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Abstract

Background: Mortality data at the population level are often aggregated in age classes,

for example 5-year age groups with an open-ended interval for the elderly aged 85þ.

Capturing detailed age-specific mortality patterns and mortality time trends from such

coarsely grouped data can be problematic at older ages, especially where open-ended

intervals are used.

Methods: We illustrate the penalized composite link model (PCLM) for ungrouping to

model cancer mortality surfaces. Smooth age-specific distributions from data grouped in

age classes of adjacent calendar years were estimated by constructing a two-

dimensional regression, based on B-splines, and maximizing a penalized likelihood. We

show the applicability of the proposed model, analysing age-at-death distributions from

cancers of all sites in Denmark from 1980 to 2014. Data were retrieved from the Danish

Cancer Society and the Human Mortality Database.

Results: The main trends captured by PCLM are: (i) a decrease in cancer mortality rates

after the 1990s for ages 50–75; (ii) a decrease in cancer mortality in later cohorts for

young ages, especially, and very advanced ages. Comparing the raw data by single year

of age, with the PCLM-ungrouped distributions, we clearly illustrate that the model fits

the data with a high level of accuracy.

Conclusions: The PCLM produces detailed smooth mortality surfaces from death counts

observed in coarse age groups with modest assumptions, that is Poisson distributed counts

and smoothness of the estimated distribution. Hence, the method has great potential for

use within epidemiological research when information is to be gained from aggregated

data, because it avoids strict assumptions about the actual distributional shape.
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Introduction

Vital statistics data often lack fine resolution when publicly

released. Death counts are usually provided in aggregated

form. Databases of the World Health Organization (WHO)1

and NORDCAN, a Nordic tool for cancer information, plan-

ning, quality control and research,2 are two examples in

which deaths are grouped in age classes, for example age

groups of 5 years with a coarse open-ended interval that gath-

ers together the elderly aged 85 and over. The reasons for

such aggregation might be privacy protection and the wish

for a compact and easy illustration. With increasing longevity

in Western countries, wide grouping schemes at older ages

are particularly problematic for analysis, given that an in-

creasing proportion of the population dies in the given open-

ended age group, for example people aged 85 and over.

Records from the Human Mortality Database (HMD) show,

for example, that deaths in Denmark of people aged 85 and

over rose from 29% of total deaths in the year 2000 up to al-

most 35% in the year 2014.3 The analysis of mortality and

leading causes of death at older ages is therefore problematic,

not only because of the known variation in mortality report-

ing by physicians,4 but also because of coarse age groupings.

Additionally, grouping schemes might differ across time and

countries, which makes comparability challenging.1

The most widely used methods to estimate univariate

distributions, for example age-specific deaths for a single

calendar year, from grouped data are flexible parametric

models (with, however, a high number of parameters that

lead to overfitting5–8) and non-parametric methods such as

kernel density estimators and spline interpolations.5

When both detailed age-specific mortality patterns and the

underlying mortality time trends are of interest, it is necessary

to model mortality surfaces, for example a bivariate distribu-

tion. We propose using the penalized composite link model

(PCLM)9 to estimate detailed age-at-death distributions of ad-

jacent calendar years from coarsely grouped death counts.

The PCLM is a flexible tool that requires modest assumptions.

The coarsely grouped counts observed by the researcher can

be regarded as indirect observations of a latent sequence of

expected counts. These expected counts represent the distribu-

tion on a fine resolution that we seek to estimate. This distri-

bution is assumed to be smooth, that is expected counts on

the detailed grid are similar to each other and can be estimated

from the composite observed data by maximizing a penalized

Poisson likelihood. We use a two-dimensional regression

analysis, following the P-spline method by Currie et al.

2004,10 for ungrouping the age-specific distributions from the

coarsely grouped data and smoothing across adjacent calendar

years. Thus, the suggested methodology combines two

approaches: the PCLM for ungrouping in one dimension,11

and two-dimensional smoothing with P-splines.10,12–14

The PCLM is a powerful tool to model aggregated epi-

demiological and demographic data. In a one-dimensional

setting it has been found to model age-specific grouped

data,11 outperforming kernel density estimator and spline

interpolation methods in the presence of open-ended inter-

vals especially,15 and data suffering from digit prefer-

ences.16 In two- or three-dimensional settings it has been

applied to aggregated spatial counts17 and to fertility rates

grouped by age, time and birth order.18 The methodology

was also explored in a Bayesian framework.19 The use of

this model is as yet low. Here, we focus on smooth estima-

tions of mortality surfaces from data grouped in age clas-

ses, with particular attention to open-ended intervals at the

right-hand tail of the age-at-death distributions.

We will first introduce the PCLM for ungrouping coarse

age-at-death distributions of adjacent calendar years and, sec-

ondly, analyse age-at-death distributions from cancers of all

sites in Denmark from 1980 to 2014, using the proposed

methodology. We conclude with a discussion and give a

demo R-code of the model in the Appendix and in the

Supplementary material, with the aim of bridging the statisti-

cal methodology with a view to its application in the public

health field.

Key Messages

• Vital statistics, such as disease incidence and cause-of-death data, are often provided in coarse age groups, as is the

case for the elderly aged 85þ. Such aggregated data hide the age-specific trajectories at higher ages and conse-

quently hinder accurate data analysis in an ageing population. Moreover, ungrouping is needed so that data that fol-

low different groupings can be comparable.

• The two-dimensional penalized composite link model for ungrouping has a double goal: to estimate detailed age-

specific trajectories (of mortality or incidence of various diseases) from grouped data and to model a smooth trend

over calendar time to control for small fluctuations or noise and misreporting in the data collection.

• Application of this approach in epidemiology and public health research can improve the detail of vital statistics used

for further analysis.
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Methods

The statistical method for ungrouping coarse

age-at-death distributions of adjacent

calendar years

Suppose that one could observe death counts by single year

of age for several adjacent calendar years. Let us denote

these death counts on a fine grid by the matrix Z ¼ zjnð Þ of

dimension J �N, where j ¼ 1; . . . ; J corresponds to the

ages in a single year step and n ¼ 1; . . . ; N to adjacent cal-

endar years. Death counts are assumed to follow a Poisson

process, with expected value E zjnð Þ ¼ cjn: In practice, we

are only able to observe these death counts grouped in

coarser age classes. We denote the observed death counts

aggregated in coarse age groups for adjacent calendar years

by the matrix Y ¼ ðyinÞ of dimension I �N, where i ¼
1; . . . ; I corresponds to the age classes and n ¼ 1; . . . ; N

to adjacent calendar years. Death counts yin follow a

Poisson distribution, with expected value E yinð Þ ¼ lin,

where lin can be seen as expected values composed of the

latent unobserved expectations cjn. Hence, cjn is the

expected mortality surface on a fine grid, which we aim to

estimate from the composite means lin. This is done by

maximizing a penalized Poisson likelihood via maximum

likelihood estimation.

For the purpose of the regression, we arrange the data

by column vector, that is y ¼ ðy11; y21; . . . ; yINÞ0, l ¼
ðl11; l21; . . . ;lINÞ0 and c ¼ ðc11; c21; . . . ; cJNÞ0. The PCLM

for ungrouping coarse age-at-death distributions of adja-

cent calendar years is then given by:

l ¼ C c ¼ C exp Bhð Þ; (2.1)

where c is the sequence of detailed expected death counts

that we aim to estimate, C is a composition matrix, B a

B-spline basis with h being the corresponding coefficient.

The matrix C is a 0=1 block matrix that ‘composes’ l from

c and describes how the latent distribution was mixed be-

fore generating the data. The C matrix is derived from the

Kronecker product of the two marginal composition

matrices C ¼ Ct � Ca, where Ct is an identity matrix of

dimension N �N and Ca of dimension I � J. Elements of

Ca are zero, except for those cij ¼ 1 that indicate the ele-

ments of the expected counts c that are summed to get the

aggregated expected counts m for each calendar year n.

In order to model rates instead of counts, each column of

C is multiplied by the corresponding exposure to risk, that

is person-years at risk of dying, by single year of age (if the

exposures are also grouped, one can produce detailed esti-

mates again with the PCLM).

In the PCLM, c is overparametrized with respect to l.

This is solved by two regularizations following the P-splines

methodology by Eilers and Marx (1996).20 First, the set of

c is restricted by using a B-spline basis of lower dimension

than J �N; second, the linear space of the coefficients h is

restricted by introducing a penalty matrix P.

As the first step, we use as a two-dimensional regression

matrix a B-spline basis B, which reduces the number of

parameters h to be estimated, since the number of elements

in c is very large. Following10 B ¼ Bt � Ba, where Bt is

the marginal B-spline basis in the calendar year direction

of dimension N� Kt and Ba is the marginal B-spline basis

in the age direction of dimension J � Ka, Kt and Ka are

equal to the number of knots of the corresponding mar-

ginal B-spline basis, plus the degree of the spline.

Throughout the paper cubic splines are used.

As the second step, we assume that the latent distribution

c is smooth, that is adjacent elements of c are similar, and

implement this assumption by a roughness penalty on the

parameters h, with h being the vector of coefficients associ-

ated with the regression matrix B of length KtKa. Then,

the penalty matrix follows as PðhÞ ¼ ka IKt
� D

0
a Da

� �
þ

kt D
0
t Dt � IKa

� �
, withka and kt the smoothing parameters

in the age and calendar year directions, respectively, that

control the amount of smoothness, and Da and Dt the ma-

trices that compute the dth differences of the regression coef-

ficients h. In the paper, the roughness of the coefficients h is

measured by second-order differences following Currie et al.

(2004).10

Estimation procedure

The PCLM for ungrouping coarse age-at-death distribu-

tions of adjacent calendar years can be estimated by maxi-

mum likelihood estimation, by maximizing the following

penalized Poisson log likelihood:

l� ¼ l � P ¼
XI

i¼1

XN
n¼1

yinlnlin � lin

� �
� P: (2.2)

Maximizing (2.2) leads to a system of equation that can

be solved by an appropriately modified version of the itera-

tively reweighted least squares (IRWLS) algorithm. The

system of equations becomes:

�B
0 ~W �B þ P

� �
h ¼ �B

0 ~W ~W
�1

y� ~lð Þ þ �B~h
h i

; (2.3)

where �B ¼ ~W
�1

C~UB with ~U ¼ diag ~cð Þ and ~W ¼ diagð~lÞ
which are diagonal matrices of weights, with tilde indicat-

ing the approximation to the solution of a specific itera-

tion, and P the penalty matrix. For a given value of the

smoothing parameters, the system can be solved. To obtain

the optimal values of smoothing, we computed the Akaike
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Information Criterion (AIC) for a two-dimensional grid of

k-values (on a log scale) and chose the optimal smoothing

corresponding to its minimal value. Standard errors for the

estimated ĉ can be obtained from a sandwich-estimator

for var
�
ĥ
�
, given by varðBĥÞ ¼

��
�B0W �B þ P

��1� �B0W �B
�

�
B0W �X þ P

��1
�

or via a Bayesian approach, such as

varðBĥÞ ¼ B0W �X þ P
� ��1

. Standard errors are obtained by

taking the square root of the diagonal elements as

s:e: ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diag ðB varðBĥÞB0Þ

q
, and confidence intervals for

the estimated ĉ are consequently given by eðBĥ 6 2 s:eÞ.

Standard errors do not reflect the uncertainty introduced

by the choice of the smoothing parameters ka and kt that

are treated as fixed. The estimating procedure was imple-

mented in R version 3.2.2,21 and the code is provided in

the Appendix to this paper.

Data

Age-specific cancer deaths in adjacent

calendar years

Age-specific cancer mortality of all sites, including non-

melanoma skin cancer, men and women together, in

Denmark from 1980 to 2014, is analysed with the proposed

method. Raw death counts were retrieved from the Danish

Cancer Society from the database for NORDCAN.2

NORDCAN is a database that contains incidence, mortal-

ity, prevalence and survival statistics for 50 major cancers in

Nordic countries. Danish data for cancer mortality in the

NORDCAN database stem from the Danish Registry of

Causes of Death.22 An internet application provides access

to summary data with graphic and tabulation facilities.

From the Danish Cancer Society, overall cancer death

counts were obtained on a finer resolution, that is from age

0 up to the last age of recorded events in the time window

1980–2014 for each consecutive calendar year and for both

sexes combined. Deaths were classified according to the

International Classification of Diseases, Tenth Revision

(ICD-10, codes CXX.X þ D09.0–1þ D30.1–9þD35.2–

4þD41.1–9þD32-33þD42-43þD44.3–5þD46-47). The

quality of this classification relies mainly upon the report-

ing of physicians; the analyses of overall cancer mortality

reduces the impact of possible misclassifications or discon-

tinuity in registrations of specific cancer sites.23,24 The

total number of cancer deaths among the Danish

population in the 35 years considered was 529 511. The

year 1995 had the highest number of cancer deaths, with

15 914 cases, whereas the age of 77 was the most affected

age across the entire time window, with 17 675 deaths.

The age-at-death distributions for adjacent years from the

raw data are illustrated in Figure 1.

Person-years at risk of dying, by single year of age for

each calendar year, were taken from the Human Mortality

Database,3 which is a free database containing data on

death from all causes, exposure to risk, and population

size, by age and calendar year for 38 countries. Danish

data in the Human Mortality Database stem from

Statistics Denmark. We used exposures to risk provided

for Denmark for each calendar year at 1-year age intervals

from 0 to 109 years, and then a final group of 110þ.

Application and results

The high-quality data described in the section above22,25

allowed us to investigate the performance of the proposed

method, by comparing the raw detailed death rates with

the PCLM ungrouped estimates. To construct the mortality

surface on a fine grid (Figure 2, right-hand panel), death

counts for each age and calendar year, obtained from the

Danish Cancer Society, were divided by the corresponding

exposures to risk retrieved from the Human Mortality

Database.3

To study the performance of the proposed model, we

grouped the raw death counts from cancer into age classes

of different lengths, that is 5-year age classes with an open-

ended interval starting at age 85, following the age group-

ing of most of the freely available databases.1,2 After

grouping the raw cancer deaths, we applied the PCLM to

model the mortality surface at a fine resolution, that is

from age zero up to age 110þ, for the time window

1980–2014, in 1-year age groups. Age 110þ was set as

the maximum age, assuming that no cancer deaths are
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Figure 1. Age-at-death distributions from cancers of all sites, including

non-melanoma skin cancer, in Denmark from 1980 to 2014, men and

women together from raw data. Source: Danish Cancer Society.
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expected after that age. In the present application, the age

groups are equal to I ¼ 18, whereas J ¼ 111 are the de-

tailed ages and N ¼ 35 the calendar years analysed. Z of

dimension J �N denotes the raw cancer deaths with

expected value c; and Y of dimension I �N denotes the

aggregated cancer death counts with expected value l. We

aimed at estimating c from l, with l ¼ C c ¼ C exp Bhð Þ.
The two-dimensional regression basis B has a dimension of

3885� 112, as it results from the Kronecker product of

the two marginal B-spline bases: Bt of dimension 35� 7,

where 35 is the number of calendar years analysed, and Ba

of dimension 111� 16, where 111 is the number of de-

tailed ages. The number of columns of the marginal

B-spline bases is the sum of the number of knots chosen

and the degree of the spline. Following the rule of thumb

described in Currie et al. (2004),10 one knot every eight

elements of c equally spaced and cubic splines are used,

giving seven columns, Kt; (floor(35/8)þ3) for Bt and 16

columns, Ka, (floor(111/8)þ3) for Ba. The resulting model

has 112 parameters h ¼ ð#1; . . . ; #112) in order to estimate

the mortality surface, that is 7� 16 ¼ 112. The composi-

tion matrix C of dimension 630� 3885 is the Kronecker

product of the two marginal matrices Ct and Ca; of dimen-

sions 35� 35 and 18� 111; respectively. Ct is an identity

matrix with as many rows and columns as the N calendar

years analysed, whereas Ca has as many rows as the I age

classes and as many columns as the J ages on the fine reso-

lution. When modelling mortality rates, the composition

matrix C is further multiplied by the respective exposures

as offset so that the estimated c is a mortality surface.

From the Human Mortality Database, detailed exposure

figures, that is for single year of age from zero up to 110þ
for all calendar years analysed, were retrieved. In order to

find the solution of (2.3), the optimal values of the smooth-

ing parameters are selected via AIC: k̂a ¼ 0:316 in the age

direction and k̂t ¼ 3:160 in the calendar year direction.

The so obtained smooth cancer mortality surface, c of di-

mension J �N, is illustrated in Figure 2, left-hand panel.

Comparing the raw data by single year of age with the

PCLM-ungrouped distributions, we find that the model fit

is good. This is captured visually in Figure 2 and it is fur-

ther quantified by the root mean squared error (RMSE)

reported in Table 1.

When modelling a smooth mortality surface, the esti-

mated trends in the age and year directions are of particu-

lar interest. To better show such patterns modelled by

the PCLM, we report estimates versus raw data in a
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Figure 2. Age-specific death rates from cancers of all sites, including non-melanoma skin cancer, in Denmark from 1980 to 2014. Left-hand panel:

smooth cancer mortality surface estimated by the PCLM for ungrouping age-at-death distributions of adjacent calendar years from coarsely aggre-

gated data. Right-hand panel: detailed cancer mortality surface from raw data. Sources: Danish Cancer Society and Human Mortality Database.

Table 1. Root mean squared error (RMSE) calculated in the

year and age dimensions. RMSE measures the differences

between estimates and raw data. Values close to 0 indicate a

good fit. The RMSE of the PCLM is compared with the RMSE

derived by only smoothing the raw detailed data. Results do

not differ much, indicating that the ungrouping procedure fits

the data well

RMSE PCLM RMSE smoothing

Year 0.0151 0.0088

Age 0.0034 0.0013
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cross-sectional cut in the age and year direction in Figures 3

and 4, respectively. The level of uncertainty of the estimates is

captured by the width of the confidence intervals (Figure 3;

and Figure A1 in the Appendix): uncertainty increases at high

ages, particularly after 100 years of age, where death counts

and exposures are of very small numbers.

The main trends captured by PCLM are: (i) a decrease

in cancer mortality rates after the 1990s for ages 50–75

(Figure 3; and for more details, see Figure A2 in the

Appendix); (ii) a decrease in cancer mortality for later

cohorts, particularly for young ages and very advanced

ages (Figure 4); (iii) a peak of cancer mortality around age

90, followed by a levelling off (Figure 4; and Figure A1).

These results are in line with the existing literature on

cancer mortality patterns in Denmark26,27 and similar to

those observed in international studies.28–31 Modelling

cancer mortality surfaces with the PCLM allows us to gain

information about the mortality patterns, of the oldest old

especially, from data that are otherwise aggregated at the

higher ages. The levelling off of cancer mortality around

age 90 could not be captured with data coarsely grouped

in the traditional 85þ open-ended age class. Smoothing in

the calendar year direction allows us at the same time to

capture the trend across time and to correct for fluctua-

tions or noise in data collection.

Discussion

We have presented the PCLM to model smooth mortality

surfaces from age grouped data. In our application, we

were able to reconstruct from aggregated data a cancer

mortality surface on a fine age grid equivalent to the raw

ungrouped data. At the same time we model a smooth time

trend across calendar years.

In the PCLM setting, the user has the freedom of select-

ing the number of knots in the marginal B-spline bases, the

degree of the spline and the order of the penalty plus the

smoothing parameters. To choose the optimal number of

knots in the B-spline basis, no information criterion is

adopted: the idea is to choose a rich enough basis and let

the smoothing parameters control the optimal level of

smoothness. Following Currie et al. (2004),10 we suggest

using one knot about every eight elements of the latent and

detailed distribution c, cubic splines and quadratic penal-

ties. This choice is not crucial, since a different degree of

the spline or order of the penalty leads to a similar fit. The

optimal smoothing parameters k̂a and k̂t are obtained using

a grid search of possible values of ka and kt and selecting

those that minimize AIC. In our application, the range of

smoothing parameter values is set as ð10�1; 10�4Þ. We

found that allowing too small values of ðka; ktÞ leads to sin-

gularity of the system of equations: This occurs because the

parameter h is free to vary where it is also not informative.

The main assumptions of the PCLM for ungrouping in

two dimensions are smoothness of the estimated surface and
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Figure 4. Age-specific death rates from all cancers, including melanoma skin cancer, in Denmark from 1980 to 2014. Different calendar years are dis-

played with different shades of grey: lighter grey corresponds to earlier years and progressively darker grey to more recent years. Left-hand panel:

PCLM smooth estimates. Right-hand panel: raw death rates. Sources: Danish Cancer Society and Human Mortality Database.
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Figure 3. Death rates from all cancers, including melanoma skin cancer,

in Denmark from 1980 to 2014 for ages 40, 50, 60, 70, 80 and 90 years.

Smooth lines are PCLM smooth estimates with confidence intervals

(dashed lines), and dots are raw death rates. Sources: Danish Cancer

Society and Human Mortality Database.
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Poisson distributed counts. When consecutive observations

are expected to be characterized by drastic differences in

magnitude, the smoothness assumption is violated. In age-at-

death analysis appreciable differences are found, for example

between mortality levels at age 0 years and following ages.

Explicitly including a point mass for infant mortality can

solve this limitation. Another assumption that does not al-

ways hold for epidemiological data is the Poisson distribution

of counts, that is Var yð Þ ¼ E yð Þ. In some circumstances data

are overdispersed, that is Var yð Þ > E yð Þ, and therefore the

variability of the estimates might be underestimated.

In our application, we chose the same age grouping for

all calendar years analysed. However, in practice, the age

grouping scheme can differ across calendar years. This is

particularly true for historical data or data of the past few

decades, aggregated, for example, in 10-year age classes

with open-ended intervals starting at age 75 or 80.1

By changing the composition matrix C accordingly, the

PCLM can handle different age groupings. In population-

based data, deaths are usually reported by each single cal-

endar year.1–3 However, in some cases, time might also be

grouped, for example in classes of 5 calendar years.

Modifying the marginal composition matrix Ct accord-

ingly, the PCLM can be extended to model smooth mortal-

ity surfaces from both grouped ages and calendar years.

The proposed methodology can be applied to deaths from

various causes—since no assumption about the shape of the se-

quence c is made. Because of its flexibility, it can also serve

other epidemiological applications with bivariate data that can

be assumed to be Poisson distributed, for exampple grouped

data on individuals’ body mass index (BMI) and height.

Conclusion

The PCLM has proven useful in this study in gaining de-

tailed information when vital statistics are aggregated in

coarse age groups. The PCLM applied to age-specific mor-

tality data allows us to capture the underlying trends in

two dimensions, that is age and calendar time, when lim-

ited information is to hand.

Supplementary Data

Supplementary data are available at IJE online.
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Figure A1. Age-specific death rates from all cancers including melanoma skin cancer in Denmark in 1980, 1990, 2000 and 2010. Smooth lines are

PCLM smooth estimates with confidence intervals (dashed lines) from death counts grouped in age classes of 5 years, with open-ended age group

85þ. Dots are raw death rates. Sources: Danish Cancer Society and Human Mortality Database.
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Demo R code to estimate mortality surfaces with the
penalized composite link model for ungrouping
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Figure A2. Death rates from all cancers, including melanoma skin cancer, in Denmark from 1980 to 2014 for ages 50–75 years. The mortality trajecto-

ries over calendar years are displayed with different shades of grey, according to the ages: lighter grey corresponds to earlier ages, starting at age 50,

and progressively darker grey corresponds to older ages, up to age 75. Left-hand panel: PCLM smooth estimates. Right-hand panel: raw death rates.

Sources: Danish Cancer Society and Human Mortality Database.

# PCLM core function
pclm2D <- function(y, C, B, P, show ¼ 0){

# Fit a 2D PCLM (estimate A in E(y) ¼ C %*% exp(B %*% A))
# y ¼ the matrix of grouped counts of dimension I �N in vector format
# C ¼ the composition matrix, i.e. C ¼ Ct � Ca

# B ¼ the two-dimensional B-spline basis, i.e. B ¼ Bt � Ba

# P ¼ penalty matrix
# A ¼ vector of parameters, i.e. h
# gam ¼ mortality surface c of dimension J �N to be estimated
# mu ¼ composite distribution l, expected value of y; of dimension I �N

# Preparations
nx <- dim(B)[2] # length of the parameters vector h, i.e. Kt � Ka

ly <- length(y)
it <- 0
Astart <- log(sum(y) /ly); # initial coefficient value for the algorithm
A <- rep(Astart, nx); # h vector of parameters to model mortality surface

# Iterations for the IRWLS algorithm
for (it in 1:50) {

A0 <- A
eta <- B %*% A
gam <- exp(eta)
mu <- c(C %*% gam)
w <- mu

Q <- (C * ((1 / mu) %*% t(gam)) ) %*% B
z <- y - mu þ w * Q %*% A
QWQ ¼ t(Q) %*% (w * Q)

A ¼ solve(QWQ þ P, t(Q) %*% z) # solve system of equations
da <- max(abs(A - A0))
if (show) cat(it, " ", da, "\n")
if (da < 1e-6) break # stop when two successive values of h < 10�6

}
cat(it, " ", da, "\n")
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fit ¼ list(coeff ¼ A, gamma ¼ gam, mu ¼ mu)
H ¼ solve(QWQ þ P, QWQ)
H0 <- solve(QWQ þ P) # variance-covariance matrix Bayesian approach
H1 <- H0 %*% QWQ %*% H0 # variance-covaraince matrix sandwitch estimator

fit$trace <- sum(diag(H))
ok <- y > 0
fit$dev <- 2 * sum(y[ok] * log(y[ok] / mu[ok]))
fit$psi2 <- fit$dev / (length(y)-fit$trace)
fit$aic <- fit$dev þ 2 * fit$trace
fit$bic <- fit$dev þ log(length(y)) * fit$trace
fit$H0 <- H0
fit$H1 <- H1
fit$eta <- eta

return(fit)

}

# Simultaneous estimation of smooth mortality from grouped death counts for adjacent
calendar years: An example using Human Mortality Database (HMD) data.

library(MortalitySmooth)
library(rgl)
library(svcm)

# Read HMD data for Sweden 1980-2014

library(xml2)
library(HMDHFDplus)
# Create an account under www.mortality.org to get access to the data
username <- ""
password <- ""
# Deaths
Deaths <- readHMDweb("SWE", "Deaths_1x1", username, password)
Deaths_subset <- subset(Deaths, Year >¼ 1980 & Year <¼2014)$Total
d_counts_m <- matrix(Deaths_subset, nrow ¼ 111)
# Exposures
Exposures <- readHMDweb("SWE", "Exposures_1x1", username, password)
Exposures_subset <- subset(Exposures, Year >¼ 1980 & Year <¼2014)$Total

# Number of years
ny <- ncol(d_counts_m)

# Group counts
d_counts <- as.data.frame(d_counts_m)
d_counts$Groups_Counts <- c(rep(1:17, each¼5), rep(18,26))
y <- aggregate (d_counts[, 1:35], by¼list(d_counts$Groups_Counts), FUN¼"sum")
y <- y[, -1]

# Deaths from cancer for both sexes combined
# and put in vec format
y <- as.vector(unlist(y))

# Number of bins
nb <- rep(18,ny)
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# Age grid for the underlying distribution for each calendar year
m ¼ 111
x ¼ 1: m

# Define the grouping
# e.g. 5 years age groups with 85þ
ilo ¼ seq(1, 86, by ¼ 5)
ihi ¼ ilo þ 4
n ¼ length(ihi)
ihi[n] ¼ m
# intervals lengths
leng <- ihi-iloþ1

# Construct C matrix
# CA matrix in the age direction
CA ¼ matrix(0, n, m)
for (i in 1:n) CA[i, ilo[i] : ihi[i]] ¼ 1
# CY matrix in the year direction
CY ¼ matrix(0, ny, ny)
diag(CY) ¼ 1
# C as kronecker product
Ci ¼ kronecker(CY,CA)
# exposures as offset
E <- Exposures_subset
C ¼ Ci %*% diag(E)

# Construct B-spline basis
# for age
basisA ¼ 1:m
xl <- min(basisA)
xr <- max(basisA)
xmax <- xr þ 0.01 * (xr - xl)
xmin <- xl - 0.01 * (xr - xl)
BA <- MortSmooth_bbase(basisA, xmin, xmax, ndx¼floor(m/15), deg¼3)
# for year
basisY ¼ 1:ncol(CY)
yl <- min(basisY)
yr <- max(basisY)
ymax <- yr þ 0.01 * (yr - yl)
ymin <- yl - 0.01 * (yr - yl)
BY <- MortSmooth_bbase(basisY, ymin, ymax, ndx¼floor(ncol(CY)/15), deg¼3)
# B as kronecker product
B ¼ kronecker (BY, BA)

# Second order penalties
DA ¼ diff(diag(ncol(BA)), diff ¼2)
PA ¼ kronecker(diag(ncol(BY)), t(DA) %*% DA)
DY ¼ diff(diag(ncol(BY)), diff ¼2)
PY ¼ kronecker(t(DY) %*% DY,diag(ncol(BA)))

lambdaA.hat ¼ 0.1
lambdaY.hat ¼ 0.1
P ¼ (lambdaA.hat*PA) þ (lambdaY.hat*PY)

# Model estimation
mod ¼ pclm2D(y, C, B, P, show ¼ 0)
cat(mod$aic, mod$bic, mod$trace, ‘\n’)

International Journal of Epidemiology, 2019, Vol. 48, No. 2 581



Gamma <- matrix(mod$gamma, ncol¼ncol(CY))

# 3D plot
x <- 0:110
y <- seq(1980,2014)
z <- Gamma

persp(x, y, log(z),
theta ¼ -40, phi ¼ 25, r ¼ sqrt(3), d ¼ 1,
xlab ¼ "Age", ylab ¼ "Year", zlab¼" Mortality Death Rate (log)",
col¼"lightgrey",
main ¼ "Mortality Surface: Sweden 1980 - 2014
2D ungrouping with PCLM",
ticktype¼"detailed", nticks¼5,
shade¼T)

title(sub¼"Source: Human Mortality Database",adj¼0, line¼1)
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