officials and medical personnel are deeply aware of the
importance of rapid detection. The µPADs provide an efficient and low-cost method for
this goal.

SARS-CoV-2

The SARS-CoV-2 infection has caused harm to many people [102]. There are many
traditional methods for nucleic acid tests [103,104], which are time-consuming and require
expensive equipment. To overcome these shortcomings and improve diagnostic efficiency,
the research and development of microfluidic devices for diagnosing SARS-CoV-2 infection
has become one of the main tasks of certain research groups [105,106]. Among them, LFIA-
based tests for SARS-CoV-2 are already on the market, but the sensitivity of this method is
relatively low. Researchers are working on its sensitivity [107,108].

Kasetsirikul et al. reported two similar methods for detecting anti-SARS-CoV-2 an-
tibodies using an enzyme-linked immunosorbent assay (ELISA) on paper [109,110]. The
recombinant SARS-CoV-2 nucleocapsid antigen was coated on a paper device prepared
by the lamination method. Then empty sites were closed with bovine serum albumin,
and then the process of ELISA was performed, to detect the target antibody. It is more
sensitive than commercial ELISA kits, thanks to image analysis devices. Therefore, the
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sensitivity and portability still need to be improved. In addition, using ELISA, a µPAD was
developed by Gong et al. for quantitative antibody detection [111]. The tension rotating
gyro platform collects the serum to make the device sensitive for the early diagnosis of
disease. By detecting clinical samples from early-stage patients, this method has proven
successful and has good application prospects.

To further improve the reliability of immunoassay, multiple antibodies against SARS-CoV
should be detected simultaneously. With a sandwich immunoassay and antigen specificity
testing of antibody cross-reaction, a paper-based sensor device that can distinguish dif-
ferent antigens, including the spinous process protein variant of SARS-CoV-2, has been
developed [112]. The device can establish the binding mode, by changing the number,
arrangement, and specificity of antibodies coated on paper, to distinguish the spinous
process antigens of different coronaviruses.

Compared with the above methods, the labeling-free detection implemented on a
paper-based microfluidic platform is more convenient. Yakoh et al. invented a paper-based
electrochemical detection platform for SARS-CoV-2 antibodies (Figure 6b) [49]. Its main
feature is that it does not need specific antibody labelling. It changes the current intensity
after the SARS-CoV-2 antibody binds to the antigen in the positive sample and finally
displays the test results through external equipment. The LODs of IgG and IgM were
0.96 ng/mL and 0.14 ng/mL, respectively. In clinical trials, the detection results of the
platform were almost the same as those of ELISA kits, which met the clinical requirements.
In addition, the team also extended the platform to detect spike proteins. The team has not
yet rigorously verified the quantitative performance of the method, so it may not have an
absolute competitive advantage in the market.

Interleukin-6 (IL-6) has become one of the biomarkers used to detect the severity
of COVID-19 [113]. Adrover-Jaume et al. concluded from published research results
that the serum IL-6 level in mild cases was between 5.1 and 18.8 pg/mL [114]. While in
moderate or severe cases, the value increased to 22.5–198 pg/mL. Based on this, his team
developed a µPAD to detect IL-6 in the serum of patients infected with SARS-CoV-2. The
device combines a paper-based signal amplification mechanism with a program for color
quantization. Through this design, when the sample contains an ultra-low concentration of
IL-6, the machine can also produce a stable colorimetric signal. The LOD of this method is
10−3 pg/mL, which is a superior qualitative performance. However, its quantitative ability
needs to be improved for more accurate detection.

Due to the limitations of traditional nucleic acid detection methods, some researchers
have also begun to strive to realize the efficient detection of nucleic acid on a µPAD. A
device with excellent sensitivity and specific nucleic acid detection and based on paper has
been developed [115], which can detect SARS-CoV-2 through human saliva within 60 min.
The loop-mediated isothermal amplification (LAMP) [116], which is more advantageous
than PCR for rapid detection, is used in the device.

By applying aptamer to LFIA, researchers have completed nucleic acid assays. How-
ever, the extraction or amplification of nucleic acid needs to be carried out by traditional
means, which does not completely overcome the shortcomings of conventional methods.
Yu et al. used this approach to develop a nucleic acid detection device [117]. The nucleotide
sequence obtained by single-tube reverse transcription-polymerase chain reaction (RT-PCR)
was detected on a lateral flow test strip. The device can detect RdRp, ORF3a, and N genes
simultaneously. The LOD of each gene is ten copies/time. Previously, a SARS-CoV-2
detection method using RT-PCR and then paper chromatography was reported [67]. The
technique uses cas12 to cut a single-stranded DNA probe with biotin (Bio) and fluorescent
groups modified at both ends, then the test strip is inserted into the solution, and finally
the detection result is judged by observing the presence or absence of fluorescent stripes on
the test line.
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Zika Virus

Zika virus (ZIKV) has been identified as the cause of severe neurological complications
in humans [118]. About one in five infected people will develop symptoms after an
incubation period of about 3 to 12 days, after being bitten by mosquitoes carrying ZIKV. Six
years ago, a ZIKV outbreak highlighted the need for quick, low-cost tests; and paper-based
tests are one way to meet these requirements [119].

Pardee et al. reported a paper sensor device for detecting the ZIKV RNA genome [120].
The device combines nucleic acid amplification and detection. Nucleic acid sequence-based
amplification [121] was used to amplify virus RNA in this device. When the RNA content
reaches the LOD, the color in the detection area changes from yellow to purple. The device
can reduce the cost of detection to a certain extent, but it still cannot achieve fast and
convenient detection.

To quickly and easily detect ZIKV, Karaj et al. developed a paper-based microfluidic
chip using wax printing technology [122]. The chip completes nucleic acid amplification by
reverse transcription-loop-mediated isothermal amplification, a more direct thermostatic
amplification technology. In addition, the group studied and optimized the paper types,
pore sizes, and channel sizes, to ensure that untreated biological samples (undiluted
human urine and diluted human plasma) are filtered properly during the capillary action-
driven flow. The chip is easy to operate and can detect samples with virus concentrations
greater than or equal to 1 copy/µL. However, the hot plate used in this method needs
to be cleaned before each test, to prevent cross-contamination, which is hard to apply in
continuous testing. Therefore, some anti-contamination components need to be added to
the chips themselves.

Draz et al. developed a µPAD based on paper, using electrical sensing and nanoparticle
signal amplification technology [123]. The device obtains microelectrodes through screen
printing. First, the viruses are isolated by immunomagnetic beads and then bind to the
platinum nanoparticles (PtNPs) to amplify the detection signal. After the captured ZIKV-
PtNP complex is dissolved with detergent, the released charged molecules and PtNP
change the conductivity of the solution. The group obtained the test result by observing
the change in current. However, the detection process of the device is complicated. Thus,
researchers should improve the automation of the device.

A more integrated µPAD (Figure 6c) has been demonstrated [101], requiring only
10 µL–50 µL human serum, that can make an all-in-one molecular diagnosis of ZIKV,
dengue virus, and Chikungunya virus. The whole process of virus detection, including
sampling, extraction, amplification, and detection, can be performed on a paper device,
which is very simple and efficient. However, the detection time of the device is too long,
at about 60 min. Thus, reducing the detection time to less than 30 min would benefit its
market competitiveness.

Hepatitis B Virus

Hepatitis B virus (HBV) is not only the cause of hepatitis B, but also a leading cause of
chronic liver cirrhosis and hepatocellular carcinoma (HCC) [124]. The blood of infected
people is infectious, whether in the latent, acute, or chronic phases. Most HBV detection
methods require large professional instruments. Miniaturization of detection equipment
has been carried out continuously over the past 20 years, and paper-based microfluidic
devices are one of its directions.

Based on the significant advantages of ECL in rapid detection, Chen et al. developed a
new HBsAg detection platform with great potential [125]. Compared with chemilumines-
cence immunoassays [126] and ELISA, this platform showed a more satisfactory sensitivity
and efficiency. Its disadvantage is that the acquisition of detection results requires a larger
device. Using mobile devices such as smartphones to obtain test results will reduce the
cost of the device and improve portability, thus expanding its market prospects.

In an immune paper chromatography study [127], a group used highly luminescent
quantum dot beads as tracer signals, which are more sensitive than traditional colloidal
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gold immunochromatography. The device is ultra-sensitive (the LOD is 75 pg/mL) and can
achieve quantitative detection of the hepatitis B virus surface antigen (HBsAg) in human
serum. However, the combination of labeled antibodies and antigens requires additional
operations before the device runs. Thus, a functional area responsible for this process
should be added, to improve device automation.

In 2016, Sanjay et al. developed a hybrid microfluidic chip based on paper and
polymethyl methacrylate [128]. The device enables low-cost and high throughput diagnosis
of hepatitis B. IgG and HBsAg were detected by alkaline phosphatase combined with
secondary antibody and BCIP/NBT. One hour after the sample is added, the user can
obtain the test result with the naked eye. The LOD of IgG and HBsAg is 1.6 ng/mL and
1.3 ng/mL, respectively. The chip has a lot of room for improvement, both in detection
speed and sensitivity.

Aydin et al. developed a type of paper chip for detecting HBV DNA, using conjugated
polyelectrolytes that change color with the combination of primers and target DNA [129].
Through the conformation transformation of the nucleic acid-CPE complex, the paper chip
produces an obvious colorimetric response, so that the human eye can intuitively obtain the
detection results. For quantitative analysis, the team also proposed a method of pixelating
color, which can accurately quantify the concentration of nucleic acid detection.

Another team [130] proposed a µPAD that can perform a multi-step operation in a
single device for the first time. It has good selectivity and is for unlabeled HBV DNA
detection. The working electrode of the µPAD captures target DNA using covalently
immobilized pyrrolidine nucleic acid with high affinity and selectivity. [131]. DNA causes
the electrochemical signal of ferrocyanide (III)/(II) to vary with concentration. The LOD of
the device is 1.45 pm, which provides a referential method for DNA detection.

HIV

HIV is the pathogen of AIDS and spreads through body fluids. Among the HIV testing
products on the market, the LFIA-based products have the highest popularity, because of
their convenient use and low cost. In addition, researchers have developed some µ pads
for HIV testing that can also meet POCT requirements.

In POCT, LFIA is widely used for its speed and simplicity, but it has the disadvantage of
low sensitivity, which hinders its further popularization. Many researchers are committed
to solving this problem. Tang et al. integrated a concentration method into LFIA. They
used the technology to detect HIV nucleic acid with good results [132]. The results showed
that a 10× signal enhancement was completed in less than 25 min. Dector et al. first
proposed a paper-based microfluidic cell fueled by blood [133]. They integrated it into
LFIA as the power source for independent HIV detection. The anode is glucose oxidase,
and the cathode is a platinum electrode. The top is provided with two windows for storing
samples and contacting air.

Lu et al. constructed a flexible paper-based electrode based on a membrane, to
detect HIV by DNA hybridization [134]. The membrane electrode material is Ni-Au
complex/carbon nanotube/polyvinyl alcohol. It realized the efficient combination of a
metal-organic skeleton and single-stranded DNA and improved the detection sensitivity.
However, the complex production process may hinder its industrialization.

Miller et al. reported a µPAD for ultrasensitive detection of HIV. The device uses
fluorescent nanodiamond particles (FNDs) as an indicator label (Figure 7a) [135]. When
in use, first, the single-stranded RNA in HIV is extracted, and the primer with digoxin
(DIG) at the 5′ end is used for reverse transcription. The reverse-transcribed DNA is
copied with the primer with Bio at the 5′ end to produce double-stranded DNA with DIG
and Bio at both ends. The samples, after two transcription operations, are subjected to
immunochromatography. If samples are positive, the double-stranded DNA will first bind
to the FNDs linked with the anti-DIG antibody and then attach to streptavidin (SA) on the
detection line. One SA has four Bio-binding sites, which finally makes more FNDs stay
at the detection line, further improving the detection sensitivity. The nitrogen-vacancy
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center-defects of diamond particles have good optical properties [136], when produced by
high-energy particle irradiation.
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Figure 7. (a) Schematic of the detection principle [135]. Viral RNA is amplified using primers
modified with DIG and biotin, respectively. One end of the amplicon is bound to the FND surface
antibody and the other end to streptavidin on the test strip, forming a sandwich structure when
positive samples are detected. (Copyright © 2022, The Author(s), under exclusive license to Springer
Nature Limited). (b) Schematic representation of the fabrication and assay procedure for a 3D paper-
based ECL device [50]. (1) screen-printed carbon working electrode; (2) after chitosan modification;
(3) after immobilization of capture antibodies; (4) after blocking and washing; (5) after capturing
and washing; (6) after incubation with signal antibodies, washing, and triggering ECL reaction.
(Copyright © 2022 Elsevier Ltd. All rights reserved). (c) Schematic diagram of paper-based detection
using a functionalized gold nanoprobe sensing strategy [137]. The preparation principle of the probe
and the detection process of the method. The results can be identified and uploaded via a smartphone.
(Copyright © 2022, American Chemical Society).
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4.1.2. Bacterial Infection

Pathogenic bacteria infect the human body through food, air, sexual contact, and in
other manners. In less developed areas, bacterial infection has become one of the main
threats to human life. In the past decade, it has caused the highest mortality in developing
countries [138], especially among children [139]. In addition to directly threatening human
life, the risk of bacterial infection to human health is often potentially chronic. For example,
Helicobacter pylori will increase the incidence of gastric cancer in infected people after
causing ulcers [140]. Therefore, the realization of convenient and rapid bacterial detection,
would not only help to find and eliminate pathogens quickly, but would also be helpful for
the early prevention of some diseases. µPADs have great potential in detecting bacterial
infection, because of their fast detection speed and easy use.

A research team [141] used 5,5-dithio-bis-(2-nitrobenzoic acid) combined with AuNPs
to generate a strong Raman signal. Testing personnel completed the SERS test using a
lateral flow chromatography test strip, which can realize the effective detection of target
bacteria. In a comparative study of the detection performance of buffer and serum samples,
the method maintained good sensitivity for serum detection. However, the standard
detection time data for serums with different concentrations were not discussed in detail
by the authors.

He et al. developed an µPAD for early screening of bacterial infection [142]. The
functional pattern of the device is prepared using a laser, and the detection result is
determined by observing the change of color with the naked eye. The chromogenic agar in
a lower layer of the device identifies the desired pathogens; the cellulose filter paper in the
middle layer distributes the sample evenly; the cellulose filter paper hole on the top layer
contains different doses of antibiotics for drug sensitivity testing. Experiments with E. coli
showed that the timeliness and effectiveness of the device met the requirements of POCT.

Kim et al. demonstrated a µPAD for detecting highly pathogenic E. coli in feces, which
functioned by double staining and analyzed using RGB [143]. Its sensitivity meets practical
needs. Moreover, due to its low cost, it will be welcomed by less developed countries and
regions. However, the device is not sufficiently portable. As a result, its market space may
be squeezed by more portable and simpler products.

A research group that developed a paper-based ELISA for rapid identification of E. coli
recently reported a turntable paper-based detection equipment with more straightforward
operation [144]. The device is composed of an acrylic base at the bottom, a wooden
chopstick rotating shaft in the middle, and three layers of paper. The second layer of paper
(fixed on the rotating shaft and can be rotated) is printed with wax to form a circular reaction
zone. The third layer (nonrotatable) is cut into a circular plate shape and divided into six
hydrophobic test areas by resin. The sample to be tested is loaded into the reaction area
of the second layer of paper, and the reagent required for paper-based ELISA is gradually
added to the hydrophobic boundary test area on the top layer of the third layer. After
repeated rotation and cleaning, the image is detected using a smartphone. Although the
paper-based system is convenient for obtaining results, the complex operation process needs
to be simplified. In addition, the research group did not prove the application potential of
the device through clinical experiments, so its usefulness needs to be evaluated. Before this
work, Li et al. reported paper-based ELISA colorimetry to diagnose brucellosis [145]. The
method requires 5 mL of serum and the detection time is 2 h. In a real POCT scenario, these
data are not very satisfactory, but the clinical detection ability of this method was verified
in the detection of serum samples.

Applying more sensitive electrical signal analysis to PAD, Alatraktchi et al. produced
a working electrode, counter electrode, and reference electrode by screen printing [146].
They covered the electrode with iron/ferrocyanide as the redox probe. The electrodes
were connected to a portable potentiostat via a three-pin connector. The team used the
device to detect pseudomonas aeruginosa (PA). The marker detected by the device is
pyocyanin (PYO), which is a specific marker highly related to PA. Another group [147]
reported a paper-based piece of analysis equipment that can detect PA with high sensitivity
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using saliva, and which also catches PYO by electrochemical means, to obtain infection
information. Its LOD is as low as 10 nmol/L, but the study used substitutes for clinical
samples. Therefore, the device needs to participate in multiple clinical trials to verify
its performance.

4.2. Main Applications of Microfluidic Devices in Tumour Detection

Tumor diseases seriously threaten human life safety, especially malignant tumors, with
a low cure rate and high treatment cost. As for as the existing medical technology, early
screening and diagnosis are the most effective treatments for tumor diseases. Detecting
tumor markers is the most promising way to realize early tumor screening. At present,
imaging screening is still the primary method of tumor detection. However, imaging
screening has a lag and can fail to diagnose early cancer, making patients miss the best time
for treatment. Therefore, many researchers began to focus on detecting tumor markers,
to compensate for the possible misdiagnosis of imaging screening. With the deepening of
relevant research, various tumor markers have been separated and applied [148–151]. The
existing mainstream detection methods of tumor markers are time-consuming and costly.
To achieve the popularization of early cancer screening, accurate, sensitive, and low-cost
tumor marker detection methods [152–157] are essential. Paper-based detection methods
to accomplish these purposes have been reported [158–162].

Liu et al. proposed a novel washing method that can effectively remove nonspecific
proteins from µPADs and apply them for paper-based colorimetric analysis [46]. The experi-
mental results showed that the method significantly increased and reduced the background
interference, and the LOD of carcinoembryonic antigen (CEA) in serum was 0.03 ng/mL.
However, the team used too few serum samples and did not test enough clinical samples.
Therefore, further experiments are needed to prove its practicality. Mahmoudi et al. also
developed a paper-based method for CEA detection, which only took 15 min to com-
plete [163]. Detection performance was verified by sufficient clinical samples, showing
great application potential.

Preechakasedkit et al. developed a µPAD for ELISA. Compared with traditional
ELISA, the chip only needed to drop the sample, without other operations [56]. In this chip,
alkaline phosphatase (ALP)-labeled AFP antibody and BCIP/NBT are in two channels. The
former channel is unblocked, and the latter has carved channels formed by wax materials.
As a result, the ALP-labeled antibody flows faster than BCIP/NBT after dropping the
serum sample. The immune complex formed with AFP first reaches the test line, then
BCIP/NBT arrives to complete the reaction. Experimental results showed that the limit of
AFP detection in serum was 1 ng/mL, but these data do not have an absolute advantage in
paper-based microfluidic chips. The limited sensitivity may also be related to the loss of
some samples in the BCIP/NBT channel.

A µPAD with immune sensing technology was developed to overcome the difficult-
to-spot medical pain stage in the early stages of pancreatic cancer [164]. The marker is the
pseudopodium-enriched atypical kinase 1 (PEAK1). Graphene oxide was immobilized
on an electrode and then labelled with an anti-PEAK1 antibody, to construct the µPAD.
When the device detects the target substance, a double antibody sandwich structure is
formed, and detection is completed using an electrical signal. Since the existing methods
for early diagnosis of pancreatic cancer are unreliable, the emergence of such technology
is of practical significance for promoting the progress of early screening of this type of
cancer. Another paper-based method for sensitive detection of PEAK1 was created [165]
that directly observed the results by colorimetry. This technique, utilizing the chemical
characteristics of AuNPs that can catalyze the degradation of color dyes, can complete the
detection process without specific instruments. However, a single marker does not have
an absolute reference value for cancer diagnosis, so the researchers should upgrade the
single-indicator detection of the equipment to multi-indicator detection.

Jiao et al. invented a 3D vertical flow µPAD, using the double antibody sandwich
method [47]. Its 3D structure is formed by paper folding, divided into a sample layer,
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cleavage layer coated with fluorescein isothiocyanate labelled antibody, and detection layer
coated with monoclonal antibodies specifically binding to the marker to be tested. Each
layer has different shaped functional areas. The device can realize the simultaneous detec-
tion of various cancer markers. The results showed that the device has a high sensitivity
and selectivity for detecting CEA, AFP, and cancer antigen 199 (CA199), with LODs of
0.03 ng/mL, 0.05 ng/mL, and 0.09 U/mL in human serum, respectively. However, the
concentrations of the three markers in the blood of healthy people were higher than the
device’s detection limit. Therefore, the device needs to improve its quantitative ability or
generalize the image features of the detection results corresponding to each marker when it
exceeds the standard value.

Ge et al. used Ru-labeled antibodies as signaling antibodies to complete electrochem-
ical signal detection on paper (Figure 7b) [50]. Its structure is a star strip, the middle of
which is the sampling area, and the end of each branch is not detected. They detected
CEA, AFP, CA125, and CA199, using four color light signals, respectively. The LODs of
the four markers were 0.5 ng/mL, 0.15 ng/mL, 0.6 U/mL, and 0.17 U/mL, respectively.
However, the different detection areas may interfere with each other, limiting its sensitivity.
The sensitivity could be improved if the µPAD could achieve different time periods for
each marker or signaling antibody in reaching the detection area.

Chu et al. provided a paper-based chemiluminescence technique for multiple detection
of tumor markers [166]. In the experiment they reported, three bifurcation and detection
regions were designed for CEA, (carcinoma antigen 125) CA125, and CA199, respectively,
with good repeatability. Chitosan coating and glutaraldehyde crosslinking methods were
used to fix the capturing antibodies of each marker in the corresponding detection region.
Each fork has a barrier made of sucrose, and the number of barriers varies; except that
one fork has no barrier. The method prevents each detection area from generating signals
simultaneously, avoiding interference between them. The LODs of CEA, CA125, and CA199
in serum were 0.03 ng/mL, 0.2 U/mL, and 0.2 U/mL, respectively. The technology has the
potential to be made into a commodity in the market, but researchers should increase the
number of detection channels, to detect more markers at one time.

Wang et al. reported a µPAD using a nucleic acid aptamer and electrochemical
detection, with high sensitivity and specificity [167]. The µPAD is made using batik and
screen-printing technology, to realize the functions of sample filtering and automatic
sample injection. There are two detection areas in the lower layer of the device, which are
used to detect CEA and neuron-specific enolase, respectively. The detection results are
characterized by differential pulse voltammetry. Although the clinical testing of samples
has yielded excellent results, it remains unproven whether it can be used for the early
detection of cancer. Therefore, large-scale testing of clinical samples and the follow-up of
suspected early patients are needed.

In another study based on electrical signals to detect cancer-related nucleic acids [168],
Signal ON and Signal OFF were used in a paper-based microfluidic chip for detecting
breast cancer-specific nucleic acid sequences, respectively, and compared. The chip is
connected to a three-electrode system. The reference electrode is made of Ag/AgCl ink,
and the working electrode and counter electrode are made of graphite ink. Colloidal gold
solution is dispersed on the working electrode, so that the DNA probe is fixed on the
paper chip through a thiol-gold bond. The results showed that the two methods had little
difference in detection performance. However, in practice, both have their advantages and
disadvantages. For quick field applications that require POCT, signal OFF represents the
best compromise between manufacturing complexity and ease of use.

A µPAD for detecting cancer markers in 15 min was developed, to speed up early
cancer screening [137]. The probe was made by modifying AuNPs three times (Figure 7c).
In the first modification, AuNPs were modified with nucleotides containing continuous
poly adenine sequences connected with Bio. Compared with the Au-S bond, this technology
has a more vital binding force, faster preparation, and lower cost. The second modification
used SA-HRP to bind nucleic acid via Bio. The third modification used antibodies to
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modify the surface of AuNPs for specific binding to antigen. After dropping the sample,
the modified AuNPs were added, and finally, 3,3′,5,5′-tetramethylbenzidine was added.
The diagnostic results were determined by color. They added different concentrations of
kallikrein-3 to the serum for testing and obtained a LOD of 10 pg/mL. However, the work
lacked data from actual clinical samples. In addition, the preparation of the probe in this
method is complicated. Without simplification, the device would be hard to popularize.

5. Conclusions and Prospect

In the future, the main development direction of µPADs is to develop cheap and
easy-to-operate portable analysis devices, to expand the scope of application, especially
in less developed areas. Therefore, IVD is developing towards POCT, characterized by
miniaturization of instruments, simplification of operation, low detection price, and real-
time reporting of results. The emergence of paper-based microfluidic technology has
promoted the development of POCT in multiple dimensions, and part of the technology
has also been transformed into commodities. However, µPADs still face some challenges in
the application of IVD, which limit their promotion (Figure 8). Next, we will discuss some
common problems in paper machine microfluidic devices.
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For the diagnosis of disease, the sensitivity and specificity of the test tool are critical.
These two parameters are closely related to the accurate and early diagnosis of disease,
wherein developments in sample filtration, and immunological protein and aptamer prepa-
ration can increase the specificity of detection. However, µPADs have not become the
mainstream clinical diagnosis, due to their limited sensitivity. There are two main reasons
for their low sensitivity: (1) the effective concentration of the sample in the paper material
is reduced; (2) the performance of available detection methods is limited. Most of the
relevant research focused on the direction of sensitivity improvement. There are two basic
approaches in which research results are abundant. One approach is to make electrical
signal detection devices, fluorescence signal detection devices, and other small devices,
to improve the signal acquisition ability. The most representative of this approach is the
modification of electrodes on paper, which enables the paper devices to detect the target
substance by changing the current generated by biological or chemical reactions. However,
commercially available µPADs that detect electrical signals are rare, because much of the re-
search remains proof-of-concept. In addition, the proliferation of expensive micro-detection
devices may reduce the cost performance of µPADs. Therefore, the research and develop-
ment of low-cost and high-performance micro sensors is of positive significance for the
development of µPADs. Another approach is the chemical modification of paper materials,
immune proteins, and tracers, which can improve the signal amplification independently
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of external devices. The most representative of this direction is the Bio-SA amplification
system, which can improve detection sensitivity using the signal amplification advantages
of one SA connecting four Bios with high affinity. The system has been used in mature
applications, but a more stable and efficient amplification system needs to be developed
to further improve the detection sensitivity of µPADs. Many researchers have combined
these two directions and achieved a very high sensitivity. To be more suitable for clinical
diagnosis, the high throughput of µPADs is also critical. Compared with 2D devices, 3D de-
vices have a higher detection throughput. However, for quantitative detection, µPADs are
still not accurate enough and require additional analytical equipment. In clinical practice,
quantification of marker concentration is critical for disease diagnosis. Therefore, the field
needs more reliable µPADs that can achieve a semi-quantitative or quantitative analysis of
multiple biomarkers.

In addition to the above problems, the scope for automation applications of µPADs
needs to be further explored. Although a paper material can realize sample flow through
capillary force, its automation still needs external equipment in the case of sample pro-
cessing. For example, for detecting viral nucleic acid, the virus in the sample needs to be
broken up, and then the target nucleic acid is amplified and then tested on a paper chip or
device. Improving the integration degree of the µPAD, such as adding a sample processing
module, can simplify the operational steps and improve the integrated capability of the
devices. This will further develop paper-based detection in the direction of automation.
It is important to note that the additional functional components on µPADs need to be
miniaturized, to ensure convenience and performance.

To sum up, µPADs overcome some challenges of IVD, promote the rapid development
of this field, and make it develop towards POCT, which can better meet current demands.
However, there is a lot of room for improvement. With the continuous emergence of
new materials, methods, and processing technologies, the shortcomings of paper-based
microfluidic technology will be overcome, and its advantages will be more prominent. In
the future, µPADs will play a critical role in IVD and have great social benefits.
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