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ABSTRACT
Ischemic cardiomyopathy (ICM) is an important cause of heart failure, yet no 

ICM disease genes were stored in any public databases. Mutations of genes provided 
by RNA-Seq data could set a foundation for a variety of biological processes. This also 
made it possible to elucidate the mechanism and identify potential genes for ICM. In 
this paper, an integrated co-expression network was constructed using univariate and 
bivariate canonical correlation analysis for RNA-Seq data of human ICM samples. Three 
ICM-related modules were recognized after comparing between Pearson correlation 
coefficients of ICM samples and normal controls. Furthermore, 32 ICM potential genes 
were identified from ICM-related modules considering protein-protein interactions. 
Most of these genes were verified to be involved in ICM and diseases caused it by 
OMIM and literature. Our study could provide a novel perspective for potential gene 
identification and the pathogenesis for ICM and other complex diseases.

INTRODUCTION

Ischemic cardiomyopathy (ICM) is an important 
cause of heart failure. It is a common type of dilated 
cardiomyopathy (DCM) results from coronary heart 
disease (CHD), according to National Heart, Lung, 
and Blood Institute, National Institutes of Health, U.S. 
Department of Health and Human Services. As other 
complex diseases, ICM is caused by interactions of 
genetic and environmental factors. Many studies have 
been conducted on ICM from different aspects, especially 
from the genome level [1, 2]. However, no ICM disease 
genes have been stored in public databases.

Nowadays, with the next-generation sequencing 
technology being widely used [3], studies for dysfuntions 
caused by gene mutations are still inadequate [4, 5]. 
Transcriptome data retrieved from next-generation 
sequencing data, especially RNA-Seq data, were superior 
to expression profiles from the microarray technology 
[6]. The high sensitivity of RNA-Seq data could provide 

accurate and precise expression data from various levels, 
such as exon, position and allelic levels [7].

Genes causing complex diseases always participate 
in common biological processes in various kinds of 
biological networks [8, 9]. Of all biological networks, 
co-expression networks could provide information of 
co-regulation genes that function in regulation processes 
and relationships of transcriptome components disturbed 
by environment. Therefore, co-expression networks 
could be used as effective tools to study gene functions, 
biological processes and complex disease mechanisms 
[10]. Traditionally, correlation coefficients between 
expression values of gene pairs were used to evaluate 
their relationships and construct co-expression networks. 
Each expression value was represented by a single 
variable without considering expression differences 
caused by exons, positions or allels [7, 11, 12]. On the 
contrary, canonical correlation analysis (CCA) could 
measure correlations between two sets of variables [13]. 
Thus, CCA could be used to examine complex patterns of 
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gene expressions and accurately represent co-expression 
relationships by considering variations of transcripts. In 
co-expression networks, modules, or highly interconnected 
regions, are mutually correlated [14]. Genes in the same 
modules tend to have similar functions, or involve in 
common biological processes [15]. Comprehensive 
understanding of diseases could be provided by analyzing 
biological data based on network modules.

Hence, to construct co-expression networks to 
investigate genes in ICM process comprehensively, co-
expression gene pairs were identified using univariate 
and bivariate CCA. Here, CCA was performed for the 
expression data of the exon, position and allelic levels 
obtained from RNA-Seq data of human ICM samples. 
Modules and their functions were further analyzed. Since 
protein-protein interaction (PPI) could reflect functions 
and cooperation of proteins/genes [16], sub-modules from 
PPI networks could help to identify potential genes of 
ICM (Figure 1).

RESULTS

The integrated co-expression network

Co-expression gene pairs of ICM samples for 
expression data of exons and positions were identified 
using the univariate CCA, and those for expression data 
of ASE were identified using the bivariate CCA (see 
Materials and Methods). The integrated co-expression 
network was constructed by integrating 17045 co-
expression gene pairs between 1135 genes with non-zero 
correlations from all three levels.

Topological property of the integrated co-
expression network

The assortativity of a biological network, a random 
network and the integrated co-expression network were 
measured by their assortativity coefficients (see Materials 
and Methods). It was showed that the biological network 
was disassortative (assortativity coefficient <0) as 
high degree nodes were more likely to connect to low 
degree nodes. For the random network, the assortativity 

coefficient was close to 0. These results were consistent 
with previous studies [6]. Our integrated co-expression 
network was disassortative since the assortativity 
coefficient<0 (Table 1). These results indicated that our 
integrated co-expression network had similar topology 
features as biological networks.

ICM-related modules

Modules of the integrated co-expression network 
could reflect underlying pathological disease mechanisms. 
Here, network modules were detected using MCODE. 
After screening by comparing between Pearson correlation 
coefficients of ICM samples and normal controls (see 
Materials and Methods), 3 ICM-related modules were 
recognized and named as Module A, B and C (Figure 2).

BP_Fat of GO and pathways of KEGG enriched 
for these 3 modules using DAVID were selected as stated 
in Materials and Methods (P-Value<0.05, Figure 3). All 
three modules were enriched in functions of “translation 
elongation”, “translation” and “generation of precursor 
metabolites and energy”, and the pathway of “Ribosome”. 
These enriched functions and pathways have been verified 
to be associated with ICM and diseases caused it (DCM 
and CHD).

The function of “generation of precursor metabolites 
and energy”, “electron transport chain” (enriched by 
Module A and C), the “Oxidative phosphorylation” 
pathway (enriched by Modules C) and other functions/
pathways all result in the formation of energy. Moreover, 
mitochondrion is the site where all three modules were 
mainly localized, which indicated that energy was 
involved in ICM. It was showed that ICM and other 
cardiovascular diseases involved the misuse of energy and 
oxygen with high uptake and oxidation of fatty acids [17]. 
Moreover, ATP-binding cassette (ABC) B10 expression 
and heme levels were altered in hearts of patients with 
ICM. The mitochondrial transporter ABCB10 was 
reported to export heme out of the mitochondria. Heme 
plays a critical role in gas exchange, mitochondrial energy 
production, and antioxidant defense in cardiovascular 
system [18]. Alterations in energy-metabolism have also 
been detected in biopsies from patients with ICM [19].

Homeostasis is the process that living organisms 
use to regulate their internal equilibrium, which keeps the 

Table 1: Assortativity coefficients for various types of networks.
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Figure 1: The identification of potential genes for human ischemic cardiomyopathy based on RNA-Seq data.

Figure 2: Three ICM-related modules (Module A, B and C). Red, yellow and green genes were verified to be related to ICM, 
DCM, and CHD, respectively.
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health of human bodies. Most human diseases, including 
cardiovascular diseases, involve the disruption of normal 
homeostasis [20]. ICM could be caused by dysfunction of 
such biological processes, e.g. “homeostatic process” and 
“cellular homeostasis” [1, 21].

“Ribosome” is the site where all three modules 
were mainly localized. It is the place of “translation”, 
which is the process that proteins are synthesized. During 
“translation elongation”, amino acids are brought to 
the ribosome, and joined to form proteins in the order 
specified by mRNAs. These biological processes/
pathways were greatly associated with DCM and CHD. 
Mice with mutant mTOR rapidly developed DCM with 
cardiomyocyte growth defects resulted from impaired 
protein translation efficiency [22]. The Food and Drug 
Administration approved drug mipomersen could treat 

FH, one disease that could cause CHD, by inhibiting the 
apolipoprotein translation [23]. Androgen deficiency was 
shown to play a part in CHD and other cardiovascular 
diseases. These symptoms resulted from altered or 
damaged androgen synthesis, regulation or binding. In 
this process, genomic transcription and translation were 
also affected [24]. Mencarelli et al. found a different RNA 
secondary structure could change translation and protein 
synthesis, which was associated with CHD, type 2 diabetes 
and hypertension in the carriers [25].

These results exhibited the importance of ICM-
related modules detected from the integrated co-
expression network. These modules participated in many 
vital biological processes, which were associated with 
ICM.

Figure 3: GO functions and KEGG pathways enriched by genes in 4 modules. Node size is proportional to –log(P-Value) of 
each enriched function/pathway.



Oncotarget82067www.impactjournals.com/oncotarget

ICM potential genes

Three PPI networks were built for three ICM-
related modules, respectively. Since genes in these PPI 
networks were enriched in biological processes associated 
with ICM, these PPI networks were also ICM-related. 
Using MCODE, 3, 2 and 6 sub-modules were recognized 
from PPI networks of Module A, B and C, respectively. 
These sub-modules were named as Module A1-A3, B1-
B2, and C1-C6. Module A1, B1-B2, C1 and C4-C6 were 
mainly localized to important subcellular organelles, such 
as ribosome or mitochondrion. It was worth noting that 
Module A2, A3, C2 and C3 were significantly enriched 
in translation, energy or homeostasis-related biological 
processes. These biological processes were verified to be 
strongly associated with ICM and its two major causes, 
DCM and CHD. As a result, 32 genes locating in or 
mediating Module A2, A3, C2 and C3 could act as ICM 
potential genes (Figure 4).

Since ICM was caused by DCM and CHD and no 
ICM disease genes were stored in any public databases, 
the disease associations of these genes were evaluated 
by the Online Mendelian Inheritance in Man (OMIM, 
Updated 9 July 2016) database [26] and recent literature 
for ICM, DCM or CHD.

For genes in Module A2, the research of Bironaite 
et al. showed that TIMP1 significantly increased in 
sera in DCM myocardium [27]. Results from DNA 
methylation profile between DCM patients and normal 
individuals showed that selenium deficiency increased 
the expression of the Gadd45α, i.e. gene GADD45A [28]. 
CCL2 was CHD disease gene in OMIM [26]. Huang et 
al. and Franceschini et al. observed significant association 
between SNPs of CXCL12, rs1746048-C and rs501120, 
and an increased risk of CHD in Han Chinese and US 
cohorts, respectively [29, 30]. Many studies have shown 
that DCM was one of main clinical manifestations of 
PGM1 (in Module A3) deficiency [31, 32]. Western blot 
and histological analysis revealed that TXN2 (Module 

Figure 4: ICM potential genes locating in or mediating four sub-modules (Module A2, A3, C2 and C3). Red, yellow and 
green genes were verified to be related to ICM, DCM and CHD, respectively.
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A3) protein expression levels were reduced in hearts from 
patients with DCM. Cardiac-specific TXN2 knockout mice 
developed DCM at 1 month of age with increased heart 
size, reduced ventricular wall thickness, and a progressive 
decline in left ventricular contractile function [33]. CKM 
in Module A that interacted with Module A2 and A3 was 
reported to be associated with ICM since protein levels 
of CKM were found to be reduced in ICM patients [34].

Gene SDHA of Module C2 was DCM disease gene 
stored in OMIM [26]. Ono et al. discovered that NDUFV1 
of Module C2 was involved in the pathogenesis of DCM 
since NDUFV1 production decreased significantly in the 
myocardium of patients with DCM [35]. The rs10911021 
SNP at the locus of gene GLUL of Module C2 has been 
associated with an increased risk of CHD in individuals 
with type 2 diabetes [36]. After 24 hours of treatment 
with lovastatin, which is widely used in prevention and 
treatment of CHD, the LDHA (in Module C2) mRNA 
levels went up. When the treatment time was extended to 
five days, the protein levels of LDHA were up-regulated, 
while LDHB (in Module C2) mRNA levels and protein 
levels were both down-regulated [37]. Sun et al. revealed 
that levels of ALDH2 in Module C3 were down-regulated 
in hearts from DCM patients [38]. Mean levels of FABP3 
(Module C3) in DCM groups were significantly higher 
than in the control group in many researches. Thus, 
FABP3 was often used as a plasma biomarker in DCM, 
and played a significant role in its development [39, 40]. 
Moreover, TNNC1 of Module C interacting with both 
Module C2 and C3 were DCM disease genes stored in 
OMIM [26]. Though TIMP3 of Module C did not interact 
with Module C2 and C3 directly, it interacted with gene 
APP that interacted with both Module C2 and C3. APP has 
been indicated to be involved in CHD by several studies 
[41, 42]. TIMP3 has also been shown to be significantly 
down-regulated in patients with ICM [43].

After database and literature evaluation, 17 ICM 
potential genes were verified to be involved in ICM, 
DCM and CHD by OMIM and literature. For other ICM 
potential genes, though no disease association record was 
found in OMIM or literature, they also participated in 
ICM associated biological pathways. For example, SDHB 
in Module A and ENO3 in Module C3 were annotated to 
the process of “generation of precursor metabolites and 
energy”. “Cellular homeostasis” was annotated by gene 
PRDX5 of Module A3.

DISCUSSION

RNA-Seq data from the next-generation sequencing 
technology could offer high-quality expression data 
of various levels for transcriptome analysis. Plenty 
of transcriptome information could be provided by 
expressions of exons, positions and allels [44], which 
should be considered comprehensively. Hence, in this 
paper, univariate and bivariate CCA was employed to 

identify co-expression gene pairs for the exon, position 
and allelic data from RNA-Seq data, respectively. The 
integrated co-expression network was constructed by 
aggregating three sets of co-expression gene pairs. This 
network was biologically significant and could be used 
as the context for exploring potential genes and the 
pathogenesis of diseases.

Additionally, three ICM-related modules were 
screened from the integrated co-expression network after 
comparing between Pearson correlation coefficients of 
ICM samples and normal controls. These modules could 
reflect alterations from normal to disease states. Therefore, 
they were significantly enriched in disease associated 
biological processes, such as translation, energy generation 
and homeostasis. This indicated that some important genes 
in these modules might take vital roles in the process of 
ICM.

To consider real interactions between genes in 
each ICM-related module, we built one PPI network for 
each ICM-related module. Genes in these PPI networks 
were enriched in many vital biological processes, such as 
“translation elongation”, “translation” and “generation of 
precursor metabolites and energy”, and the pathway of 
“Ribosome”, which were associated with ICM. Besides 
these common biological processes, these PPI networks 
could be enriched in different biological processes. These 
different biological processes were also ICM-related 
processes and could represent different aspects for ICM 
mechanism. Sub-modules from these PPI networks 
could provide better understanding of functions and 
cooperation for genes in ICM. 32 ICM potential genes 
locating in or mediating sub-modules were identified, 
which were significantly enriched in translation, energy 
or homeostasis-related biological processes. Of these ICM 
potential genes, 2 were verified to be involved in ICM, 9 
in DCM, 6 in CHD by OMIM and literature, and others 
participated in ICM associated biological pathways.

In our method, relationships between genes were 
detected based on expression values of different levels, 
i.e. exon, position and allelic levels, from RNA-Seq 
data of ICM samples. Recently, some sequence analysis 
tools have been proposed, such as Pse-in-One, repRNA 
and repDNA [45-47] . The three tools could generate 
various vectors of important features once sequences 
of DNAs, RNAs or proteins were given. We speculate 
that co-regulation/function relationships between genes 
with sequence variations could be obtained from various 
vectors of important features generated by the three tools. 
With relationships from the three tools incorporated into 
our model, we hope that a much more powerful method 
considering sequence patterns could be developed in the 
future.
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MATERIALS AND METHODS

Data

RNA-Seq data of human ICM samples, GSE48166, 
were obtained from the Gene Expression Omnibus 
(GEO) database (http://www.ncbi.nlm.nih.gov/geo/) 
[48], which contained 15 ICM and 15 normal samples. 
The reference human genome data were the hg19 file 
from the UCSC database (http://genome.ucsc.edu/) [49]. 
The human genome annotation data were also from 
the UCSC database (http://genome.ucsc.edu/cgi-bin/
hgTables?command=start).

The expression values of exon, position and allelic 
levels were obtained after processing RNA-Seq data of 15 
ICM samples using FastQC [50], Tophat [51], Cufflinks 
[52] and SAMtools [53]. Expression values of the exon 
or position level were read counts of exons or positions, 
and expression values of the allelic level, allel specific 
expressions (ASE), were read counts of allel pairs of 
single nucleotide polymorphisms (SNPs). The expression 
values of 5105 exons, 5280 positions and 5333 allel pairs 
from 15 ICM samples were obtained after data processing.

Identification of co-expression gene pairs

In this paper, univariate and bivariate CCA were 
employed to identify co-expression gene pairs, which 
could detect the maximum correlation between two sets 
of variables [6].

Univariate canonical correlation analysis

The univariate CCA was performed for the 
expression data of the exon or position level of two 
genes, g1 and g2. g1 had p exons or positions, and g2 had 
q exons or positions, p ≤ q. Xe

(1) and Xe
(2) were vectors of 

expression values for the e th exon or the e th position 
of g1 and g2 for ICM samples. Thus, the expression data 
of the exon or position level of these two genes could be 
represented as  X(1) = [X1

(1),..., Xp
(1)]T and X(2) = [X1

(2),..., 
Xq

(2)]T. Linear combinations of exon or position expression 
values from two genes, U and V, were represented as  
U = aT X(1) and V = bT X(2), respectively. The maximum 
correlations between different pairs of U s and V s, λ1, λ2,.. 
λp, λ1

2≥ λ2
2 ≥... ≥ λp

2  with the significance pi = (i = 1, ..., p) 
were calculated [13].

Since correlations with pi ≤ 0.05 was significant, 
the final correlation, wexon/position, between two genes was 
defined as

.
Gene pairs with non-zero wexon/position were then used 

to construct the integrated co-expression network [54].

Bivariate canonical correlation analysis

The bivariate CCA was performed for the ASE data 
of SNPs from two genes, one with s SNPs, the other with 
t SNPs, s ≤ t. Yi

(1) and Yi
(2) were vectors of the expression 

values for two allels of the l th SNP of one gene, and 
Zl

(1) and Zl
(2) were vectors of the expression values for 

two allels of the l th SNP of one other gene for ICM 
samples. Thus, the ASE data of these two genes could be 
represented as  Y = [Y1

(1),..., Ys
(1) , Y1

(2),..., Yt
(2)]T = [Y(1),Y(2)]T  

and Z = [Z1
(1),..., Zs

(1) , Z1
(2),..., Zt

(2)]T= [Z(1), Z(2)]T. Linear 
combinations of ASE from two genes, M and N, were 
represented as M=cTY [c(1)]T,Y(1)+[c(2)]T Y(2) and N=dTZ [d(1)]
T,Z(1)+[d(2)]T Z(2), respectively. The maximum correlations 
between different pairs of M s and N s, γ1, γ2,.. γp, γ1

2≥ γ2
2 

≥... ≥ γp
2 with the significance pi were calculated [13].

Since correlations with pi ≤ 0.05 was significant, the 
final correlation between two genes wallel was defined as

Gene pairs with non-zero wallel were then used to 
construct the integrated co-expression network [54].

Construction and analysis of the integrated co-
expression network

Co-expression networks are undirected graphs, 
where nodes correspond to genes, and edges between 
genes represent co-expression relationships, i.e. 
correlations between co-expression gene pairs. The 
integrated co-expression network was constructed by 
integrating all co-expression gene pairs with non-zero 
correlations (wexon/position or wallel) for the expression data of 
the exon, position and allelic levels obtained from RNA-
Seq data of human ICM samples.
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Topological analysis of the integrated co-
expression network

The topological property of the integrated co-
expression network was evaluated by assortativity. 
Assortativity is an important measure for network 
topology, which describes the tendency of a node 
connecting to similar nodes in a network. Assortativity 
coefficient was used to measure network assortativity by 
the Pearson correlation coefficient between degrees of 
connecting node pairs [55]. If the assortativity coefficient 
>0, the network was assortative; if the assortativity 
coefficient <0, the network was disassortative. To compare 
assortativity of different types of networks, a biological 
network and a random network were constructed. The 
nodes and edges of the biological network were from 
KEGG pathways, and those for the random network were 
selected randomly from KEGG pathways.

Detection and function of ICM-related modules

Modules of co-expression network constructed from 
disease samples could be linked to a particular disease 
phenotype and help to uncover disease mechanisms [56]. 
MCODE was employed to detect network modules from 
the integrated co-expression network [57]. To further 
screen ICM-related modules, differences between Pearson 
correlation coefficients of expression values for ICM 
samples and those for normal controls from GSE48166 
were calculated for each module. Then, the difference was 
compared with those of 1000 random modules, which 
were constructed by selecting the same number of genes 
as modules from MCODE. If the real difference was 
significantly greater than the random ones (permutation 
test, p < 0.05), the module was considered as ICM-related.

Functional and pathway enrichment analyses were 
performed for these screened ICM-related modules 
using the Database for Annotation, Visualization, and 
Integrated Discovery (DAVID, https://david.ncifcrf.gov/). 
To understand the significance of genes in the process of 
ICM, BP_Fat (biological process) of Gene Ontology (GO) 
[58] and pathways of Kyoto Encyclopedia of Genes and 
Genomes (KEGG) [59] with P-Value<0.05 were selected.

Identification of ICM potential genes

It was necessary to consider real interactions 
between genes in ICM-related modules. PPIs of genes 
in each module were obtained from the STRING 
database (v10, http://string-db.org/) [60]. Three PPI 
networks were built for these modules, respectively. 
MCODE was employed to recognize sub-modules 
from these PPI networks, respectively. Functional and 
pathway enrichment analyses were also performed 

as aforementioned. Genes in sub-modules that were 
significantly enriched in biological processes associated 
with ICM (P-Value<0.05) could act as ICM potential 
genes. In addition, genes mediating this kind of sub-
modules, i.e. interacting with sub-modules, could also be 
ICM potential genes.

CONCLUSIONS

Though no ICM disease genes were stored in 
public databases, ICM-related modules screened from 
the integrated co-expression network constructed for 
ICM RNA-Seq data could provide more genomic and 
molecular information for biological processes and disease 
mechanisms. Taking PPIs into consideration, 32 genes 
locating in or mediating sub-modules were identified 
as ICM potential genes. 17 genes were verified to be 
involved in ICM, DCM and CHD by OMIM and literature. 
Our method will become an effective and powerful 
tool for identifying potential genes and elucidating the 
pathogenesis of complex diseases and their subtypes.
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