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A B S T R A C T

Background and purpose: In proton therapy, inter-fractional density changes can severely compromise the ef-
fective delivery of the planned dose. Such dose distortion effects can be accounted for by treatment plan
adaptation, that requires considerable automation for widespread implementation in clinics. In this study, the
clinical benefit of an automatic online adaptive strategy called dose restoration (DR) was investigated. Our
objective was to assess to what extent DR could replace the need for a comprehensive offline adaptive strategy.
Materials and methods: The fully automatic and robust DR workflow was evaluated in a cohort of 14 lung IMPT
patients that had a planning-CT and two repeated 4D-CTs (rCT1,rCT2). Initial plans were generated using 4D-
robust optimization (including breathing-motion, setup and range errors). DR relied on isodose contours gen-
erated from the initial dose and associated patient specific weighted objectives to mimic this initial dose in
repeated-CTs. These isodose contours, with their corresponding objectives, were used during re-optimization to
compensate proton range distortions disregarding re-contouring. Robustness evaluations were performed for the
initial, not-adapted and restored (adapted) plans.
Results: The resulting DVH-bands showed overall improvement in DVH metrics and robustness levels for re-
stored plans, with respect to not-adapted plans. According to CTV coverage criteria (D95% > 95%Dprescription)
in not-adapted plans, 35% (5/14) of the cases needed offline adaptation. After DR, Median(D95%) was increased
by 1.1 [IQR,0.4] Gy and only one patient out of 14 (7%) still needed offline adaptation because of important
anatomical changes.
Conclusions: DR has the potential to improve CTV coverage and reduce offline adaptation rate.

1. Introduction

The sharp distal dose fall-off of the proton beams makes proton
therapy (PT) an attractive alternative to conventional X-ray radio-
therapy (XT). In particular, lung cancer patients may benefit from PT,
as critical organs at risk (OAR) like the heart and oesophagus may
surround the target. Studies showed that, compared to XT, intensity-
modulated proton therapy (IMPT) has potential to improve OAR
sparing whilst maintaining, or even increasing the prescribed dose to
the target. [1–5] and thus lead to better clinical outcomes i.e. less
toxicity and higher survival rates [6–10].

The sharp dose gradients produced by IMPT yields dose distribu-
tions with increased sensitivity to treatment uncertainties such as pa-
tient setup, inter- and intra-fractional anatomical variations [11,12].
This issue should not be addressed as typically done in XT, i.e.

expansion of the clinical target volume (CTV) with safety margins
leading to the planning target volume (PTV). The main reason is the
invalidity in PT of the static dose cloud approximation underlying the
PTV margin recipes. Therefore, more complex treatment planning
procedures have been introduced such as robust optimization (RO)
[13–17], where uncertainties are simulated during plan optimization.
The interplay between respiratory and scanning motions must also be
addressed cautiously, for instance using rescanning [18,19].

Unfortunately, RO has several limitations. It is a computationally-
intensive procedure, based on uncertainty parameters that are not pa-
tient specific (setup and range errors), which typically excludes im-
portant types of errors like day-to-day anatomical variations. However,
those anatomical variations may have a critical impact, since about
30% of IMPT lung patients require adaptive planning even though they
were initially planned using RO [5,20]. Furthermore, some studies
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report that adaptation is highly recommended [17] or even mandatory
[21] for advanced lung cancer treated with IMPT, since it ensures target
coverage and improves treatment accuracy from a dosimetric point-of-
view.

The degradation of plan quality observed in PT is caused by 1) dose
distortions due to density changes along the beam path (PT specific)
and 2) relative movement between anatomical structures. In order to
handle both issues, a full adaptative workflow is necessary. However,
its implementation requires considerable automation for a practical
usage in clinical practice, typically characterized by tight clinical
workflows. Automation is not straightforward, as it requires the gen-
eration of reliable new contours and a new plan, together with their
associated verification and approval. The lack of automation is one of
the key reasons preventing the deployment of online adaptive on a wide
scale [22,23].

As an alternative, dose distortions caused by density changes could
be compensated by restoring the clinically approved planned dose. This
approach, called ‘dose restoration’ (DR), was first introduced for online
adaptation of prostate cancer [24], and later tested for head-and-neck
and one lung tumors [25]. DR aims at reproducing the planned dose
using density information from the new (repeated) CT, by generating a
new (restored) plan with updated proton beam energies and spot
weights, thereby removing the need for contour deformations. In such
approach, automation was facilitated. Differences in dose distributions
can indeed be quantified without qualitative evaluation by an expert,
which is not the case for auto-segmentation. However, the clinical value
and robustness of DR in lung remains to be assessed on a larger patient
cohort. In this study, we evaluated the clinical value of the restoration
workflow for 14 lung IMPT patients. Limitations with respect to a full
adaptive workflow, where changes in relative positions and shapes of
anatomical structures are considered, were also addressed.

2. Methods and materials

2.1. Patients

Fourteen lung cancer patients treated with photons were re-planned
retrospectively using IMPT. A 4D-planning-CT and two repeated 4D-CTs
(rCT1, rCT2) acquired systematically after 2 and 4 weeks of

radiotherapy were available for each patient. For patient 9, rCT2 was
missing. Patients were representative of a patient population with dif-
ferent tumor sizes (79–433 cm3) and motion amplitudes
(1.1–11.1 mm), more characteristics can be found in the supplementary
material Table S1. A joint ethical committee of Cliniques Universitaires
St. Luc and UCLouvain approved the collection of the retrospective data
used in this study.

2.2. Treatment planning strategy

Following the European Oganization for Research and Treatment of
Cancer (EORTC) protocol [26], a 5 mm expansion was applied to the
GTV (Gross Tumor Volume) to create the CTV, and corrected to account
for anatomical boundaries. The treatment planning system (TPS)
RayStation 8A (RaySearch) was used to perform 4D worst-case robust
optimization against breathing motion, setup and range errors. Robust
parameters of 5 mm and 3% for setup and range errors, respectively,
were used and extracted from literature [13,27,28]. Motion was mod-
elled by using 3 images: the mid-position-CT (MidP-CT), used as plan-
ning CT, together with the end-inhale and end-exhale breathing phases
[29]. This combination of motion, setup and range errors led to 63
optimization scenarios : 7 (setup: ± 5mm in x,y,z directions plus
nominal scenario) × 3 (density: ± 3%,0%) × 3 (three breathing-pha-
ses).The treatment plans were optimized using pencil beam dose engine
(v4.2) and setting robust maximum and minimum objectives on the
CTV. TPS calculations/optimizations were run on 2 Intel(R) Xeon(R)
CPU-E5-2643-v3 3.40 GHz processors with 64 GB of RAM. A relative
biological effectiveness (RBE) of 1.1 was assumed. The prescribed dose
(Dp) to the CTV was 66 Gy (33x2 Gy).

2.3. Simplified adaptive workflow

Fig. 1 illustrates the proposed adaptive workflow, including the
online adaptive branch with automatic dose restoration that did not
require re-contouring on rCTs. The dose restoration approach used here
was the “isodose volume dose restoration”, introduced by Bernatowicz
et al.[25]. For preparing the dose restoration, an additional step was
performed during the planning stage compared to a regular planning
procedure (see Section 2.4). Online dose restoration must be automatic,

Fig. 1. Example of the proposed adaptive workflow, which combines offline and online-adaptive strategies including dose restoration to perform optimal IMPT
proton treatment. Three different stages are presented in this workflow: planning, adaptation and delivery day. If online adaptation strategy is chosen, the adaptation
stage is performed on the delivery day. (*): IBO-plan is the key that automatizes dose restoration re-optimization.
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fast (patient is lying on the couch) and accurate (generates high quality
plans that minimize the physician approval step). It is important to
remember that dose restoration only addressed distortions due to
density changes. DR can account for tumor shrinkage for example,
while for large tissue deformations and geometrical reorganization of
the anatomy, an offline adaptation is necessary.

2.4. Planning stage: Isodose based optimized plan

First, a set of isodose volumes was constructed from the initial dose
distribution obtained using the method described in section 2.2. Isodose
volumes were created every 2 Gy within 95%–107% of the prescription
dose and 5 Gy outside. Subsequently, an isodose-based optimization
(IBO) was performed using a pair of minimum and maximum objectives
for each isodose volume. Finally, the objective weights were manually
adjusted in order to match IBO and initial plan DVHs. The objectives at
isodoses corresponding to dose prescription were set as robust, using
the initial robustness parameters (5 mm/3%/3phases). The resulting
weighted objectives were saved in a patient-specific template, which
served later to optimize the restored plan. Hence, each patient had two
plans at the planning stage: the initial and the IBO plan. We assumed
the IBO dose as the approved and delivered reference dose since the IBO
and initial dose distributions were equivalent i.e. they both met clinical
goals and presented overlapping DVHs.

2.5. Treatment day: Registration, ROI mapping and re-optimization

Bony-anatomy based rigid registration was performed between
planning MidP-CTs and repeated MidP-CTs for patient positioning.
Bony matching has been historically used in PT clinical routine to re-
produce the relative position of bones with respect to protons [30,31].
Using the registration matrix, contours (isodoses, OARs and target)
were mapped from the planning MidP-CT to the repeated MidP-CTs.
Afterwards, the previously calculated IBO template was used to re-op-
timize the plan.

2.6. Evaluation metrics

The impact of density changes was analysed by evaluating the
treatment plans on two repeated 4D-CTs (rCT1, rCT2). The reference
plans (IBO-plans), were recalculated on repeated-CTs. Not adapted dose
distributions were compared to restored doses using dose-volume
parameters such as D95%(CTV) (dose received by 95% of the target
volume), and the homogeneity index HI (=(D95%-D5%)/D50%).
Clinical limit for target coverage was defined at 95% of the prescribed
dose, i.e. D95%(CTV) > 95%Dp (66 Gy) = 62.7 Gy.

For robustness evaluation, the reference (IBO), restored and not
adapted plans were re-computed in the same 63 scenarios used for
optimization (5 mm/3%/3phases) using RayStation dose perturbation
tool. The DVHs from the 63 simulated uncertainty scenarios were
grouped into DVH-bands. The bandwidth served to measure the ro-
bustness level. Propagation of the robustness level through dose re-
storation was analysed. For each DVH-metric (D95%(CTV),
D2%(SpinalCord) or mean dose in OARs) nominal and worst-case sce-
narios values were reported. Differences respect to the reference dose
were compared for not adapted and restored plans.

Dose-volume parameters and robustness were evaluated in the ri-
gidly mapped contours (RS_map) and in the contours (OARs and tar-
gets) recontoured by an experienced radiation oncologist. This last set
will from this point onward be denoted as ‘real’ structures (RS_real).
Evaluations were performed for the two repeated-CTs (rCT1,rCT2).

DICE similarity coefficient was calculated between CTV_map and
CTV_real to quantify the accuracy of the rigid registration between
planning and repeated-CTs (Supplementary material Table.S2). This
statistical tool which measures the similarity between two data sets X,Y
(2|X Y|/(|X|+|Y|)) is often used to evaluate the accuracy of

segmentation methods.
To ensure a reliable and accurate dose mimicking, we also analysed

local differences respect to the reference (IBO) dose in four different
dose level regions (prescribed, high, medium and low dose) following
Bernatowicz et al.(2018)[25]. Subtractions between the evaluated (not
adapted/adapted) and reference doses were performed. Absolute dose
difference at 2% of the volume was reported for each region (for in-
stance DE(vol = 2%) = 5 Gy means that only 2% of the volume may
have a dose difference superior to 5 Gy). This metric characterized the
near maximum absolute dose error.

Analysis were performed using boxplots calculated with values of
the 14 patients. Medians [interquartile range(IQR)] from not adapted
versus restored doses in rCT1 and rCT2 were reported and compared
using Wilcoxon signed-rank test (paired difference test), in order to
assess the statistical significance. Differences between not adapted and
restored metrics where considered statistically significant for a p-
value < 0.05.

3. Results

3.1. Target coverage and homogeneity index

Fig. 2 presents D95%(CTV) and homogeneity index (HI) values
evaluated in the nominal scenario, which represents the scenario
without added uncertainty. Even in this case, 35% (5/14) in rCT1 and
23% (3/13) in rCT2 of patients would have benefit from adaptation to
ensure clinical acceptable target coverage.

As observed in Fig. 2, reference plans were significantly distorted
without adaptation, leading to CTV underdosage and higher HI in both
repeated-CTs. Both metrics were improved after restoration, showing
that DR can deal with over/under-dosages.

Without adaptation, in RS_map, Median(D95%(CTV)) was reduced
from 65.2[0.5] Gy to 63.7[1.39] Gy (rCT1) and to 64.2[1.28] Gy
(rCT2). For the RS_real, Median(D95%(CTV)) fell to 63.6[3.4] Gy
(rCT1) and 63.6 [1.4] Gy (rCT2). After restoration, target coverage was
also re-established increasing Median(D95%(CTV)) to 65.1[0.4] Gy
(rCT1) and to 65.0[0.5] Gy (rCT2) in RS_map and to 64.5 [2.0] Gy
(rCT1) and to 64.7[1.3] Gy in RS_real. In all restored cases (RS_map and
RS_real), D95%(CTV) values were maintained within clinical limits,
except for RS_real in patient 6. In this case, the rigid registration failed
due to substantial differences in the anatomy. As a result, the RS_real
did not match RS_map (DICE coefficient 0.36 (rCT1) and 0.32 (rCT2)),
and the initial dose was reproduced in the wrong location. Only in this
case, offline adaptation was absolutely needed to ensure CTV coverage.

3.2. Robustness evaluation

Fig. 3 shows the deviations from the reference dose for not adapted
and restored plans in nominal and wort-case scenarios for D95% (CTV),
D2% (SpinalCord) and MeanDose (Lung/Heart/Esophagus). After
adaptation, median values were closer to zero, indicating that the re-
production of the initial dose was improved. Some OARs (e.g. spinal
cord) even got lower doses. Adapted plans also showed improved re-
sults in worst-case DVH-metrics.

Larger variabilities were observed in RS_real (Fig. 3.c and d) com-
pared to RS_map (Fig. 3.a and b). However, in both contour sets, all
restorations improved target coverage and recovered OARs metrics to
original values. The number of outliers increased in RS_real, with most
outliers corresponding to patient 6, who had significant CTV under-
dosage and heart overdosage.

Outliers representing an overdosage in the esophagus on rCT2
(Fig. 3.d) were associated to the entrance of the esophagus into a high
dose region, caused by tumor shrinkage. Underdosage in the CTV and
overdosage in D2(PRV SC)-worst-case in rCT2 (Fig. 3.d) correspond to
patient 8. In this case, the robustness level was not achieved in rCT2,
being translated into a wider CTV DVH-band. This is probably due to
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contour miss-alignment characterized with a DICE coefficient of 0.67.
There was no significant dose difference for lung, heart and eso-

phagus between not adapted and restored plans (p > 0.05) However
statistical significance (p < 0.05) was observed in target coverage and
maximum dose (D2%) in the spinal cord, for nominal and worst-case
values (see Table.1).

Fig. 4 shows an example (Patient 9) of CTV underdosage close to
clinical limit, causing the robustness test to fail. After DR, target cov-
erage was improved and robustness level was recovered close to initial
values.

3.3. Local dose differences

Fig. 5 presents near maximum dose errors (DEvol = 2%) in four
different regions: prescription (> 95%Dp), high (65–95%Dp), medium
(35–65%Dp) and low (< 35%Dp) dose levels. Dose restoration could
reproduce the dose with high accuracy and precision in the whole pa-
tient volume, with Median(DEvol = 2%) < 4 Gy in all dose level
volumes. Dose differences between not adapted and restored doses were
statistically significant (p < 0.05) in all regions for both rCTs.

Median(DEvol = 2%) of the entire dose region was decreased from
9.2[5.2] Gy (rCT1) and 8.2[4.7] Gy (rCT2) in the not adapted plans to
3.1[2.3] Gy (rCT1) and 2.9[1.7] Gy (rCT2) in the restored plans.
Additionally, dose restoration precision, represented by the IQR, was
decreased by a factor two respect to not adapted plans.

4. Discussion

In this study, the clinical value of the DR tool for lung IMPT ac-
counting for inter-fractional density changes, in order to reduce the
need of offline adaptation was evaluated. We observed that introducing
DR reduced offline adaptation rate from 36%(5/14) to 7%(1/14).

Fast and accurate DR will be sufficient for the majority of the
clinical cases. However, issues such as (1) changes in the relative

positions of anatomic structures or (2) poor quality registrations may
cause an imperfect overlap between rigidly mapped and real contours.
In such cases, the positive effects of DR will be less noticeable despite a
successful reproduction of the initial dose, since it will be reconstructed
in the wrong location. The first issue is not unique to PT, it could be
solved as in XT, using a more comprehensive offline adaptation in-
cluding re-contouring. For online adaptation, extensive quality assur-
ance (QA) of tools as auto-contouring [32,33] or automated planning
techniques [34,35] would be needed. A possible solution for (2) could
be other registration strategies such as soft-tissue or carina-based po-
sitioning [36]. Bony registration could be preferred in current practice
for ensuring correct alignment of the bones with respect to proton paths
and avoid dose distortions. However, soft tissue or carina based posi-
tioning could be implemented safely due to inherent corrections
brought by restoration.

Based on local dose differences analysis, regions of prescribed dose
consistently showed better performance with the lowest Median
(DEvol = 2%) = 1.7 Gy in restored plans. These results, together with
the Median(DE(2%vol)) < 4 Gy for entire dose region, were consistent
with Median(DE(2%vol)) < 5 Gy obtained by Bernatowicz et al. [25].

Uncertainty sources such as motion, setup and range errors were
included in the dose restoration robust re-optimization. Dose restora-
tion could improve nominal and worst-case DVH-metrics in RS_map as
well as in RS_real respect to no adaptation. Lower differences in worst-
case values from the DVH-bands of restored plans indicated that
adapted plans were more robust than not adapted plans.

Interplay effect was not addressed in this study since it is not a
problem specific to dose restoration but to IMPT for mobile-targets in
general. Issues associated to interplay have been studied and well
known solutions such as re-scanning have been proposed in the litera-
ture to compensate this effect [28,37,38,39].

As investigated in Van Der Voort et al. [16] for oropharyngeal
cancer, the magnitude of range and setup robustness parameters can be
approximated as a function of systematic and random uncertainties.

Fig. 2. D95%(CTV) (dose received at 95% of the CTV volume) and homogeneity index values from nominal scenario are represented using boxplots. The nominal
scenario stand for doses without any simulated uncertainty, which means without robust assessment. Each boxplot contains the 14 patient’s information for a certain
plan (not adapted/restored) evaluated on different images: planning CT and two repeated-CTs. Blue and orange boxes correspond to RS_map contours (rigidly
mapped) and RS_real contours respectively.The clinical limit is achieved if dose received at D95%(CTV) is higher than 95%(Dp(66 Gy)) = 62.7 Gy . Abbreviations:
Dp = Prescribed dose, HI = Homogeneity index, pCT = planning CT , rCT1 = first repeated CT , rCT2 = second repeated CT. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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Hence, by increasing the initial plan robustness, less adaptation should
be required. The implementation of an online adaptive workflow with
dose restoration opens the possibility to reduce margins and/or de-
crease robustness parameters, compared to non-adaptive workflows.
However, the relationship between the robustness parameters and the
adaptation rate must be studied carefully on a suitable patient cohort.

Using dose restoration, the initial plan was adapted to the new

patient density. The original plan was preserved (beam arrangement,
target volumes) whilst re-optimization allows for modifications in
proton energies and spot weights in order to reproduce the original
dose. Keeping the reference dose distribution unchanged is the key to
minimize the physician’s approval step in a fully online adaptive
workflow. However, despite restoring the approved planned dose, on-
line adaptation requires modification of the pretreatment patient-spe-
cific QA procedure. For instance, a previous QA could be performed
using a fast-independent dose calculation, followed by a more extensive
analysis using machine log files after delivery [40,41,42]. Both proce-
dures (pre/post treatment) could identify patients that require of-
fline adaptation because of anatomical changes that DR cannot account
for.

Clinical implementation of DR, will mostly impact the workload at
the planning stage since the IBO plan needs to be optimized. Pencil
Beam dose engine was used to speed up the workflow since Monte Carlo
optimization was not needed to prove the suitability of the method,
which focused more on the clinical feasibility of automating the process
than on speed. DR workflow was able to generate plans of acceptable
quality (accounting for density changes), in around 30 min [28 min 20 s
– 31 min 21 s]. Since re-optimization is the most time demanding step,
advanced optimization techniques, as scenario selection [43] and added
computational power can make the time scale compatible with typical
online treatment settings.

By routinely acquiring high quality patient volumetric images (e.g.
in-room CT on rails), systematic setup errors can be mostly mitigated,

Fig. 3. Differences respect to the reference dose in nominal and worst-case metrics reported from DVH-bands were represented using boxplots. The median calculated
among fourteen patients is shown by the horizontal line within boxes. Results were evaluated for both repeated-CTs(rCT1,rCT2) in two contours sets : mapped
contours (RS_map) a),b) and real contours (RS_real) c),d). Abbreviations: nom = nominal, wc = worst case, MD = mean dose, D2 = D2% dose received at 2% of the
volume; PRV SC = Spinal Cord.

Table 1
Summary of Wilcoxon's signed rank test p-values in the two contours sets :
mapped contours (RS_maps) and real contours (RS_real) for both repeated-CTs
(rCT1, rCT2). Abbreviations : nom= nominal, wc = worst case, D95(CTV) = dose
received at 95% of the CTV, MD = mean dose, D2(SpinalCord) = dose received at
2% of the volume of the spinal cord.

Mapped contours (RS_map) Real contours (RS_real)

p (rCT1) p (rCT2) p (rCT1) p (rCT2)

D95(CTV)-nom 0.0001 0.0010 0.0002 0.0005
D95(CTV)-wc 0.0005 0.0024 0.0295 0.0029
MD(Lung-GTV)-nom 0.6533 0.9063 0.8325 0.6914
MD(Lung-GTV)-wc 0.9679 0.6328 0.9883 0.8926
D2(SpinalCord)-nom 0.0166 0.0134 0.0580 0.0269
D2(SpinalCord)-wc 0.1465 0.2163 0.0906 0.2930
MD(Heart)-nom 0.1328 0.0811 0.2251 0.3955
MD(Heart)-wc 0.1851 0.1230 0.2578 0.2490
MD(Esophagus)-nom 0.9863 0.6563 0.7494 0.7764
MD(Esophagus)-wc 0.9604 0.3696 0.8394 0.5049
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Fig. 4. Patient 9. DVH-bands resulting from the robustness tests are presented together with their corresponding nominal dose distributions. The continuous line
represents the nominal scenario while the band collects the information from the evaluated uncertainty scenarios. The dashed lines represent the clinical limits
(D95% > 95%Dprescribed). The pair of results (dose distribution/DVH-bands) are shown for the initial IBO plan (in the planning CT), the not adapted and the
restored plans (in the first repeated-CT). Abbreviations: pCT = planning-CT, rCT1 = first repeated-CT, rCT2 = second repeated-CT; CTV(T + LN) = CTV(tumor and
nodes); PRV SC = Spinal Cord; Dp = Prescribed dose. (PRINTED IN COLOUR).

Fig. 5. Absolute dose error respect to the reference dose in small volumes DE(vol = 2%) represented in boxplots for 4 different regions corresponding to prescription,
high, medium and low dose levels. Abbreviations: rCT1 = first repeated-CT, rCT2 = second repeated-CT.
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allowing DR to deal primarily with the range errors. However, on-board
CBCT could also be considered, but this requires advanced image
quantification features in order to use CBCT information for dose
computation [44,45,46].

Dose differences between not adapted and restored plans were
statistically significant (p < 0.05) in all dose regions, the target vo-
lume and the spinal cord. No statistical signification was found for
heart, lung and esophagus. However, this is not surprising since dose
deviations between not adapted and planned dose distributions were in
general small in organs-at-risk. In addition, it must be noted that pa-
tients who did not need adaptation were also included in our statistical
analysis. More statistically significant results could have been achieved
if we had included only patients that needed adaptations. Yet, we
achieve statistical significance for target volumes, all dose regions, and
the spinal cord.

Finally, it is worth mentioning that performing fast and accurate DR
improved CTV coverage for all patients in comparison with no adap-
tation. DR key objective was to meet the planning criteria set by the
radiation oncologists which were judged as clinically relevant. Since
restoration allowed to get closer to the validated initial plan, and
sometimes reestablish the planning criteria, this improvement is, by
definition, clinically relevant. Ideally, dose restoration could be con-
sidered as standard clinical practice, in the same way as daily regis-
tration based on volumetric images.

In conclusion, this study showed that most of the investigated lung
cases would benefit from an accurate dose restoration. This online
adaptive workflow (based on repeated-CTs) did not require new organ
and target segmentation nor contour deformation. Dose restoration was
validated in rigidly mapped contours as well as in the real contours
delineated by the physician. DVH-metrics and robustness were im-
proved by DR in the new patient anatomy compared to no adaptation.
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