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Paederia foetida L. (Rubiaceae) is a climber which is widely distributed in Asian countries including Malaysia. The plant is
traditionally used to treat various diseases including diabetes.This study is to evaluate the enzymatic inhibition activity of Paederia
foetida twigs extracts and to identify themetabolites responsible for the bioactivity by gas chromatography-mass spectrometry (GC-
MS) metabolomics profiling. Three different twig extracts, namely, hexane (PFH), chloroform (PFC), and methanol (PFM), were
submerged for their 𝛼-amylase and 𝛼-glucosidase inhibition potential in 5 replicates for each. Results obtained from the loading
column scatter plot of orthogonal partial least square (OPLS)model revealed the presence of 12 bioactive compounds, namely, dl-𝛼-
tocopherol, n-hexadecanoic acid, 2-hexyl-1-decanol, stigmastanol, 2-nonadecanone, cholest-8(14)-en-3-ol, 4,4-dimethyl-, (3𝛽,5𝛼)-,
stigmast-4-en-3-one, stigmasterol, 1-ethyl-1-tetradecyloxy-1-silacyclohexane, ›-sitosterol, stigmast-7-en-3-ol, (3𝛽,5𝛼,24S)-, and 𝛼-
monostearin. In silicomolecular docking was carried out using the crystal structure 𝛼-amylase (PDB ID: 4W93) and 𝛼-glucosidase
(PDB ID: 3WY1). 𝛼-Amylase-n-hexadecanoic acid exhibited the lowest binding energy of -2.28 kcal/mol with two hydrogen bonds
residue, namely, LYS178 andTYR174, alongwith hydrophobic interactions involving PRO140, TRP134, SER132, ASP135, and LYS172.
The binding interactions of 𝛼-glucosidase-n-hexadecanoic acid complex ligand also showed the lowest binding energy among
5 major compounds with the energy value of -4.04 kcal/mol. The complex consists of one hydrogen bond interacting residue,
ARG437, and hydrophobic interactions with ALA444, ASP141, GLN438, GLU432, GLY374, LEU373, LEU433, LYS352, PRO347,
THR445, HIS348, and PRO351. The study provides informative data on the potential antidiabetic inhibitors identified in Paederia
foetida twigs, indicating the plant has the therapeutic effect properties to manage diabetes.

1. Introduction
Diabetes mellitus is a chronic metabolic disorder of the pan-
creas often referred to simply as diabetes and is characterized
by highly elevated blood glucose levels with disturbances
in carbohydrate, fat, and protein metabolism [1]. It occurs
either due to defective insulin secretion by the pancreas (i.e.,
the pancreas does not produce enough insulin) or due to

the ineffective response by the cells to the insulin that is
produced. World Health Organization (WHO) stated that an
estimated 422million adults were living with diabetes in 2014
compared to 108 million in 1980 [2]. The number of people
with diabetes has nearly doubled since 1980, increasing from
4.7% to 8.5% in the adult population due to being overweight
or obese. Prevalence of diabetes is rising faster in low- and
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middle-income countries than in high-income countries.
Diabetes triggered 1.5 million deaths globally in 2012 [2].

Paederia foetida L. or skunk vine, locally known as “Daun
Sekentut,” has antidiabetic properties. It is a climber widely
distributed in Asian countries including Malaysia, Thailand,
China, Vietnam, etc. [3]. It can be eaten raw which is
commonly practised in Malaysia. The plant has been tradi-
tionally used to treat sores, rheumatic joint, night blindness,
digestive problems, toothache, etc. [4]. In addition, P. foetida
is good also for women after childbirth [5]. The previous
study of the plant showed it has some bioactivities, such as
anti-inflammatory [4], antinociceptive [6], antidiarrheal [7],
antioxidant [5, 8], antihepatotoxic [9], antidiabetic [3, 10],
antitussive [11] and gastroprotective [8] activities.

Metabolomics is a tool to identify the bioactive mark-
ers of the medicinal plants. It is also to quantify all the
metabolites present in a biological system under a particular
condition [12]. It is also a holistic approach that includes
the detection of all metabolites in each sample and can
correlate to the bioactivity using multivariate data analy-
sis (MVDA) [13]. The common methods in metabolomics
such as gas chromatography-mass spectrometry (GC-MS),
nuclear magnetic resonance spectrometry (NMR), and liq-
uid chromatography-mass spectrometry (LC-MS) [14]. For
the MS-based nontargeted metabolomics study, the crude
extracts from different solvents were analyzed by a collection
of chemical structures including retention time, area percent-
age, mass-to-charge ratios (m/z), and the similarity index of
each metabolite. Nontargeted metabolomics study employs
data processing algorithms for aligning bulky datasets and
providing information on all detectable m/z [15]. The result-
ing data matrix is significant for a comparison of chemical
profiles among different extracts using multivariate data
analysis tools.

The study of Paederia foetida twigs as an antidiabetic
agent is very limited especially on the bioactive compounds
responsible for the biological property of the plant.Therefore,
the objectives of this study are to identify the bioactive
compounds from the Paederia foetida twigs extract as an
antidiabetic agent using metabolomics approach. MVDA is a
suitable statistical tool for managing large data sets obtained
using spectroscopic tools and is employed in classifying
samples based on their phytoconstituents [16].

2. Material and Methods

2.1. Instrument and Chemical Reagents. The gas chromatog-
raphy-mass spectrometry (GC-MS) of the extracts was
recorded by using a Shimadzu model QP5050A with BPX5
for nonpolar (5% phenylmethylsilane) capillary column (30
m × 250 𝜇m × 0.25 𝜇m). The antidiabetic assay was per-
formed using 𝜇-QUANT model microplate reader. The 𝛼-
amylase and 𝛼-glucosidase enzymes were purchased from
Megazyme. The p-nitrophenyl 𝛼-d-glucopyranoside, soluble
starch, potassium sodium tartrate, 3,5-di-nitro salicylic acid
(DNS), sodium hydroxide, dimethyl sulfoxide (DMSO), and
other chemicals and solvents of analytical grade were pur-
chased from Sigma.

2.2. Plant Materials. P. foetida was collected from Ledang,
Johor in Malaysia on 7th June 2017. The plant sample was
submitted to Institute of Bioscience (IBS), Universiti Putra
Malaysia (UPM), Serdang, for plant identificationwhich gave
the specimen voucher number of SK3177/17. The twigs of
the plant were dried at room temperature and ground into
powder.

2.3. Extraction Method. The powdered twigs were extracted
using hexane, chloroform, and methanol solvents individ-
ually. A total of 15 plant extracts was obtained from 5
biological replicates of each extraction solvent. The extrac-
tion was performed by weighing 50 g of ground samples,
mixing them with 200 mL of hexane in a 500 mL conical
flask and subjecting to soaking for 72 hours. The solvent
suspension was filtrated and concentrated using a rotary
evaporator to yield the crude extract. The crude extracts
were stored in an amber bottle at 4∘C until further analysis.
Thus, the chloroform and methanol were applying the same
extraction method as above. All 15 replicates of extracts were
subjected to enzyme inhibition assays (𝛼-amylase and 𝛼-
glucosidase), and the metabolites were analyzed by using
GC-MS.

2.4. Enzymatic Assays

2.4.1. 𝛼-Amylase Inhibition. The 𝛼-amylase inhibition was
determined using the iodine-starch test [17]. 60 𝜇L of 0.1 M
sodium phosphate buffer, 20 𝜇L of 1 U/mL 𝛼-amylase, and
50 𝜇L extract at concentration within 0.078-5 mg/mL were
mixed in the well and incubated for 15 min at 37∘C. After
that, a 50 𝜇L of 0.5% soluble starch was then added to the
reaction mixture and incubated for 15 min at 37∘C. After
incubation, 20 𝜇L of 1 M hydrochloric acid was added to stop
the enzyme activity.Themixture was incubated in a hot water
bath for 5 min. Lastly, 50 𝜇L of iodine reagent was added
to the reaction mixture and the absorbances were taken at
620 nm wavelength. Acarbose and distilled water were used
as positive and negative controls. The activity was calculated
using (1) and (2) as follows:

Relative 𝛼-amylase enzyme activity (%)
= ( enzyme activity of sample

enzyme activity of negative control
) × 100% (1)

𝛼-amylase enzyme inhibition (%)
= 100% − Relative 𝛼-amylase enzyme activity (%) (2)

The IC
50
values were determined by the calibration curve of

𝛼-amylase inhibition against the concentration of extracts.

2.4.2. 𝛼-Glucosidase Inhibition. 𝛼-Glucosidase inhibition
assay was performed according to Collins et al. [18],
Deautschländer et al. [19], and Sajak et al. [20] with slight
modification. The reaction mixtures consisting 10 𝜇L of the
test sample (0.078-5 mg/mL), 130 𝜇L of 30 mM of phosphate
buffer solution (pH 6.5), and 10 𝜇L of 𝛼-glucosidase working
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solution were incubated at 37∘C for 30 min. After incubation,
50 𝜇L of p-nitrophenyl-𝛼-d-glucopyranoside (50 mM phos-
phate buffer, pH 6.5) was added into thewell, and the reaction
mixtures were incubated for another 30 min at 37∘C. Lastly,
50 𝜇L of glycine (2 M, pH 10) was added to the mixtures for
termination of the reaction. The 405 nm of wavelength was
used for reading of results. The calculation of 𝛼-glucosidase
inhibition activity of the test samples using (3) is as
follows:

% Inhibition = (�Ac − �Ae
�Ac
) × 100% (3)

whereas ΔAc is the absorbance difference between nega-
tive control and blank negative control while ΔAe is the
absorbance difference between the test sample and blank
test sample. Acarbose and DMSO were used as positive and
negative control.

2.5. GC-MS Analysis. The profiling of nontargeted metabo-
lites was performed using GC-MS QP2010 Plus SHIMADZU
[13]. At a temperature of 230∘C and using the split injection
mode (ratio of 3:1), 1 𝜇L of the sample was loaded into the
sample inlet unit (GC) coupled with a mass spectrometer
detector. A ZB-5MS column with an inner diameter (ID) of
30 m × 0.25 mm and a film thickness of 0.25 𝜇m was used
for this analysis.The initial column oven temperature was set
to 40∘C for 3 min and then increased to a target temperature
of 325∘C in 10 min at a rate of 10∘C/min. The mass spectra
were acquired over a mass scan range of 35 to 700 m/z.
The spectra and retention times generated were compared
with those of known chemical compounds libraried in the
NIST08 database library. Perfluorotributylamine, an internal
standard, was used in this analysis. The solution of the
internal standard was injected into and analyzed by the GC-
MS.

2.6. Data Processing and Statistical Analysis. All results
are expressed as mean± standard deviation and differences
between means were statistically analyzed using the t-test for
comparison between two treatments. p< 0.05 was considered
significant. Prior to multivariate data analysis, XCMS is a
package developed in R programming and made available
by Bioconductor Project for the treatment of MS data.
In this analysis, the version 3.3.2 of XCMS package in R
was used for data processing. The raw GC-MS data was
converted into computable document format (.cdf) prior to
the XCMS analysis. The GC-MS data were binned into com-
ponents from 39.049-415.3506 m/z in 218.5-1287.75-second
run time. The results were organized into tabular dataset
format with retention times (rows) against peak intensities
(columns).The characteristic mass to charge (m/z) ratios and
retention times of compounds resulting from the GC-MS
analysis were compared with those of standards stored in the
NIST08 spectral database. Based on themass spectral pattern
comparison, the molecular weight, names, and structures
of all the compounds were determined. Once after XCMS
processing, the data was loaded to SIMCA 14.1 software
(version 14.1, Umetrics, Umeå, Västerbotten, Sweden) using

Principal Component Analysis (PCA), Partial Least Square
(PLS), and Orthogonal Partial Least Square (OPLS) via the
method of UV scaling. The fitness and validation of the
model were done through the permutation and ANOVA
tests. Finally, the score scatters and loading plots were
produced.

2.7. In Silico Molecular Docking. The 𝛼-amylase and 𝛼-
glucosidase were analyzed and downloaded from Protein
databank with PDB ID 4W93 and 3WY1, respectively. The
AutoDock 4.2 was used for in silico molecular docking of
protein-ligand interactions [21]. The removal of unwanted
chains, crystal water, and nonpolar hydrogen atoms and the
addition of hydrogen atoms in the receptor were carried out.
Then, the MGAM protein structure was removed from these
receptors, thus subjected to docking study. The molecular
structure of ligand was recouped from ChemDraw 16.0. The
Gasteiger charges and hydrogen atoms were added to the
ligand via AutoDock 4.2. Docking Grid Box was used for
calculating the grid maps and centred on the ligand or
compound coordinatewith 28 Å× 28 Å× 28 Å dimension and
a grid spacing of 1 Å [22]. The docking results were analyzed
using Discovery Studio Visualizer software.

3. Results and Discussion

3.1. Enzymatic Activity. The 𝛼-amylase and 𝛼-glucosidase
inhibition activity of P. foetida twigs extracts obtained from
different solvent extracts are displayed in Table 1 as half
maximal concentration values (IC

50
, 𝜇g/mL). A lower IC

50

value is favoured to higher enzymatic activity. The highest 𝛼-
amylase and 𝛼-glucosidase inhibition activity were observed
for chloroform extract with the IC

50
value of 600.287 ± 0.06

and 1349.01 ± 0.01 𝜇g/mL, respectively. The positive control,
acarbose, was used in the study.

3.2. GC-MS Metabolomic and Multivariate Data Analysis. A
total of 397 presumptive compoundswere detected usingGC-
MSmetabolomics. 12 of the 397 compounds were interpreted
as plant metabolites using retention times, area percentage,
and similarity index (Table 2).The bioactive compoundswere
identified through GC-MS metabolomics utilizing MVDA
whereby PCA, PLS, and OPLS model were developed. Auto-
mated fitting results in two principal components, principal
components 1 and 2.The certain retention time was extracted
based on the ratio of mass to charge (m/z) and the IC

50

(𝜇g/mL) values of each of the samples were considered as
x and y variables, respectively. PCA was applied to the data
to observe the possible presence of trends and groupings
which were previously not obvious by looking at the data.
PCA allowed us to detect outliers too [23]. The results of the
PCA showed outliers were not present among the samples
as all observations were situated within the normal range
of the Hoteling T2 ellipse (Figure 1). In this study, GC-MS
dataset was subjected to PCA to understand the clustering
characteristic of the hexane (PFH), chloroform (PFC), and
methanol (PFM) extracts and to determine the compounds
responsible for their discrimination. There is no distinct
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Table 1: The half maximal inhibitory concentration (IC
50
) of antidiabetic inhibition activity of P. foetida twigs extracts.

Samples 𝛼-amylase inhibition activity
IC
50
(𝜇g/mL)

𝛼-glucosidase inhibition activity
IC
50
(𝜇g/mL)

Hexane 4553.403 ± 0.04 9143.469 ± 0.03
Chloroform 600.287 ± 0.06 1349.01 ± 0.01
Methanol > 10 000 > 5 000
Acarbose 10.57 ± 0.01 0.056 ± 0.01
Data expressed as mean ± standard deviation (n = 5). Means that do not share a letter are significantly different with p value < 0.05.
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Figure 1: PCA score plot of plant extracts based on GC-MS spectra. PFH, PFC, and PFM are hexane, chloroform, and methanol extracts,
respectively.
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Figure 2: PLS score plot of plant extracts based on GC-MS spectra. PFH, PFC, and PFM are hexane, chloroform, and methanol extracts,
respectively.

discrimination of PFH with PFC. However, PFM could be
clearly distinguished from other groups of extracts. The
resulted model showed good fitness and high predictability
with R2X = 0.952 and Q2 = 0.802, respectively.

To understand the relationship between studied bioactiv-
ities and the plant extracts, PLS as a supervised multivariate
datawas applied. PLS provides a correlation betweenmetabo-
lites and bioactivities. Thus metabolites that were playing
roles as phytochemical markers may be suggested.Themodel
diagnostic of the PLS model developed can be evaluated
using several parameters such as goodness of fit, a test of

permutation, and the capability of the model to predict the
value using actual to predicted plot [18]. The cumulative
values of R2Y explain the goodness of fit is indicating the
percentage of variation of the response explained by the
model, and the cumulative value of Q2Y is representing the
percentage of the variation of the response predicted by the
model according to cross-validation [13].The fitness ofmodel
and predictive ability is considered good if the cumulative
values of both R2Y and Q2Y are greater than 0.5 [24].

Based on Figure 2, the distinct discrimination among
the three extracts is clearly showed which correlated to the
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Figure 3: (a) The permutation test for the two components of the PLS model with R2Y = 0.439 and Q2Y = -0.0958 for 𝛼-amylase. (b) The
permutation test for the two components of the PLS model with R2Y = 0.477 and Q2Y = -0.038 for 𝛼-glucosidase.
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Figure 4: OPLS score plot of plant extracts based on GC-MS spectra. PFH, PFC, and PFM are hexane, chloroform, and methanol extracts,
respectively.

bioactivities. The resulted model also showed good fitness
and prediction value with R2Y = 0.778 and Q2 = 0.647,
respectively, demonstrating that this PLS model is good.
The PLS model was further validated using internal cross-
validation by means of R2Y and Q2 cumulative and permu-
tation tests with 100 permutations. Permutation plots of the
PLS model are shown in Figure 3. The 𝛼-amylase-intercepts
and 𝛼-glucosidase-intercepts of R2 were 0.439 and 0.477,
respectively. The PLS model had a significant difference (p <
0.05) in correlation with 𝛼-amylase 𝛼-glucosidase inhibition
with the p-values of 0.01 and 0.03. Therefore, the PLS model
met the criteria for a good performance model. Figure 2
showed the score scatter plot of the PLS model with good
separation of the samples based on the chemical profile and
bioactivity of the plant extracts.

Besides, OPLS is another supervised multivariate data
technique used to derive a correlation between the extracts
and bioactivities. Based on Figure 4, there was distinct
discrimination of the three extracts correlated to bioactivities

among each other. The model also showed good fitness
and prediction value with R2Y = 0.778 and Q2 = 0.628,
respectively, demonstrating that this OPLS is a good model.
The OPLS model was further validated using internal cross-
validation by means of R2 and Q2 cumulative and permu-
tation tests with 100 permutations. Permutation plots of the
OPLSmodel are shown in Figure 5.The 𝛼-amylase-intercepts
and 𝛼-glucosidase-intercepts of R2 were 0.433 and 0.47,
respectively.TheOPLSmodel had a significant difference (p<
0.05) in correlation with 𝛼-amylase 𝛼-glucosidase inhibition
with the p-values of 0.02 and 0.04.Therefore, theOPLSmodel
meets the criteria of a good performance model. The active
PFC extract was observed at the negative OPLS component
1, while the less active plant extracts, PFH and PFM extracts,
were distributed at the positive OPLS component 1.

As evident in Figure 4, sample groupings were observed
from the OPLS score plot; PFC was distinguished from PFH
and PFM. From the score plot, PFC contributed significantly
to the variations along with principal component 1 (PC1),
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Figure 5: (a) The permutation test for the one component of the OPLS model with R2Y = 0.433 and Q2Y = -0.601 for 𝛼-amylase. (b) The
permutation test for the one component of the OPLS model with R2Y = 0.47 and Q2Y = -0.496 for 𝛼-glucosidase.
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Figure 6: OPLS loading scatters plot of active extract in the range -0.1 to -0.02. (a) All the peak numbers on GC-MS chromatogram. (b)
Selected peak numbers on GC-MS chromatogram.

as it is the only sample situated on the left quadrant. The
OPLS loading scatters plot (Figure 6) displays the relation-
ship between the x variables which are the GC-MS data
and the variables which are the activities. It is obvious
from the loading plot that the variables at the far left in
the top quadrant by PC1 are correlated to the observed
bioactivities.

To identify that the putative compounds may contribute
to the bioactivities, the Variable Importance of Projection
(VIP) plot from the OPLSmodel was surveyed, and potential
bioactive compounds were selected from the results of the
VIP analysis (Figure 7). Important x variables are those
with VIP values that are larger than the average VIP of 1.0
[25]. Therefore, the VIP plot was sorted to eliminate the
variables with values less than 1.0 and a list of important
variables were afterwards generated. These were further
sorted, and the identities of these important variables were
determined by tracing the retention times to those in the
total ion chromatogram (TIC). Each of the peaks indicates
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Figure 7: VIP plot of active extract of P. foetida twigs. Metabolites
identification (Var ID): (C29H50O: 1, 96, 379, 383); (C16H32O2:
14, 17, 64); (C16H34O: 21); (C29H52O: 26, 27, 135); (C19H38O: 95);
(C29H48O: 233, 247); (C21H44OSi: 372,392) and (C21H42O4: 384).

the identified metabolite from the P. foetida twigs active
extracts and the details of the compound have been tabulated
in Table 2. The 17 peaks are assumed to induce 𝛼-amylase
and 𝛼-glucosidase activity. These compounds were found
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Table 3: Molecular interaction results of 𝛼-amylase enzyme protein with the known inhibitor (acarbose) and the bioactive compounds
quantified using GC-MS.

Compounds Binding energy
(kcal/mol)

H-bond Interacting
Residues Other Interacting Residues

n-hexadecanoic acid -2.28 LYS178, TYR174 PRO140, TRP134, SER132,
ASP135, LYS172

cholest-8(14)-en-3-ol,
4,4-dimethyl-, (3𝛽,5𝛼)- -5.10 -

GLU171, ARG176, ASP173,
TYR131, ASP135, SER132,
LYS172, TRP134, TYR174

›-sitosterol -5.28 ASP173
ASP135, GLU171, SER132,
TYR131, LYS172, PRO130,

TRP134, TYR174

stigmast-7-en-3-ol,
(3𝛽,5𝛼,24S)- -4.98 -

ASP135, ASP173, SER132,
TYR131, LYS172, PRO134,

TRP134, TYR174

stigmasterol -5.35 -
ASP135, ASP173, GLU171,
PRO130, SER132, TYR131,
LYS172, TRP134, TYR174

acarbose +1.31 ASP135, LYS172,
ARG176

TRP134, SER132, TYR174,
ASP173, GLU171

abundant in the active chloroform extract. Further compar-
ison with NIST08 spectral database confirmed that the 17
peaks correspond to dl-𝛼-tocopherol, n-hexadecanoic acid,
2-hexyl-1-decanol, stigmastanol, 2-nonadecanone, cholest-
8(14)-en-3-ol, 4,4-dimethyl-, (3𝛽,5𝛼)-, stigmast-4-en-3-one,
stigmasterol, 1-ethyl-1-tetradecyloxy-1-silacyclohexane, ›-sito-
sterol, stigmast-7-en-3-ol, (3𝛽,5𝛼,24S)-, and 𝛼-monostearin
(Table 2). In accordance with the results shown in Table 2,
there are five bioactive compounds showing high abundance
in the active extract, n-hexadecanoic acid, cholest-8(14)-en-
3-ol, 4,4-dimethyl-, (3𝛽,5𝛼)-, ›-sitosterol, stigmast-7-en-3-ol,
(3𝛽,5𝛼,24S)-, and stigmasterol with the values of 29.48, 20.20,
20.20, 20.20, and 10.51%. Therefore, these five compounds
contributed more to the antidiabetic properties of Paederia
foetida compared to other compounds.

3.3. In-Silico Molecular Docking. Molecular docking was
carried out in order to understand the interaction between
protein and ligand [13]. Protein is commonly comprised of
amino acids linked in a sequence to form the complex, which
can be hydrophobic, polar, or electrically charged form. This
has been the key to the actual properties and behaviours of a
protein [26].Themain five bioactive compounds identified to
be actively responsible for the 𝛼-amylase and 𝛼-glucosidase
inhibition were docked to the 𝛼-amylase and 𝛼-glucosidase
crystal structure (PDB ID: 4W93 and 3WY1). The conforma-
tions showing the lowest binding energy for the compounds
with the interacting residues are summarized in Tables 3 and
4.

Molecular docking was run using AutoDock 4.2 with
Lamarckian Genetic Algorithm (Lamarckian GA), and some
of the evaluations were selected in the long category with
RMSD 2.0 Å. Based on the AutoDock 4.2 simulation result
of 𝛼-amylase shown in Table 3, 𝛼-amylase-acarbose inhibitor

complex showed +1.31 kcal/mol binding energy contain-
ing three hydrogen bonds with the interacting residues,
ASP135, LYS172, ARG176, and hydrophobic interactions with
TRP134, SER132, TYR174, ASP173, and GLU171. Meanwhile,
n-hexadecanoic acid exhibited -2.28 kcal/mol with the 𝛼-
amylase in the complex ligand. A total of two hydrogen
bonds were observed in the complex ligand, namely, LYS178
and TYR174, along with hydrophobic interactions involving
PRO140, TRP134, SER132, ASP135, and LYS172. ›-Sitosterol
showed -5.28 kcal/mol in the complex with only one hydro-
gen bond, ASP173, along with eight hydrophobic interac-
tions, ASP135, GLU171, SER132, TYR131, LYS172, PRO130,
TRP134, and TYR174. Despite no interaction with residue by
a hydrogen bond with its hydroxyl group, stigmasterol has
comparably shown better binding energy of -5.35 kcal/mol
than the positive control, acarbose.The hydrophobic contacts
appeared to be leading in 𝛼-amylase-stigmasterol complex
ligand due to its cyclic skeleton and alkyl groups that
preferable bind to ASP135, ASP173, GLU171, PRO130, SER132,
TYR131, LYS172, TRP134, and TYR174. Stigmasterol was
observed to be destined near to the active site which is
similar binding interactions to the acarbose (Figure 8). Its
binding is mainly assisted through hydrophobic contacts that
contribute to its binding energy thus reflecting its inhibition
activity. So, it might slow down the enzyme activity. The
stigmasterol’s predicted binding part could be a promising
region for inhibiting this protein activity overall through a
competitive mode [13]. Besides, cholest-8(14)-en-3-ol, 4,4-
dimethyl-, (3𝛽,5𝛼)-, and stigmast-7-en-3-ol, (3𝛽,5𝛼,24S)- also
showed no interaction with hydrogen bond residue with the
binding energy of -5.10 and -4.98 kcal/mol. In addition, due
to a lack of hydroxyl groups in the tested compounds, the
hydrophobic and𝜋-interactions apparently play an important
role for these compounds’ enzyme inhibition activity.
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Table 4: Molecular interaction results of 𝛼-glucosidase enzyme protein with the known inhibitor (acarbose) and the bioactive compounds
quantified using GC-MS.

Compounds Binding energy
(kcal/mol)

H-bond Interacting
Residues Other Interacting Residues

n-hexadecanoic acid -4.04 ARG437

ALA444, ASP141, GLN438,
GLU432, GLY374, LEU373,
LEU433, LYS352, PRO347,
THR445, HIS348, PRO351

cholest-8(14)-en-3-ol,
4,4-dimethyl-,
(3𝛽,5𝛼)-

+868.43 -

GLN369, GLU371, GLY370,
TYR368, ARG450, LEU45,
LEU367, LEU373, LEU446,

MET407, PRO408,
TRP409, TYR14, TYR41,
VAL435, VAL449, PHE21

›-sitosterol +10.38 PRO347

ALA338, GLN438,
GLU432, LEU375, LYS352,
PRO351, PRO376, ALA444,
ARG437, HIS348, LEU433

stigmast-7-en-3-ol,
(3𝛽,5𝛼,24S)- +32.55 ARG437

ASN443, ASP441, GLN438,
GLU432, GLY374, LEU373,

LEU375, THR445,
ALA444, LEU433, PRO347,
PRO351, PRO376, HIS348

stigmasterol +74.44 ASP441

ALA349, ASN443,
GLN438, GLU432, PRO347,

THR445, ALA444,
ARG437, HIS348, LEU373,
LEU375, LEU433, LYS352,

PRO351, PRO376

acarbose +2547.97

ALA444, GLN438,
GLU372, GLY374,
HIS348, LEU446,

LYS352

ALA434, ASN447,
GLN439, GLU371, GLU432,
THR448, VAL435, LEU355,

PRO351, VAL449

The binding interactions of 𝛼-glucosidase-n-hexade-
canoic acid complex ligand showed the lowest binding energy
among the other 5 compounds with -4.04 kcal/mol (Table 4).
Based on Figure 9, the complex consists of one hydrogen
bond interacting residue, ARG437, and hydrophobic inter-
actions with ALA444, ASP141, GLN438, GLU432, GLY374,
LEU373, LEU433, LYS352, PRO347, THR445, HIS348, and
PRO351. Stigmast-7-en-3-ol, (3𝛽,5𝛼,24S)- in complex ligand
contained the same hydrogen bond interacting residue to n-
hexadecanoic acid complex ligand with binding energy of
+32.55 kcal/mol and along with hydrophobic interactions
of ASN443, ASP441, GLN438, GLU432, GLY374, LEU373,
LEU375, THR445, ALA444, LEU433, PRO347, PRO351,
PRO376, and HIS348. At the same time, the binding energy
of acarbose in the complex ligand with 𝛼-glucosidase was
+2547.97 kcal/mol. A total of seven hydrogen bonds were
observed in the complex ligand involving ALA444, GLN438,
GLU372, GLY374, HIS348, LEU446, and LYS352 along
with hydrophobic interactions involving ALA434, ASN447,
GLN439, GLU371, GLU432, THR448, VAL435, LEU355,
PRO351, and VAL449. Besides, 𝛼-glucosidase-›-sitosterol
complex ligand showed a binding affinity value of +10.38
kcal/mol. The PRO347 residue was observed to interact with

›-sitosterol via a hydrogen bond, while ALA338, GLN438,
GLU432, LEU375, LYS352, PRO351, PRO376, ALA444,
ARG437, HIS348, and LEU433 were interacting hydrophobi-
cally.Then hexadecanoic acid has shown comparable binding
energy compared to acarbose and other compounds. It is due
to the absence of unfavourable interactions (red colour) in the
complex ligand. The unfavourable interaction was strongly
influencing the molecular binding energy, thus causing the
ligands and receptors to be not so stable. The unfavourable
interactions between atom pairs were determined as close
contacts relative to the van derWaals distance between atoms.
A steric bump happens when the atom-atom distance is less
than or equal to a threshold expressed as a fraction of the
sum of the atoms' van der Waals radii. So, acarbose contains
many unfavourable steric interactions which make the com-
plex ligand to be more unstable and require larger binding
energy.

4. Conclusion

The metabolomics statistical analysis data showed that the
experimental result is a good model in PLS and OPLS
with the acceptable R2 and Q2 values. Stigmasterol and
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Figure 8: The 2D diagram showing the interaction between the protein residues of 𝛼-amylase and the inhibitors. (a) n-hexadecanoic acid,
(b) cholest-8(14)-en-3-ol, 4,4-dimethyl-, (3𝛽,5𝛼)-, (c) ›-sitosterol, (d) stigmast-7-en-3-ol, (3𝛽,5𝛼,24S)-, (e) stigmasterol, (f) acarbose.

n-hexadecanoic acid are suggested to be the enzyme
inhibitors metabolites in the twigs of Paederia foetida as
𝛼-amylase-stigmasterol, and 𝛼-glucosidase-n-hexadecanoic
acid complexes showed low binding energy of -5.35 and -4.04
kcal/mol. The molecular docking study helps to understand

and visualize the virtual scenario of the binding interaction
of the plant metabolites with the selected enzymes at the
molecular level. Further, the in-vitro enzymatic assays of the
5major compounds in the plant extract should be carried out
to validate the in-silico results.
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Figure 9:The 2D diagram showing the interaction between the protein residues of 𝛼-glucosidase and the inhibitors. (a) n-hexadecanoic acid,
(b) cholest-8(14)-en-3-ol, 4,4-dimethyl-, (3𝛽,5𝛼)-, (c) ›-sitosterol, (d) stigmast-7-en-3-ol, (3𝛽,5𝛼,24S)-, (e) stigmasterol, (f) acarbose.
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