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ABSTRACT
Objective To determine how machine learning has been 
applied to prediction applications in population health 
contexts. Specifically, to describe which outcomes have 
been studied, the data sources most widely used and 
whether reporting of machine learning predictive models 
aligns with established reporting guidelines.
Design A scoping review.
Data sources MEDLINE, EMBASE, CINAHL, ProQuest, 
Scopus, Web of Science, Cochrane Library, INSPEC and 
ACM Digital Library were searched on 18 July 2018.
Eligibility criteria We included English articles published 
between 1980 and 2018 that used machine learning to 
predict population- health- related outcomes. We excluded 
studies that only used logistic regression or were restricted 
to a clinical context.
Data extraction and synthesis We summarised findings 
extracted from published reports, which included general 
study characteristics, aspects of model development, 
reporting of results and model discussion items.
Results Of 22 618 articles found by our search, 231 were 
included in the review. The USA (n=71, 30.74%) and China 
(n=40, 17.32%) produced the most studies. Cardiovascular 
disease (n=22, 9.52%) was the most studied outcome. The 
median number of observations was 5414 (IQR=16 543.5) 
and the median number of features was 17 (IQR=31). 
Health records (n=126, 54.5%) and investigator- generated 
data (n=86, 37.2%) were the most common data sources. 
Many studies did not incorporate recommended guidelines 
on machine learning and predictive modelling. Predictive 
discrimination was commonly assessed using area under 
the receiver operator curve (n=98, 42.42%) and calibration 
was rarely assessed (n=22, 9.52%).
Conclusions Machine learning applications in population 
health have concentrated on regions and diseases well 
represented in traditional data sources, infrequently using 
big data. Important aspects of model development were 
under- reported. Greater use of big data and reporting 
guidelines for predictive modelling could improve machine 
learning applications in population health.
Registration number Registered on the Open Science 
Framework on 17 July 2018 (available at https:// osf. io/ 
rnqe6/).

INTRODUCTION
Predictive models have a long history in 
clinical medicine. One well- known example 
is the Framingham Risk Score, which was 

first developed in 1967.1 Such models have 
proliferated throughout clinical practice 
to inform management and interventions, 
including preventive approaches. More 
recently, researchers have developed predic-
tion models beyond individual clinical appli-
cations, for population health uses.2 3 While 
there is no universal definition of popula-
tion health, it generally encompasses ‘the 
health outcomes of a group of individuals, 
including the distribution of such outcomes 
within the group’.4 Similarly to clinical medi-
cine, population- level models can be used to 
identify high- risk groups, directing the imple-
mentation of preventive interventions. Addi-
tionally, population health prediction models 
can inform policy- makers about future 
disease burden and help to assess the impact 
of public health actions. Thus far, most 
predictive modelling in both medicine and 
population health has used parametric statis-
tical regression models. More recently, there 
has been increasing interest in the use of a 
broader range of machine learning methods 
for prediction tasks.5–7

Strengths and limitations of this study

 ► Our review is one of the first syntheses of machine 
learning applications in population and public health.

 ► We used a robust search strategy, including nine 
peer- reviewed databases, grey literature and ref-
erence searching, to comprehensively describe the 
literature.

 ► We compared reported study characteristics to es-
tablished predictive modelling reporting guidelines, 
which provide an objective measure of the quality 
of reporting.

 ► Since both machine learning and population health 
have broad definitions, there may be some relevant 
articles that were not included.

 ► Given our focus on prediction, we could not address 
many other important intersections of machine 
learning and population health, such as surveillance 
and health promotion.
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Machine learning can be loosely defined as the study 
and development of algorithms that learn from data with 
little or no human assistance.8 These approaches have 
been increasingly applied in the past two decades as a 
result of the enabling growth of big data reserves and 
computational power.9 Recent machine learning applica-
tions to prediction in population health contexts include 
forecasting childhood lead poisoning,10 yellow fever inci-
dence11 and the onset of suicidal ideation.12

The distinction between machine learning algorithms 
and parametric regression models is debated.13 Regres-
sion models tend to impose more structure on the data, 
requiring greater human input for the verification of 
distributional assumptions and incorporation of domain 
knowledge in choosing the input parameters.14 Algo-
rithms employed in machine learning often derive more 
structure directly from the data, making fewer distribu-
tional assumptions about the data or variables. The liter-
ature remains divided on the relative advantages of more 
traditional approaches compared with newer methods15; 
however, given the wide variation in applications and the 
data used in these examples, broad assessments of supe-
riority are often not appropriate. Also, there are debates 
regarding the differences in developing and validating 
machine learning approaches for health applications.15 16

Population health applications of prediction models 
are relatively new compared with clinical applications; 
correspondingly, the role of machine learning in these 
applications has been far less studied and discussed in the 
health literature. The goals of our review are to determine 
how machine learning has been applied to prediction in 
population health, the nature of the models and data 
used, and how the models have been developed. We also 
sought to assess how well the published literature aligns 
with recommended guidelines for reporting of predic-
tive models and machine learning, by extracting features 
related to model development and performance that are 
highlighted by two such guidelines.16 17

METHODS
We based our scoping review on the framework proposed 
by Arksey and O’Malley18 and refined by the Joanna Briggs 
Institute.19 We also followed the more recent Preferred 
Reporting Items for Systematic Reviews and Meta- Analyses 
Extension for Scoping Reviews.20 Our study protocol was 
registered on the Open Science Framework on 17 July 
2018 (available at https:// osf. io/ rnqe6/).

Our initial goal was to scope out all machine learning 
applications in population health. However, the screening 
process identified a much larger number of publications 
than anticipated. Consequently, to describe the subject 
area comprehensively, we restricted our scope to articles 
predicting future outcomes.

Search strategy
Our search strategy consisted of peer- reviewed literature 
databases, grey literature and reference searches. First, 

we searched nine interdisciplinary, indexed databases 
(MEDLINE, EMBASE, CINAHL, ProQuest, Scopus, Web 
of Science, Cochrane Library, INSPEC and ACM Digital 
Library) on 18 July 2018 for papers published between 
1980 and 2018. Our search was informed by consultation 
with a health science librarian, a machine learning text-
book21 and a similar registered review.15 Online supple-
mental table A includes the full MEDLINE search strategy 
and filters, serving as an example search query for all 
database searches.

Our grey literature search included Google Scholar 
and Google. We developed a Google Scholar search 
based on terms related to ‘machine learning’ and ‘popu-
lation health’, which was refined based on the relevance 
of initial results. The first 200 results were included in 
screening. A similar approach was used for the general 
Google search, which we restricted to the first 30 results. 
We examined relevant websites for publications. Results 
were limited to articles published on or before the date of 
the peer- reviewed literature search. Finally, we searched 
the references of relevant reviews for additional articles. 
Most of these reviews were identified during screening.

Eligibility criteria
We included articles if they used machine learning to 
develop a predictive model that could be applied in a 
population health context. Therefore, we excluded arti-
cles where the model was trained primarily on people 
with a pre- existing disease. We also excluded articles that 
were only indirectly related to population health, for 
example, traffic accident models that did not predict a 
health outcome. Studies predicting individual outcomes 
were included if the approach was determined to be 
scalable to a population level. Finally, articles using only 
logistic regression were excluded. See online supple-
mental appendix A for the full eligibility criteria.

In order to manage the scope, articles were excluded 
if their full text could not be retrieved with our institu-
tional licenses and if they were not written in English. 
Finally, articles published prior to 1980 were excluded as 
earlier machine learning investigators lacked comparable 
amounts of digitised data, software and computational 
resources.

Screening process
Initially, individual reviewers screened titles for obvious 
irrelevance to the review topic (JDM and EB). One 
example of an obviously irrelevant topic was a paper 
describing the machine health lifespan of a piece of indus-
trial equipment; specific examples of articles removed at 
this stage are listed in online supplemental appendix B. 
Then, we imported remaining references into Covidence 
systematic review management software.22 Two reviewers 
screened the abstracts of remaining articles (JDM, EB, 
MO’N and DF). Prior to evaluating full texts using all eligi-
bility criteria, we then screened out articles that did not 
focus on a prediction application (JDM, EB and MO’N). 
Finally, two reviewers screened the full text of remaining 
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articles (JDM, EB and MO’N). Conflicts were resolved by 
discussion between at least two reviewers.

Data extraction and synthesis
Individual authors extracted article data (JDM, EB, MO 
and DF). We based our extraction items on features iden-
tified in a recent biomedical guideline for reporting of 
machine learning predictive models16 and on the Trans-
parent Reporting of a multivariable prediction model 
for Individual Prognosis or Diagnosis (TRIPOD) state-
ment.17 Major extraction categories identified from these 
guidelines included general study characteristics (eg, 
geographic location and sample size), model develop-
ment (eg, algorithms used and type of validation), results 
(eg, discrimination and calibration measures) and model 
discussion (eg, practical costs of errors and implementa-
tion). See online supplemental table B for a description 
of each extraction item.

We computed descriptive statistics for all extraction 
items. For categorical extracted features (eg, whether or 
not unstructured text was used and the method of valida-
tion used), we calculated the total number and percent 
of all studies in a particular category. For continuous 
extracted features (eg, number of observations in the 
study sample), we calculated the median value and the 
IQR (range between quartile 1 and quartile 3 in the value 
distribution). We also completed a narrative synthesis 
of discussion elements based on the text of included 
manuscripts.

Patient and public involvement statement
There was no patient or public involvement in this study.

RESULTS
We initially retrieved 16 162 articles, after removing 
duplicates (figure 1). We excluded 6494 articles after 
title screening, 7860 after abstract screening, 1456 when 
screening out non- prediction articles and 121 after full- 
text screening. This resulted in 231 articles being included 
in the final review (see online supplemental appendix C).

General study characteristics
The number of articles published in the population health 
prediction area that used machine learning increased 
dramatically after 2007 (see online supplemental figure 
A). Studies were undertaken worldwide, with the largest 
representation from the USA (n=71, 30.74%) and China 
(n=40, 17.32%) (table 1). Relatively few articles came 
from Oceania (n=2, 0.87%), Africa (n=5, 2.16%) and the 
Americas outside of the USA (n=13, 5.63%).

The median number of observations in each article was 
5414 (IQR=16 543.5) and the median number of features 
(ie, independent variables) used was 17 (IQR=31) 
(table 1). Seventy- two studies (31.2%) did not report 
the number of observations. These studies often used 
data from reportable disease databases, which do not 

necessarily have a firm sampling frame, making ascertain-
ment of the number of observations difficult.

Algorithms
The most frequently used machine learning algorithms 
were neural networks (n=95, 41.13%), followed by 
support vector machines (n=59, 25.54%), single tree- 
based methods (n=52, 22.51%) and random forests 
(n=48, 20.78%) (see online supplemental table C). About 
half of the articles made a comparison with statistical 
methods (n=111, 48.1%), which were generally logistic 
regression or autoregressive integrated moving average 
models (table 1).

Outcomes
Non- communicable disease outcomes were assessed 
by many articles (n=95, 41.13%), with communicable 
diseases (n=76, 32.90%) and non- disease outcomes (n=60, 
25.97%) studied somewhat less often. The outcome most 
frequently predicted was cardiovascular disease (n=22, 
9.52%) (figure 2). Other commonly forecasted non- 
communicable disease outcomes were suicidality (n=13, 
5.63%), cancer (n=12, 5.19%) and perinatal health 
(n=12, 5.19%). Influenza (n=15, 6.49%) and dengue 
fever (n=14, 6.06%) were the most predicted communi-
cable disease outcomes. Aside from non- communicable 
and communicable diseases, mortality (n=13, 5.63%) and 
healthcare utilisation (n=14, 6.06%) were also frequently 
predicted.

Figure 1 Preferred Reporting Items for Systematic Reviews 
and Meta- Analyses flowchart of article screening process.
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Data
Data sources were usually structured (n=207, 89.6%) 
and closed, that is, not publicly available (n=189, 81.8%) 
(table 1). In general, high- dimensional data with many 
observations, such as multi- linked electronic medical 
records (EMRs) or internet- based data, may offer the 
most value for machine learning applications. These data 
types were represented in some of the articles captured, 
for which the most frequently reported data sources were 

Table 1 Summary statistics of included articles

Characteristic*
Number of 
articles†

Percent of 
articles‡

Region

  The USA 71 30.74%

  Asia excluding China 41 17.75%

  China 40 17.32%

  Europe 36 15.58%

  Americas excluding the 
USA

13 5.63%

  Africa 5 2.16%

  Oceania 2 0.87%

  Multi- region 15 6.49%

  Not reported 8 3.46%

Year published

  Before 1990 1 0.4%

  1990–1999 3 1.3%

  2000–2004 13 5.6%

  2005–2009 18 7.8%

  2010–2014 70 30.3%

  2015–2018 126 54.5%

Outcome level§

  Individual risk prediction 139 60.17%

  Population risk prediction 92 39.83%

  Number of observations Median=5414† IQR=16 543.5‡

  Not reported 72 31.2%

  Number of features Median=17† IQR=31‡

  Not reported 59 25.5%

Used any unstructured text

  Yes 24 10.4%

  No 207 89.6%

  Machine learning model 
was compared with other 
statistical methods

111 48.1%

  Reported data 
preprocessing¶

  Yes 160 69.3%

  No 71 30.7%

Reported method of feature selection

  Yes 164 71.0%

  No 67 29.0%

Reported hyperparameter search

  Yes 114 49.4%

  No 117 50.6%

Method of validation

  Holdout 112 48.5%

  Cross- validation or 
bootstrap

84 36.4%

  External 15 6.5%

  Not reported 32 13.9%

Reported descriptive statistics**

Continued

Characteristic*
Number of 
articles†

Percent of 
articles‡

  Yes 140 60.6%

  No 91 39.4%

Discussed the practical costs of prediction errors††

  Yes 36 15.6%

  No 195 84.4%

Stated rationale for using machine learning

  Yes 179 77.5%

  No 52 22.5%

Discussed model usability

  Yes 91 39.4%

  No 140 60.6%

Stated model limitations

  Yes 161 69.7%

  No 70 30.3%

Discussed model implementation

  Yes 184 79.7%

  No 47 20.3%

Dataset availability by study‡‡

  Closed 149 64.5%

  Public 42 18.2%

  Closed and public 38 16.5%

  Unknown 1 0.4%

*Refer to online supplemental table A for a description of each 
characteristic and rationales for including some elements.
†In rows where the characteristic being measured is an integer count 
(eg, number of features), this column refers to the median value.
‡In rows where the characteristic being measured is an integer count 
(eg, number of features), this column refers to the IQR (quartile 3 – 
quartile 1).
§Individual risk prediction refers to studies that developed models 
to predict the health outcomes of individuals, while population 
risk prediction refers to studies that developed models to predict 
aggregated population- level health outcomes.
¶Whether any aspects of data cleaning or preprocessing were 
reported. Examples include how missing data were handled, 
whether log transformations were done and if derived variables were 
generated.
**Included a broad array of descriptive statistics such as sample 
population demographics, feature distributions and outcome 
distributions.
††Whether the article discussed the relative risks of false negative 
and false positive results based on their predictive model in contexts 
where it might be used.
‡‡Closed refers to datasets that were not immediately available in the 
public domain or were not identifiable as such.

Table 1 Continued
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health records (n=126, 54.5%) and investigator gener-
ated (eg, cohort studies) (n=86, 37.2%) (table 2). A 
large proportion of studies (n=42, 18.2%) used an envi-
ronmental data source (eg, satellite imagery), mostly for 
prediction of infectious disease. Government databases 
(n=32, 13.9%) and internet- based data (n=21, 9.1%) were 
less frequently used. Among studies from China and the 
USA, 80.0% and 67.6%, respectively, used health records 
data, whereas 54.5% of studies overall used these data 
sources (see online supplemental figure B).

Features
The median number of features used in a machine 
learning algorithm was 17 (IQR=31; table 1). The 
frequency of specific feature categories used are shown 
in online supplemental figures C and table D. Biomed-
ical and sociodemographic features were frequently 
used (see online supplemental figure C). Of these, the 
most commonly used were disease history (43.3%), 
age (48.5%) and sex/gender (41.1%). Among life-
style features, smoking was the most frequently used 
(25.1%) and of environmental features, meteorology was 
common (17.3%). Social media posts (5.2%) and web 
search queries (5.2%) were not often used. In general, 
most studies focused on features typical of clinical predic-
tion models, such as subject demographics, behaviours 
and medical histories. We observed limited use of other 
data, such as unstructured text or image- based features, 
which are difficult to parse using traditional statistical 
approaches and could benefit more from machine 
learning applications.

Model development and validation
The majority of articles reported how data preprocessing 
(n=160, 69.3%) and feature selection (n=164, 71%) were 
done (table 1). Fewer authors reported how hyperparam-
eters were selected (n=114, 49.4%). Most studies used a 
holdout method of validation (n=112, 48.5%), 15 (6.5%) 
externally validated their models and 32 (13.9%) did not 
report how models were validated.

Performance metrics
Most articles reported a prediction discrimination metric 
(n=172, 74.46%), which quantifies a model’s ability to 
correctly rank- order individuals (table 3).23 Discrimina-
tion is a useful performance metric in cases where clas-
sification is the primary goal, including many machine 
learning relevant tasks such as image recognition. The 
most common discrimination metrics employed were 
area under the receiver operator curve (n=98, 42.42%), 
accuracy (n=76, 32.90%) and recall (n=68, 29.44%).

In clinical and public health settings, accurate prediction 
of outcome probabilities is important for the practical utility 
of a tool, so assessing model calibration is very important.

Few articles in our study reported a measure of calibration 
(n=21, 9.09%), which describes how well a model predicts 
the absolute probability of outcomes (table 3).23 Calibration 
was mostly assessed with graphing methods (n=9, 3.90%) and 
Hosmer- Lemeshow statistics (n=8, 3.46%).

Some articles also reported a measure of overall model fit 
(n=77, 33.33%). Overall performance was usually measured 
with a form of mean error, such as root mean squared error 
(n=35, 15.15%).

Figure 2 Number of articles by outcome.
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Study discussion and narrative synthesis
Most articles included some discussion of their rationale 
for using machine learning (n=179, 77.5%), although 
some articles did not mention or explain their rationale 
(n=52, 22.5%) (table 1). Rationale for applying machine 
learning approaches mainly focused on being ‘state of 
the art’ or better suited to modelling complex data than 
regression.

Most articles also had some discussion of the limita-
tions of their study (n=161, 69.7%), and how the model 
might be implemented (n=184, 79.7%) (table 1). 
Frequent concerns were an inadequate sample size, too 

few features, questionable generalisability and a lack of 
interpretability. When discussing model implementation, 
many articles stated that predictive accuracy would be 
improved, but they did not frequently discuss how this 

Table 2 Data sources

Sources of data used* Number Percent

Environmental 42 18.2%

Geographical information database 12 5.2%

Meteorological/air quality datasets 32 13.9%

Satellite imagery 21 9.1%

Health records database 126 54.5%

Clinical record database† 46 19.9%

Disease registry 2 0.9%

Population health survey 15 6.5%

Reportable disease database 42 18.2%

Other health records database 30 13.0%

Government database 32 13.9%

Census 11 4.8%

Vital statistics 13 5.6%

Other government database 14 6.1%

HealthMap 3 1.3%

Private insurance data 9 3.9%

Private insurance claims 9 3.9%

Private insurance questionnaire 3 1.3%

Internet based 21 9.1%

Search engine 12 5.2%

Social media 12 5.2%

Investigator generated‡ 86 37.2%

Public repositories§ 19 8.2%

Health organisation reports¶ 5 2.2%

Not reported 6 2.6%

*Categories are not mutually exclusive.
†Any dataset produced primarily for the purpose of delivering 
clinical care, such as electronic medical records and administrative 
healthcare databases produced by hospitals.
‡Any datasets resulting from researcher- driven studies, such as 
randomised controlled trials, cohort studies and case–control 
studies.
§Any freely available datasets such as Medical Information Mart 
for Intensive Care or the University of California, Irvine Machine 
Learning Repository.
¶Health- related reports, typically, including disease burden 
estimates, produced by non- governmental or governmental 
organisations, such as the WHO.

Table 3 Prediction performance metrics

Prediction performance metrics used Number Percent

Any overall performance metric 77 33.33%

RMSE 35 15.15%

MSE 26 11.26%

MAE 24 10.39%

MAPE 23 9.96%

R2* 19 8.23%

Correlation 8 3.46%

AIC or BIC 8 3.46%

Other performance metric† 21 9.09%

Any discrimination metric 172 74.46%

Area under the curve‡ 98 42.42%

Accuracy§ 76 32.90%

Recall¶ 68 29.44%

Precision** 39 16.88%

F statistics 10 4.33%

Likelihood ratio†† 4 1.73%

Youden Index 3 1.30%

Manual or visual comparison 3 1.30%

Other discrimination metric‡‡ 4 1.73%

Any calibration metric 21 9.09%

Manual or visual comparison§§ 9 3.90%

Hosmer- Lemeshow 8 3.46%

Observed/xpected 5 2.16%

Other calibration metric¶¶ 3 1.30%

Any reclassification metric 6 2.60%

Net Reclassification Index 5 2.16%

Integrated discrimination improvement 3 1.30%

*Includes R2 and pseudo- R2 metrics.
†Includes penalty error, total sum of squares, proportional reduction in 
error, overall prediction error, specific prediction error, Nash- Sutcliffe, 
root mean squared percentage Error (2), mean relative absolute 
error, analysis of variance F- stat, 2LogLikelihood, relative efficiency, 
deviance, Ljung- Box test, mean absolute deviation, SE, mean 
percentage error, Brier score and log score.
‡Includes c- statistic, s- index and area under the receiver operator 
curve.
§Includes accuracy, misclassification and error rate.
¶Includes sensitivity, specificity, true/false positive and true/false 
negative.
**Includes positive predictive value, negative predictive value and 
precision.
††Includes positive/negative likelihood ratios.
‡‡Includes G- means (2), k- statistic and Matthews correlation 
coefficient.
§§Includes calibration plots.
¶¶Includes mean bias (from Bland- Altman plot), calibration factoring 
and calibration statistic.
AIC, Akaike Information Criterion; BIC, Bayesian Information Criterion; 
MAE, mean absolute error; MAPE, mean absolute percentage error; 
MSE, mean squared error; RMSE, root mean squared error.
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could be translated to specific health- related policies or 
actions.

Less than half of the articles discussed model usability 
(n=91, 39.4%), that is, whether and how the model 
could practically be used in a relevant context. This is an 
important reporting component of the TRIPOD state-
ment (Discuss the potential clinical use of the model 
and implications for future research) and is relevant 
for understanding real- word applications of prediction 
models.17 Also, only a small number discussed the costs 
of prediction errors in real- world contexts (n=36, 15.6%).

See online supplemental appendix D for further narra-
tive synthesis of discussion reporting items.

DISCUSSION
Our results show that machine learning is increasingly 
being applied to make predictions related to popula-
tion health. However, applications of machine learning 
to population health prediction tasks have not capital-
ised fully on the opportunities presented by emerging 
big data resources and efficient machine learning algo-
rithms. Furthermore, reporting of these models often 
does not align with established guidelines for reporting 
of prediction models, which limits their ability to be criti-
cally appraised, compared with existing statistical models, 
or implemented in clinical or public health practice.

Applications of machine learning prediction models
Nearly half of the included studies were conducted in 
the USA or China. Both countries produce the greatest 
number of scientific publications in general24; however, 
they also likely benefited from robust health data infra-
structures. The USA has rapidly digitised much of its 
healthcare system, resulting in large EMRs linked with 
government data through public–private partnerships, 
including processes to make these data available to 
researchers.25 26 Both the USA and China made greater 
use of health records and less use of investigator- 
generated data relative to other regions, which may have 
made machine learning projects more tractable. They also 
used more internet- based data, which typically includes 
many observations and is high dimensional, making it 
amenable to machine learning methods. We noted that 
studies from Oceania, Africa and the Americas (outside 
of the USA) were limited. This may be partly due to less 
availability of traditional sources of structured health 
data. However, given that machine learning methods 
can incorporate non- traditional data sources, there is 
the potential to expand use of these methods even when 
structured health data is unavailable.

We found that a wide range of population health 
outcomes have been the focus of machine learning 
prediction models. However, relative to morbidity and 
mortality, multiple outcome categories like cancer, HIV, 
dementia, gastroenteritis, pneumococcal disease, peri-
natal health, tuberculosis and malaria appear under-
studied.27 Many of these conditions are most prevalent in 

regions with decreased access to traditional health data, 
perhaps stymieing research. If machine learning methods 
are used to leverage novel data sources for research in 
these regions, it could enable greater study of neglected 
diseases.

Most investigators did not analyse a large number of 
observations and features. We observed a high reliance 
on electronic health records and investigator- generated 
data, including the use of relatively small study cohorts. 
Small study sample sizes or narrow data collection asso-
ciated with these data sources can make it difficult to 
achieve high sample sizes or high dimensional data, which 
may impact machine learning algorithm performance. 
Specifically, the use of smaller investigator- generated 
datasets may affect the performance of studied models, 
as machine learning algorithms generally require a high 
number of observations relative to features.28 Addition-
ally, most studies focused on features typical of clinical 
prediction models, such as biomedical factors and limited 
aspects of broader socioeconomic or environmental 
determinants of health. We also observed infrequent use 
of unstructured data and wearable data for prediction 
purposes. A reliance on small datasets and traditional 
numbers and types of features is unlikely to fully leverage 
any benefits of machine learning. This may be contrib-
uting to the small performance differences observed 
between parametric regression and machine learning 
models. Greater use of linked population- level databases, 
large EMRs, internet data and unstructured features 
would likely improve these approaches.

Reporting of machine learning prediction models
Based on the elements of model development that 
we studied, adherence to existing machine learning16 
and prediction model17 guidelines appears limited. 
Most articles did not report their method of hyperpa-
rameter selection, discuss practical costs of prediction 
errors or consider model usability, which are needed 
for transparency and model assessment. Many studies 
did not report the number of features included, 
method of validation, method of feature selection or 
any performance metric. Given these issues, it would 
be difficult or impossible to compare many of these 
machine learning models with existing approaches. 
However, we acknowledge that existing guidelines 
were not available when many included studies were 
published. Future work should apply existing guid-
ance,16 including from TRIPOD,17 and anticipate the 
forthcoming Transparent Reporting of a multivariable 
prediction model for Individual Prognosis or Diag-
nosis - Machine Learning (TRIPOD- ML) statement.29

Lastly, we noted that included studies rarely assessed 
predictive performance in terms of calibration, which 
refers to a model’s ability to accurately predict the 
absolute probability of outcomes.23 In contrast, 
discrimination measures of predictive performance 
quantify a model’s ability to correctly rank- order indi-
viduals. Many traditional machine learning tasks, such 

https://dx.doi.org/10.1136/bmjopen-2020-037860
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as image recognition, often have a high signal- to- noise 
ratio. In these cases, discrimination may be a suit-
able lone performance metric, as the algorithm can 
achieve near perfect performance. Conversely, health 
outcomes tend to be more stochastic. As a result, accu-
rate prediction of probabilities is more important.23 
Models can have good predictive discrimination, but 
poor calibration, making them less useful in prac-
tice, particularly for population health applications. 
A further issue is that many measures of discrimina-
tion, such as accuracy and recall, artificially impose a 
threshold for calling events. Thresholds should ideally 
be ascertained by decision- makers based on their 
cost- utility curves.23 Overall, applications of machine 
learning in population health would benefit from 
greater use of calibration performance metrics.

Strengths and limitations of this review
A strength of our study is that we addressed an under-
studied area, the intersection of machine learning 
and population health. Additionally, prediction is an 
application with untapped potential in population 
health, and where machine learning has the poten-
tial to make significant improvements. Our study also 
employed a comprehensive search strategy, including 
numerous multidisciplinary peer- reviewed databases, 
alongside a grey literature search. Furthermore, we 
applied insights from the field of clinical prediction 
modelling to population health and machine learning. 
Finally, given the focus on prediction, we were able to 
take a comprehensive approach to data extraction and 
synthesis.

In terms of limitations, concentrating on prediction 
prevented us from exploring applications of machine 
learning to other important aspects of population 
health, such as disease surveillance. These should 
be the focus of future research. Our review was also 
limited by including only English articles and articles 
with available full text, which may have introduced 
selection bias. Because of the broad scope of this 
review, and inconsistent reporting of model devel-
opment and validation in reviewed articles, we were 
unable to carry out a critical appraisal of the litera-
ture and are unable to comment significantly on the 
overall performance of published machine learning 
population health prediction tools. This would be of 
great value for understanding the clinical and popu-
lation health relevance of machine learning predic-
tion tools. Lastly, the two main concepts underlying 
our review, machine learning and population health, 
are not universally defined. As a result, we may have 
excluded articles that may be relevant to these fields.

Research recommendations and conclusion
This was the first scoping review specifically focused 
on machine learning prediction in population health 
applications. Predictive modelling in population 
health can help to inform preventive interventions, 

anticipate future disease burden and assess the 
impact of health policies and programmes. Advances 
in machine learning offer opportunities to improve 
these models, particularly when incorporating big 
data. Countries with substantial EMR use and govern-
ment database linkage such as Finland, Singapore 
and Denmark30 likely have untapped potential for 
machine learning research. This is still a nascent field, 
but based on our findings, more research in Oceania, 
Africa and South America would also be particularly 
beneficial. Diseases with a high global burden of 
disease that were under- represented in our findings 
include malaria, tuberculosis and dementia, which 
may be opportune for further study.31 Additionally, 
future machine learning projects could incorporate 
larger datasets and more non- traditional features. 
Greater use of resources such as HealthMap, social 
media, web search patterns, remote sensing and WHO 
reports would enable more work in regions without 
formal data sources and enrich research in others. 
Another largely untapped prospect is using machine 
learning and high- dimensional data to incorporate 
richer representations of the social determinants of 
health. Opportunities should continue to grow as 
governments increasingly digitise their health service 
records and link databases to both health and non- 
health data. Overall, as applications of machine 
learning in population health develop, adherence 
to existing guidance16 17 29 will improve our ability to 
assess and advance machine learning applications. 
We hope that our results will help to inform future 
research in this area, including the development of 
guidelines for machine learning applications in popu-
lation health. Finally, it will be important to evaluate 
the impact of prediction models on decisions made in 
population health and the practice of public health.
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