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Human studies first identified genetic and expression interactions between integrin
β3 and serotonin (5-HT) transporter (SERT) genes. This association has been further
strengthened by our discovery that integrin β3-containing receptors (αvβ3) physically
interact with, and thereby define, a subpopulation of SERTs that may represent the main
target of selective serotonin reuptake inhibitors (SSRIs). In this study, we examine how
integrin αvβ3 function influences the behavioral response to the highly SSRI citalopram
in the tail suspension test. Mice bearing a conditional deletion of the integrin β3 gene
in neurons, or those expressing a constitutively active αvβ3 receptor, have decreased
sensitivity to citalopram, when compared to wild-type littermates. To identify potential
signaling pathways downstream of integrin αvβ3 that could be altered in these mouse
lines, and consequently influence citalopram response in vivo, we performed antibody
array analyses of midbrain synaptosomes isolated from mice bearing genetically altered
integrin β3. We then pharmacologically targeted focal adhesion (FAK) and extracellular-
signal-regulated (ERK) kinases and determined that FAK and ERK activity are critical
for the actions of citalopram. Taken together, our studies have revealed a complex
relationship between integrin αvβ3 function, SERT-dependent 5-HT uptake, and the
effective dose of citalopram in the TST, thus implicating a role for integrin signaling
pathways in the behavioral response to SSRIs.

Keywords: antidepressant, TST, signaling network, integrin, citalopram, mouse model

INTRODUCTION

Multiple genetic and environmental factors influence antidepressant response (Keers et al., 2011;
Klengel and Binder, 2013). The tail suspension test (TST) is a simple and quick paradigm with
strong predictive validity for the positive therapeutic outcomes for most antidepressants, including
tricyclic and selective serotonin reuptake inhibitors (SSRIs) (Cryan et al., 2005; Castagne et al.,
2011). With the exception of modifications in the serotonin system, there is no obvious genetic
link between alterations in immobility time in the TST by acute antidepressant administration and
reduction of symptoms upon chronic SSRI treatment.

We first identified the integrin β3 subunit as a modulator of peripheral and central serotonin
homeostasis via its interactions with the high-affinity serotonin transporter (SERT) (Carneiro et al.,
2008; Whyte et al., 2014; Mazalouskas et al., 2015; Dohn et al., 2017). Haploinsufficiency in the
murine integrin β3 gene (Itgb3) leads to a reduction in plasma-membrane levels of SERTs, which
are the main target of SSRIs (Mazalouskas et al., 2015). These effects cause an increased potency
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of citalopram and paroxetine in the TST (Mazalouskas et al.,
2015). Recapitulation of a coding polymorphism in the human
ITGB3 gene (Oliver et al., 2014) by the knock-in of Pro32Pro33 in
Itgb3 also reduces SERT serotonin reuptake, via integrin αvβ3’s
actions on intracellular signaling pathways (Dohn et al., 2017).
Studies in human and mouse models also have linked integrin
β3 with antidepressant response (Fabbri et al., 2013; Probst-
Schendzielorz et al., 2015; Rzezniczek et al., 2016; Oved et al.,
2017).

In this study, we explore the role of integrin αvβ3 in
modulating citalopram response in the TST. We capitalized
on common signaling features observed in genetically altered
Itgb3 mice to identify novel pathways that can be targeted for
antidepressant response in the future. These are the first studies
examining the role of integrin αvβ3 in antidepressant response,
beyond those focusing on the serotonin system.

MATERIALS AND METHODS

Animals
Mouse studies were performed following Vanderbilt Institutional
Animal Care and Use Committee guidelines under protocols
M/12/167 and M/15/014. Conditional deletion of Itgb3 was
obtained by crossing floxed Itgb3 mice (Morgan et al., 2010)
with Nestin-Cre mice [B6.Cg-Tg (Nes-cre)1Kln/J; Jackson Lab,
#003771 (Tronche et al., 1999)], which were backcrossed five
generations into C57BL/6 background. Knock-in mice used
in this study were generated from crosses of heterozygous
C57BL/6 mice expressing one Pro32Pro33 knock-in Itgb3 allele
(Oliver et al., 2014). All other experiments were performed on
C57BL/6 mice bred in house. Mice were group-housed with their
littermates, maintained on a 12-h light-dark cycle, and provided
with food and water ad libitum. We utilized mice of both sexes
(8–20 weeks of age). All experimenters were blinded to the
genotypes.

Tail Suspension Test
An automated TST device (Med Associates, St. Albans, VT,
United States) was used to measure the duration of behavioral
immobility. Each mouse had its tail passed through a clear
3 cm plastic tube before being suspended by the tail with
tape to a vertical aluminum bar connected to a strain gauge.
The following settings were used in all experiments: threshold
1: 7; gain: 8; time constant: 0.25; and resolution: 200 ms.
Citalopram (R/S citalopram hydrobromide; Sigma, St. Louis,
MO, United States) was prepared fresh daily by dissolving
the powder in 0.9% sterile saline. Drug was administered
by intraperitoneal injection in a volume of 0.01 ml/g body
weight and the dose was 0, 5, 20, or 30 mg/kg, calculated
as the weight of the base. Mice were injected with drug
or saline 30 min before a 6 min TST. Each mouse was
tested two times in the TST, with 1 week between testings,
which did not significant alter immobility time (Figure 1A).
A counterbalanced design was used, where half of the animals of
each genotype received citalopram in 1 week and the other half
in the following week. Data was analyzed by two-way repeated

measures ANOVA over the 6 min period for drug vs. genotype
comparisons.

A second set of experiments tested immobility responses
to citalopram in the presence of kinase inhibitors (ToCris,
Minneapolis, MN, United States). Three cohorts were used:
two for the FAK inhibitor PF-573228 (prepared in DMSO,
diluted in saline with a final concentration of 12.5% DMSO
and 2.5 mM of inhibitor) and one for the MEK inhibitor SL-
327 (prepared in DMSO, diluted with saline with a final DMSO
concentration of 12.5% and 1.5 mM SL-327). In these cohorts,
mice received saline or citalopram via intraperitoneal injection.
After 10 min, kinase inhibitor or 12.5% DMSO in saline (vehicle)
were administered intranasally (2.5 µl per nostril) and were
then tested in the TST after 20 min. Drugs were administered
intranasally as it allows the delivery of compounds that do not
cross the blood–brain barrier directly into the brain (Hanson
and Frey, 2008; Hanson et al., 2013). Mice were anesthetized
by inhaled isoflurane at 5% and a single volume (2.5 µl/nostril)
of drug or vehicle were delivered slowly dropwise to the nares
using a pipetman while the mouse was in a supine position. Each
mouse was randomly assigned to a combination of saline/vehicle,
saline/inhibitor, citalopram/vehicle or citalopram/inhibitor for
week 1 and another combination for testing on a second week.
In these experiments, data was analyzed by a two-way ANOVA
and group comparisons were performed using Bonferroni
corrections. Detailed statistical results showing F(DFn,DFd) and P
values for each experiment are described in the figure legends.

Marble Burying
A novel cage was prepared with a layer of Harlan T.7089
Diamond Soft bedding (Harlan Laboratories, Indianapolis, IN,
United States) covering the floor. This layer was 3 cm thick to
allow burying of glass marbles of 1.5 cm diameter. Each mouse
was removed from the TST apparatus and allowed to acclimate
in the novel cage for 30 min. Following the acclimation period,
the mouse was briefly removed from the novel cage, and 20 blue
glass marbles were placed in a four-by-five grid on top of the
bedding, with each marble spaced 2 cm apart. The mouse was
then returned to the novel cage and given 30 additional minutes
to explore and interact with the marbles without interference.
After this period, the number of marbles buried was quantified.
Data was analyzed using two-way ANOVA and post-tests were
corrected for multiple testing using Bonferroni. Detailed statistics
are presented in the figure legends.

Isolation of Presynaptic Boutons and
Antibody Array
Each array experiment consisted of two mice, one genetically
modified (Nestin-Cre cKO or Pro32Pro33 Itgb3 KI) and one wild-
type littermate, euthanized for dissections of midbrains. A total
of three biological replicates were performed for cKO mice, and
two for KI mice. Each array was completed in 1 day, including
synaptosomal preparation, protein labeling, and incubation with
microarray slide, and imaged the following day. We utilized
a commercially available microarray kit (Panorama R© Antibody
Microarray (Cat. Number CSAA1), Sigma-Aldrich; St. Louis,
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FIGURE 1 | Genetic alterations in integrin αvβ3 function disrupt citalopram responses in the TST. (A) Effects of repeated TST testing on immobility time in C57BL/6
mice. Mice were tested after injection with saline for 6 min in the TST. Experiment was repeated once weekly, for three consecutive weeks. Repeated measures
one-way ANOVA: Time F(1.647,6.590) = 1.064, P = 0.3825; Individual (between rows) F(4,8) = 0.7768, P = 0.5703. (B) Citalopram dose–response curve in floxed Itgb3
lacking or expressing Cre under the control of the Nestin promoter (cKO). Two-way repeated measures (RM) ANOVA citalopram effect: F(2,36) = 6.172, P = 0.005;
genotype effect: F(1,18) = 0.8719, P = 0.3628; interaction effect: F(2,36) = 1.057, P = 0.379; subject (matching): F(18,36) = 2.597, P = 0.0072. Bonferroni-corrected
post-tests: f/f: saline vs. 30 mg/kg: P = 0.035, N = 10; cKO: saline vs. 30 mg/kg: P = 0.195, N = 10. Saline f/f vs. cKO: P = 0.387. (C) Immobility time in mice
expressing Ser32Gln33 (WT) or Pro32Pro33 (KI) integrin β3 after dosing intraperitoneally (IP) with 30 mg/kg citalopram or saline control. Two-way repeated measures
(RM) ANOVA citalopram effect: F(1,9) = 16.70, P = 0.0027; genotype effect: F(1,9) = 4.557, P = 0.0615; interaction effect: F(1,9) = 1.081, P = 0.3257; subject
(matching): F(9,9) = 1.536, P = 0.2664. Bonferroni-corrected post-tests: WT: saline vs. 30 mg/kg: P = 0.0141, N = 5; KI: saline vs. 30 mg/kg: P = 0.1004, N = 6.
(D–F) Schematic diagrams of protein networks identified in kinome studies. Synaptosomes were isolated from NestinCre and floxed littermates (D) or WT and KI
littermates (E), and protein extracts were analyzed using antibody microarrays. Target proteins were converted to mouse gene codes for input into the online
STRING software, where network analysis was performed. Shown here are action outputs where each line linking gene nodes denotes a molecular action, as
depicted in the legends. (D) Network linking gene products with altered expression or phosphorylation levels between NestinCre and floxed littermates. (E) Network
of gene products that are altered in KI samples when compared to wild-type littermates. (F) Network of proteins that are commonly modified by genetic alterations in
Itgb3. In this diagram, we replaced Mus musculus gene names by protein names for clarity. Colored nodes, including both subunits of the integrin αvβ3 receptor,
FAK, and ERK2, were added during input. Nodes shown in white were added by STRING.

MO, United States) and followed the instructions for protein
extraction, labeling, hybridization, and analysis as provided by
the manufacturer. Synaptosomes were prepared as described
previously (Phillips et al., 2001). Detailed description of the
antibody array procedures can be found in the Supplementary
Material. In the first biological replicate genetically modified
samples were labeled with Cy3, whereas the wild-type control
was labeled with Cy5. In the following replicate, the labels were
reversed to compensate potential bias of binding of Cy3 and Cy5

to the protein samples. After incubation with proteins samples,
the slides were washed and scanned using an Odyssey R© Imaging
system (LI-COR Biotechnology, Lincoln, NE, United States).
Images of scanned antibody microarrays were gridded and linked
to a protein print list. A blinded reviewer identified missing spots
and background signal. Two levels of normalization were used:
log ratios of Cy5 to Cy3 were determined between array replicates
to determine whether there was a bias for the fluorophore (e.g.,
compare cKO Cy3 and cKO Cy5 from two experiments). Then,
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within each biological replicate, data was normalized to GAPDH
fluorescence intensity. The Cy5 results were divided by the Cy3
results for each individual protein; proteins of interest were
identified by a Cy5/Cy3 ratio higher than 2 or lower than 0.5 in
all biological replicates. The list of proteins was converted into a
list of Mus musculus genes for network analysis in STRING1 using
the actions output.

RESULTS

Genetic Alteration in Itgb3 Prevents
Citalopram From Reducing Immobility
Time in the TST
To examine the role of integrin αvβ3 on the citalopram response
in the TST, we generated mice lacking integrin β3 expression
in neuronal and glial precursors in the brain (cKO). A dose–
response curve for citalopram revealed that, while 30 mg/kg
citalopram elicited decreases in immobility in floxed littermates,
no reductions in immobility time were observed in cKO
mice (Figure 1B). We then tested the effects of 30 mg/kg
citalopram on mice expressing either Ser32Gln33 (WT) or
Pro32Pro33 (KI) integrin β3, as the latter present alterations in the
serotonin system (Dohn et al., 2017). No significant reductions
in immobility were observed in KI mice, whereas citalopram
reduced immobility times in WT controls (Figure 1C).

Kinome Analysis of Synaptosomes
Isolated From cKO and KI Itgb3 Mice
As both genetic deletion of Itgb3 in the brain and constitutive
activation of integrin αvβ3 led to diminished sensitivity to
citalopram in the TST, we hypothesized that this acute response
to citalopram depends on common signaling pathways modified
in both mouse lines. To identify potential signaling pathways
that are commonly altered by integrin αvβ3 loss- or gain-of-
function, we performed kinome analysis using antibody arrays.
We utilized a commercially available antibody microarray that
allows for simultaneous quantification of phosphorylated and
non-phosphorylated proteins in control and target groups (Kopf
et al., 2005). Pathway analysis comparing cKO and floxed
Itgb3 controls (Figure 1D) revealed enrichment in proteins
involved in the regulation of cell cycle (GO: 0051726. False
discovery rate P = 6.59−13: Abl1, Akt1, App, Bcl2l1, Ccnd1,
Ccna2, Cdkn1a, Cdc6, Cdc27, Cdk6, Cdk7, Check1, Check2,
E2f1, Myc1, Prkca, Trp53), some of which are also involved in
intracellular signal transduction (GO: 0035556. False discovery
rate: 2.09−10: Abl1, Akt1, Card10, Ccna2, Casp9, Chek2, Diablo,
Dmd, E2f1, Myc, Nos1, Prkca, Ptk2b, Rasgrf1, and Smad4).
The analysis of proteins altered by constitutive activation of
αvβ3 revealed 25 gene products altered in KI samples, 11
of which participate in macromolecular subunit organization
(Figure 1E. GO: 0043933. False discovery rate: 0.000453: Actb,
Ezr, Hdac4, Hist1h3a, Hsp90aa1, Kat2b, Tubb4a, Trp63, and Rb
form a protein complex, whereas Terf1, Nefh, and Celf1 do not
participate in a macromolecular complex).

1https://string-db.org

The list of common proteins altered by both gain- and loss-of-
function in integrin αvβ3 consists of: Bcl-x (encoded by Bcl2l1),
caspase recruitment domain family member 10 (Card10), cyclin
A2 (Ccna2) and histone H3.1 (Hist1h3a), which do not, as a
group, consist of a single signaling pathway. To identify potential
kinases that are proximal to integrin αvβ3 that could alter the
proteins identified by the antibody array, we added Itgav and
Itgb3 and Ptk2 (which encodes for FAK, the downstream focal
adhesion kinase) and allowed STRING to add up to 10 nodes,
generating the network shown in Figure 1F. In addition to FAK,
paxillin and ERK2 (mitogen activated protein kinase 1, encoded
by Mapk1) were necessary nodes linking the integrin αvβ3
receptor and the cell cycle proteins identified in the antibody
arrays. Thus, we targeted those pathways in the behavioral
experiments that followed.

Inhibition of FAK and ERK Prevents
Citalopram From Reducing Immobility
Time in the TST
Immediately downstream of integrin αvβ3 activation lies FAK
recruitment to focal adhesions, phosphorylation, and activation,
which are all necessary steps for ERK activation. Therefore, we
tested whether inhibition of FAK by intranasal administration
of PF-573228 (2.5 µl per nostril at 2.5 mM) could potentiate
a suboptimal dose of citalopram in C57BL/6 mice. When
administered intraperitoneally, neither 15 mg/kg citalopram
(Crowley et al., 2005, 2006) or PF-573228 administration had
effects on immobility time (Figure 2A). To examine whether
these negative results were due to an inability of the drugs
to reach the central nervous system, we exposed mice to
the marble burying test. In this test, intranasal PF-573228
significantly decreased the number of marbles buried when
compared to vehicle alone without enhancing the effect of
citalopram (Figure 2B). These data suggest that FAK inhibition
may have anxiolytic effects, but not antidepressant effects when
tested in a behavior despair paradigm.

We then examined the potential for inhibition of FAK to
influence the effective dose of citalopram (30 mg/kg). In this
paradigm, we observed that intranasal PF-573228 administration
prevented citalopram from reducing time immobile in the TST,
recapitulating the effects observed in genetically modified Itgb3
mice (Figure 2C).

We then examined whether downregulation of ERK1/2 alter
citalopram responses by the inhibiting upstream kinase MEK1
with SL-327 (2.5 µl/nostril at 1.5 mM, or vehicle). We observed
that mice dosed with citalopram had a significant reduction
in immobility time, whereas those dosed with both SL-327
and citalopram had no alterations in immobility time, when
compared to vehicle controls (Figure 2D). Taken together, these
data indicate that inhibition of either FAK or ERK signaling
pathways prevent the positive actions of citalopram in the TST.

DISCUSSION

Here we provide evidence that appropriate integrin
αvβ3 function is necessary for citalopram response
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FIGURE 2 | Pharmacological manipulation of FAK and ERK alter the efficacy of cirtalopram in the TST. (A,B) Mice were dosed IN with the FAK inhibitor PF-573228
(2.5 mM) or saline 10 min after receiving an IP injection with a sub-optimal dose of citalopram (15 mg/kg). (A) FAK inhibition on immobility time in the TST. Two-way
ANOVA: citalopram effect: F(1,28) = 0.6715, P = 0.4195; PF-573228 effect: F(1,28) = 0.4201, P = 0.5222; interaction effect: F(1,28) = 0.1139, P = 0.7383. (B) FAK
inhibition on marble burying behavior. Two-way ANOVA interaction effect: F(1,26) = 3.161, P = 0.0871; FAK inhibitor effect: F(1,26) = 4.595, P = 0.0416; Citalopram
effect: F(1,26) = 27.24, P < 0.0001. Bonferroni-corrected post-tests: salineIP + vehicleIN vs. citalopramIP + vehicleIN: P = 0.0001, SalineIP + vehicleIN vs. salineIP +
PF-573228IN: P = 0.0241, SalineIP + vehicleIN vs. citalopram + PF-573228IN: P = 0 < 0.0001. Number of mice for (A,B): SalineIP + vehicleIN N = 8; citalopramIP +
vehicleIN N = 7; SalineIP + PF-573228 N = 8; CitalopramIP + PF-573228IN N = 7. (C) Citalopram response (30 mg/kg) in the TST was measured after intranasal (IN)
administration of the FAK inhibitor PF-573228 (2.5 mM). Two-way ANOVA interaction effect: F(1,28) = 3.357, P = 0.0776; FAK inhibitor effect: F(1,28) = 1.300,
P = 0.2639; citalopram effect: F(1,28) = 11.07, P = 0.0025. Bonferroni post-tests: SalineIP + vehicleIN vs. citalopramIP + vehicleIN: P = 0.0028. Number of animals:
salineIP + vehicleIN N = 12; citalopramIP + vehicleIN N = 5; salineIP + PF-573228 N = 10; CitalopramIP + PF-573228IN N = 5. (D) Citalopram response in the TST
was measured after intranasal (IN) administration of the MEK inhibitor SL-327 (1.5 mM). Two-way ANOVA interaction effect: F(1,23) = 10.06, P = 0.0043; MEK
inhibitor effect: F(1,23) = 8.059, P = 0.0093; citalopram effect: F(1,23) = 7.989, P = 0.0096. Bonferroni-corrected post-tests: SalineIP + vehicleIN vs. citalopramIP +
vehicleIN: P = 0.0013. Number of animals: salineIP + vehicleIN N = 9; citalopramIP + vehicleIN N = 4; salineIP + SL-327IN N = 9; citalopramIP + SL-327IN N = 5.

in the TST. We show that genetic alteration in the
murine integrin β3 gene (Itgb3) and inhibition of
signaling pathways downstream of integrin αvβ3 prevent
citalopram from reducing immobility time in this in vivo
model.

The genetic models utilized in this study differentially
alter integrin function in the brain: the NestinCre conditional
knockout line (cKO) eliminates integrin αvβ3 activity, whereas
the Pro32Pro33 knock-in line (KI) has constitutively activated
FAK-dependent signaling (Dohn et al., 2017). Elevated FAK
phosphorylation in serotonergic synapses in the Pro32Pro33 line
likely results in reduced focal adhesion turnover, which could
lead to reduced neuronal motility or synapse formation/pruning
that occur during development (Beggs et al., 2003; Xie et al.,
2003; Rico et al., 2004; Xie and Tsai, 2004; Chacon et al.,
2012; An et al., 2018). As both these lines have in common
the loss of citalopram response in the TST, either dynamic
activation of integrin αvβ3 signaling or integrin αvβ3-dependent
circuit formation is necessary for the increased fighting response
triggered by citalopram. We tested the former hypothesis by
first identifying pathways that are altered in both mouse lines,

followed by acute inhibition of kinases that are converging
nodes in the cKO/KI signaling pathways. We exposed mice
to citalopram, followed by FAK or MEK inhibitors, and
observed no antidepressant response in the TST. Although
the role of ERK in stress response has been examined,
where ERK phosphorylation is enhanced upon exposure to
the TST (Iniguez et al., 2010; Galeotti and Ghelardini, 2012;
Leem et al., 2014) and ERK phosphorylation is modified
with antidepressant use (Carlini et al., 2012; Licznerski and
Duman, 2013), few studies have examined the involvement of
ERK phosphorylation in the actions of behavior paradigms in
response to antidepressants (Zeni et al., 2012). Importantly,
these inhibitors had no effects on their own, indicating that
FAK and ERK modulate citalopram response, but do not exert
antidepressant effects by themselves. Finally, these results suggest
that TST immobility is altered by integrin αvβ3 pathways in
a SERT-independent fashion, and may reveal more effective
targets.

The significance of these studies is thus far limited to
citalopram responses in this acute measurement of behavior
despair. Still, understanding the relationship between the acute
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effects of pharmacological treatment in the TST and the chronic
effects of these drugs in the clinical setting is important to
identify novel molecular targets that may be more efficacious
in treatment of mood disorders. Many of the studies targeted
at revealing the genetic basis for antidepressant response have
yielded few results. Single-cell analysis of peripheral cells have
pointed to alterations in multiple signaling pathways (Lago et al.,
2018), and pharmacogenomics of antidepressant response fail to
generate consistent results (Fabbri et al., 2018; Madsen et al.,
2018; Rosenblat et al., 2018). Here, we propose that taking
into consideration the role of serotonin in mood disorders,
and utilizing a murine model with strong predictive value, can
reveal molecular targets that may have higher efficacy in the
clinic.
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