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Abstract

Operational Taxonomic Units (OTUs), usually defined as clusters of similar 16S/18S rRNA sequences, are the most widely
used basic diversity units in large-scale characterizations of microbial communities. However, it remains unclear how well
the various proposed OTU clustering algorithms approximate ‘true’ microbial taxa. Here, we explore the ecological
consistency of OTUs – based on the assumption that, like true microbial taxa, they should show measurable habitat
preferences (niche conservatism). In a global and comprehensive survey of available microbial sequence data, we
systematically parse sequence annotations to obtain broad ecological descriptions of sampling sites. Based on these, we
observe that sequence-based microbial OTUs generally show high levels of ecological consistency. However, different OTU
clustering methods result in marked differences in the strength of this signal. Assuming that ecological consistency can
serve as an objective external benchmark for cluster quality, we conclude that hierarchical complete linkage clustering,
which provided the most ecologically consistent partitions, should be the default choice for OTU clustering. To our
knowledge, this is the first approach to assess cluster quality using an external, biologically meaningful parameter as a
benchmark, on a global scale.
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Introduction

Recent advances in sequencing technology have enabled

researchers to characterize microbial diversity at previously

unattainable scales. In large collaborative efforts, such as the

Human Microbiome Project [1], selected environments have been

probed to depths of millions of sequences, but even smaller-scale

studies generate datasets of hundreds of thousands of reads. While

providing great detail and resolution, datasets of such scopes pose

a challenge to defining meaningful units of microbial diversity, and

the choice of diversity unit definition may influence data analysis.

Arguably, the gold standard for microbial diversity units are

theory-informed definitions that would comply with a commonly

accepted concept of bacterial speciation; in other words, opera-

tional units of diversity should approximate ‘true’ bacterial taxa

[2]. This implies two frequently cited criteria for theory-compliant

diversity units: they should reflect phylogeny (by representing

monophyletic groups of organisms) and ecology, since ecological

differentiation has been postulated as an important driver of

bacterial speciation [2–8]. However, a unifying concept of

bacterial speciation in fact remains controversial to the point of

contesting the very existence of ‘bacterial species’ as such [2,9–11].

Nevertheless, approaches towards reconciling diversity unit

definitions with evolutionary theory have received much attention.

For example, the ecotype model of bacterial speciation defines

basic diversity units as ecologically coherent groups of organisms

whose diversity is confined by a cohesive genetic force [3,12], and

dedicated algorithms have been developed to demarcate ecotypes

from environmental sequencing data [4]. However, while ecotype

simulation has been valuable in characterizing the diversity of

selected environments [13], it has been noted that recognized

diversity clusters within several microbial clades can conflict with

ecotype theory [11,14].

Given the lack of a commonly accepted bacterial species

concept, a phenomenological (pragmatic) approach to categorizing

microbial diversity is often chosen in practice: Operational Taxonomic

Units (OTUs), defined as clusters of 16S/18S small subunit (SSU)

rRNA gene similarity, are used as theory-agnostic approximations

of microbial taxa. Providing impartial partitions of complex

sequence datasets, OTUs are the backbone of established work-

flows for the ecological characterization of microbial communities,

such as mothur [15] or QIIME [16]. Several methods have been

developed for binning SSU sequences, most prominently hierarchi-

cal clustering algorithms (HCA, implemented e.g. in mothur) and their

heuristic approximations, such as uclust [17], cd-hit [18] or the

ESPRIT suite of algorithms [19,20]. However, it has been noted

that different clustering methods often provide highly inequivalent

partitions of the same data, both quantitatively (with respect to

total cluster counts and OTU size distributions) and qualitatively

(with respect to cluster composition) [21–24]. Consequently,

several studies have evaluated approaches to SSU clustering,

focusing on distinct measures of cluster quality. Probably the most

straightforward test for OTU partition quality has been the

comparison of total OTU counts between methods, based on

simulated or experimental samples of known composition

[19,21,24,25]. Schloss & Westcott [22] used Matthew’s Correla-

tion Coefficient as an internal measure of partition quality,

based on cluster composition. Alternatively, methods have been
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benchmarked against taxonomically typed ground truth parti-

tions, using measures such as Variation of Information (VI, [26]),

Normalized Mutual Information (NMI, [20,23,24]) or cluster Purity

[24] to assess taxonomic consistency. This optimization for

taxonomically ‘pure’ clusters is attractive under the assumption

that taxonomic consistency implies both phylogenetic and

ecological consistency. However, existing taxon delineations

may frequently conflict with phylogeny or refer to ecologically

heterogeneous groups of organisms [10], and conflicts between

available reference taxonomies, as well as database bias, further

reduce the indicative power of taxonomic labels when describing

broad ranges of microbial diversity. Moreover, it has been shown

that both NMI and VI produce shifting baseline values, depending

on the number of clusters investigated [27], an effect that none of

the above-mentioned studies corrects for. Finally, relying on

simulated or experimental mixes of known composition as

defined inputs may run the danger of missing fundamental

challenges brought on by real-world samples (such as micro-

heterogeneity, long-tailed abundance distributions, cellular de-

bris, chimeric molecules, contaminations, etc.). Thus, while

taxonomic ‘ground truth’ may often give a reasonable first

assessment, what are alternative and more generally applicable

parameters for characterizing ‘good’ basic units of diversity in

microbial ecology?

In this study, we explore the ecological consistency of OTUs.

We first revisit and confirm the observation that ecological

preferences of microbial lineages are deeply rooted in phylogeny:

organisms that share a high SSU sequence similarity tend to be

ecologically more similar than expected by chance. We then

explore whether this signal is captured by SSU-based OTUs: do

organisms that cluster into the same OTU share similar

ecological affiliations? In other words, are OTUs ecologically

consistent? We approach these questions by first providing

anecdotal evidence, before then introducing an Ecological Consis-

tency Score (ECS) to provide a more thorough evaluation of OTU

ecological consistency. Using a global dataset of roughly one

million near full-length SSU sequences, we compare different

widely used methods for SSU clustering with respect to how

ecologically consistent the OTUs are that they generate. Finally,

we reflect on the validity and usefulness of SSU-based OTUs as

fundamental units of microbial diversity in light of their

ecological consistency, and discuss the implications of using

ecological consistency as a taxonomy-independent measure of

clustering quality.

Methods

Sequence data & preprocessing
To obtain a comprehensive global dataset, we extracted all full-

length 16S/18S rRNA sequences from NCBI GenBank ([28],

accessed in April 2012) and from the genomes available in the

NCBI Reference Sequence Database (RefSeq [29], accessed in

March 2012). After using Infernal to align sequences to reference

consensus models of the bacterial, archaeal and eukaryotic 16S/

18S rRNA molecules (provided in the package ssu-align [30,31])

and after removing ,20% of total reads that were flagged as

chimeric by UCHIME [32], we pruned away any terminal

nucleotides that aligned outside of two manually chosen, well-

conserved start- and end-positions in the alignment. After these

steps, our dataset comprised 950,014 aligned, near full-length

sequences (see Text S1 for details).

Sequence clustering into Operational Taxonomic Units
We clustered sequences into OTUs using three HCAs (average,

complete and single linkage) and two heuristic methods (uclust, cd-hit).

For every method, we clustered to thresholds of 80–99%

sequence identity (92–99% for average linkage, see Text S1). We

generated OTU sets using cd-hit ([18], version 4.5.4, Build 2012-

08-25) in cdhit-est mode (recommended for clustering highly

similar sequences) using standard parameters. The uclust ([17],

http://drive5.com/usearch/, version 6.0.307) series of OTU sets

was generated using the uclust software with the cluster_fast option

and standard parameters. Hierarchical average, complete and single

linkage clustering were implemented using the recently developed

in-house software package hpc-clust [33] using the ‘onegap’

sequence distance calculator (counting gaps as single mismatch-

es). Hpc-clust parallelizes the hierarchical clustering task and has

been shown to cluster sequences as fast as, or even faster than

heuristic implementations such as uclust and cd-hit (less than 3 h

wall time for the present dataset of roughly one million

sequences on a 256 core computer cluster), while still computing

the entire pairwise distance matrix, avoiding any heuristic

shortcuts.

Contextual data
We extracted different types of ecologically relevant informa-

tion from GenBank and RefSeq annotations. First, we assigned

sequences to individual sampling events that we define here as

unique combination of submitting authors, publication title and

isolation source; this classified the dataset into 31,519 samples.

Next, we filtered free-text annotations down to 7,202 unique,

non-trivial ecological terms describing the sampling context.

Using a manually curated classification scheme, we annotated

samples to 53 more broadly defined habitat types (e.g., ‘skin’ or

‘soil’, see Text S1 for the full list). In a complementary approach,

we filtered annotation keywords for the controlled vocabulary

maintained by the Environmental Ontology Project (EnvO,

http://environmentontology.org/, release date 2011-24-03)

and used the ontology to assign related environmental terms to

samples (e.g., ‘lake’ and ‘pond’ were both classified as ‘water

body’). This procedure yielded 672 unique EnvO terms repre-

sented in the dataset. Finally, for samples that are associated with

a eukaryotic host, we assigned host taxonomy from direct

annotations and by inference from annotation keywords. This

procedure yielded 2,422 unique host taxonomies (in total

representing 5,850 unique taxa) represented in the dataset;

remaining archaeal and bacterial sequences were considered non

host-associated.

Author Summary

To characterize the composition of microbial communities,
researchers often sequence and quantify specific marker
genes, particularly the SSU (‘small subunit’) ribosomal RNA
gene. One crucial step in such studies is the clustering of
sequences into Operational Taxonomic Units (OTUs) of
closely related organisms. However, this practice has
repeatedly been called into question, arguing that the
use of OTUs is not backed by microbial speciation theory.
Here, we explore whether OTUs group ecologically similar
organisms and show that indeed, OTUs are generally
ecologically consistent. Moreover, we show how ecological
consistency can be used as a measure of OTU ‘quality’ and
compare different widely used OTU clustering methods.
Our findings should help in the design and interpretation
of SSU-based microbial ecology studies, in a research field
that is only beginning to unfold its full potential to help
understand life at the smallest scales.

Ecological Consistency of Operational Taxonomic Units
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Assessing global-scale ecological consistency of OTUs
We developed an Ecological Consistency Score (ECS) to assess the

ecological consistency of entire sets of sequence clusters with

respect to different ecological signals (such as ecological terms, see

above). The ECS was calculated as follows. Consider a partition of

a SSU sequence dataset into N OTUs of sizes n1, n2, …, nN. What

is the likelihood that an ecological feature j with a background

frequency of pj in the entire dataset is observed exactly ki,j times in

OTU i of size ni? We calculated this likelihood Li,j using a binomial

model:

Li,j~
ni

ki,j

� �
pj

ki,j 1{pj

� �ni{ki,j

For example, observing 5 sequences annotated with the

ecological term ‘skin’ (background frequency of 30.0%) in an

OTU containing 15 sequences has a likelihood of 0.206, but

observing the much less frequent term ‘hydrothermal’ (back-

ground frequency ,0.9%) exactly 5 times in the same OTU is

much less likely (L15,hydrothermal = 1.6*1027). Similarly, not observing

a frequent term such as ‘skin’ in the same OTU has a rather low

likelihood (L15,skin = 0.005). Thus, the presence of 5 sequences

annotated as ‘hydrothermal’ in an OTU of size 15 is an enrichment

of ecologically similar organisms, while the absence of a frequent term

such as ‘skin’ in the same OTU is a negative enrichment. We

computed the summed log-likelihood LLset of the entire partition

from the enrichment of every term j in every OTU i:

LLset~
X

i

X
j

log(Li,j)

High absolute values of LLset indicated that the distribution of

ecological features across the various OTUs in the entire partition

were non-random. However, the absolute value of LLset is

influenced by total OTU count (as the number of summands i)

and OTU size distribution (as ni in the binomial coefficient). We

used an empirical approach to control for these effects: we

computed the log-likelihoods LLrand of 1,000 randomized sets with

identical cluster size distribution and total count, but with shuffled

sequence-to-OTU mapping. This generated a (near-Gaussian)

background distribution of LLrand, from which we calculated the

ECS of the observed OTU set as standard Z score:

ECS~{
LLset{mrand

srand

where mrand is the average value of LLrand and srand is the standard

deviation. Thus, ECS values indicate by how many standard

deviations the enrichment of ecological features in the observed

OTU set is removed from a randomized background. In other

words, the ECS indicates how consistent a given set of OTUs is

with respect to an ecological signal, such as the distribution of

ecological terms.

Results

SSU similarity is indicative of ecological similarity, and
vice versa

Several recent studies have shown that microbes can be

remarkably niche conservative: ecological affiliations such as habitat

preferences are rooted deeply in the tree of life [34,35]. As a

consequence of this ‘ecological coherence of high bacterial taxa’, a

close relationship between ecological similarity and SSU similarity

has been observed. We confirmed this relationship by exploring a

novel, global sequence dataset of roughly one million near full-

length SSU sequences, for which we automatically inferred

sampling habitats based on ecologically relevant annotation

keywords. We calculated pairwise similarities in SSU sequences,

ecological terms and inferred habitats (as Jaccard index) for 20 sets

of 10,000 randomly selected sequences, resulting in a total of ,109

pairwise comparisons; the results are shown in Figure 1A. For both

ecological terms and inferred habitats, we observed a clear trend

towards higher ecological similarity at higher SSU similarity. This

observation is in line with previous studies that reported a very

similar pattern of increasing ecological similarity with decreasing

distance on SSU-based phylogenetic trees [34,36]. Moreover, it is

concordant with general niche conservatism in microbes, given

that our dataset represents a diverse and global survey of microbial

taxa. In other words, phylogenetic distance is indicative of

ecological similarity. But is the reverse also true? Are ecologically

coherent groups of organisms more similar in SSU sequence

similarity than expected by chance?

To assess the internal SSU similarity of ecologically coherent

groups of organisms, we reanalyzed the human skin microbiome

(HSM) dataset that provides ,100,000 near full-length 16S

sequences sampled from distinct body sites [37]. Considering each

body site as a unique habitat, we calculated pairwise 16S sequence

similarities per sample; the results are shown in Figure 1B, Figures

S1, S2 and Table S1. All habitats showed a major abundance of

sequence pairs in the 70–80% 16S similarity range, likely

corresponding to comparisons of organisms from different

bacterial phyla. However, several habitats showed distinctly

bimodal (e.g. back, toe web space) or multimodal (e.g. nare,

manubrium) distributions of internal 16S similarities, indicating an

abundance of more closely related organisms (Figure 1B, top

panel). Indeed, these observations are in line with the habitat-wise

diversity estimates provided in the original HSM study [37]. When

compared to a global background dataset of bacterial 16S

sequences (Figure 1B, bottom panel), all skin habitats showed

both a notable overrepresentation of highly similar sequence pairs

(.90% 16S similarity), as well as the complete absence of a ‘tail’ of

highly dissimilar pairs (,60% 16S similarity). In other words,

organisms sampled from a defined skin habitat were more similar

to each other in 16S sequence than expected for a global

background; this enrichment was statistically highly significant

(p,,10216, one-sided Mann-Whitney-U test, see Table S1). The

same was true for more broadly defined habitat types: 16S

sequences sampled from ‘moist’, ‘dry’ and ‘sebaceous’ skin sites (as

classified in the original HSM study) shared significantly higher

similarity than expected for a background set (Figure 1B, middle

panel, Figure S2 and Table S1). This indicates that in spite of local

diversity and distinct internal 16S similarity profiles, the different

ecologically coherent habitats (body sites, skin habitat types)

sustained communities containing more closely related organisms

(higher 16S similarity) than expected for a global background.

Taken together, these results confirm a close relationship

between ecological and SSU similarity: closely related organisms

tend to be ecologically more similar than expected by chance.

However, the reverse is also true: ecological similarity is often

indicative of increased SSU similarity.

OTUs are ecologically homogenous on a broad
ecological scale

How does this relation between ecological and SSU similarity

translate to Operational Taxonomic Units? Are clusters defined by

Ecological Consistency of Operational Taxonomic Units
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SSU similarity ecologically consistent? To approach these

questions, we clustered a global dataset of roughly one million

SSU sequences into OTUs according to different methods that

implement fundamentally different clustering regimes. Hierarchical

Clustering Algorithms (HCAs) compute an entire matrix of pairwise

sequence distances and progressively merge the most similar

clusters, while heuristic methods provide computationally efficient

shortcuts. The complete linkage (cl, furthest neighbor) HCA implements

an exclusive clustering regime, joining two clusters only if every

pairwise similarity between the members of each cluster is above

the clustering threshold. In contrast, single linkage (sl, nearest neighbor)

is inclusive, as clusters are joined as soon as any two of their

members share above-threshold similarity. Average linkage (al,

average neighbor or unweighted pair group method with arithmetic mean,

UPGMA) conceptually provides a middle ground between the two,

requiring that the average pairwise similarity between all members

of two clusters be above the threshold for joining them. The most

widely employed heuristic methods for SSU sequence clustering are

arguably uclust [17] and cd-hit [18]. Uclust defines cluster seed

sequences, usually depending on sequence length or abundance in

the dataset, to which sequences are subsequently compared and

linked if the similarity (computed as number of shared short

‘words’, or k-mers between the sequences) is above the required

threshold; note that in consequence, uclust combines the three steps

of sequence alignment, alignment distance calculation and

clustering into one. Similarly, cd-hit assigns sequences to represen-

tative cluster seeds, but uses a different word-matching algorithm

and replaces (even implicit) sequence alignment altogether by the

use of indexing tables.

Figure 2A shows the ecological associations of the ten largest

OTUs for every method when clustering to 97% SSU sequence

similarity. We observed that for all methods except sl, the majority

of OTUs was ecologically homogenous. Clearly, the dominating

habitat in the overall dataset, skin (30% of total sequences), also

dominated most of the ten largest OTUs for every method, with

gastric and intestinal habitats as the second most important

fraction. In particular for cl and uclust, all studied OTUs except

‘uclust OTU 7’ consisted of $95% sequences sampled from skin,

and almost all remaining sequences in these OTUs were

annotated as gastric or intestinal. Similarly, most of the observed

al and cd-hit OTUs were dominated by these habitats, albeit to

lower extent and with notable exceptions (al OTUs 4 & 7, cd-hit

OTU 5). In contrast, sl produced several large clusters that were

ecologically heterogenous (OTUs 4, 7–10), with the dominant

habitat representing as little as 26.6% of sequences in sl OTU 10.

Figure 2B provides a closer look at sl OTU 4. It consisted of

17,462 habitat-typed sequences of highly diverse ecological

affiliation; for example, sequences sampled from insect hosts,

plant hosts, aquatic environments or soil each accounted for 4–5%

of diversity within this OTU. We observed that all other tested

methods generated significantly more OTUs from the same

17,462 sequences when clustering in the context of the full global

set of roughly one million sequences. Indeed, the observed

differences in total OTU counts were in the range of 2–3 orders

of magnitude, with uclust providing 2,102 OTUs where sl provided

only one. At the same time, we observed that both cl and uclust

provided ecologically more homogenous partitions of the same

sequence set, notably by distributing sequences associated to skin

and to gastric/intestinal habitats largely into distinct OTUs.

Likewise, al and cd-hit provided ecologically more consistent OTUs

Figure 1. Phylogenetic similarity vs. ecological similarity. (A)
General correspondence of ecological and SSU similarity. From our
global dataset of roughly one million SSU sequences, 20 datasets of
10,000 sequences each were randomly sampled. For each subset,
pairwise sequence similarities and ecological similarities (as Jaccard
Index of shared annotated ecological terms and habitat types,
respectively) were calculated, and the results were averaged over the
20 sets before plotting; mean standard deviations across sets are
indicated by grey shades. (B) Internal 16S SSU similarity of human skin
habitats. For the human skin microbiome dataset [37], pairwise SSU
similarities were calculated for all sequences sampled from respective
human skin habitats (top) and for sequences from habitats of the same
type (‘moist’, ‘dry’ or ‘sebaceous’, as classified by Grice et al [37];
middle). Global background similarities were obtained by calculating
pairwise internal SSU similarities for 20 sets of 10,000 sequences
randomly drawn from our environmentally heterogeneous set of
roughly one million SSU sequences (bottom). Smoothened distributions

were drawn based on 150,000 randomly sampled pairwise distances.
White circles indicate median, grey circles mean similarity. Non-
smoothened, detailed distributions are available in Figures S1 and S2.
doi:10.1371/journal.pcbi.1003594.g001

Ecological Consistency of Operational Taxonomic Units
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Figure 2. Broad-scale ecological homogeneity of OTUs. (A) Habitat associations of the ten largest OTUs when clustering a comprehensive set
of publicly available full-length SSU sequences to 97% similarity using different methods. Pie chart area is proportional to OTU size, colors correspond
to habitat types. Total OTU counts are indicated on the right. 9.7% of publicly available sequences lacked habitat annotation, or were typed to
conflicting habitats, and were excluded from the analysis. Note that the OTUs shown are not generally identical across clustering methods, but
overlap in sequence composition. (B) Breaking down the ecologically inconsistent cluster ‘sl OTU 4’. In the presence of the full global dataset,
different methods cluster the 17,462 sequences in sl OTU 4 differently, mostly providing ecologically more homogeneous clusters. For every method,

Ecological Consistency of Operational Taxonomic Units
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than sl, albeit to lesser extent. Although all four methods also

generated several ecologically heterogenous OTUs, their overall

partitions appeared ecologically more homogenous than the single

ecologically inconsistent cluster generated by sl.

As another example, consider the largest sampling events

contributing to sl OTU 10 (Figure 2C). Clearly, this OTU

contained sequences from very distinct and unrelated ecological

contexts, not only on the level of broad habitat types (skin, soil,

etc.), but also at finer ecological resolution (e.g., different soil

types). Interestingly, this ecological heterogeneity corresponded to

a large internal SSU dissimilarity of this particular OTU: although

clustered to a nominal similarity threshold of 97%, we observed

that a large majority of pairwise similarities within sl OTU 10 were

actually below this threshold (as can be expected for an inclusive

clustering algorithm), at a mean internal similarity of 95.2% and

with individual pairs of sequences sharing as little as 86% SSU

similarity.

The above observations are mostly anecdotal: we considered

only a small selection of OTUs and elaborated on individual

examples. Nevertheless, this may help to illustrate two important

points that will be discussed more rigorously in the following

sections: (i) the tested methods clustered the same sequence dataset

very differently with respect to total OTU count, OTU size

distribution and OTU ecological homogeneity; (ii) with the

exception of sl, clusters were generally homogenous on a broad

ecological scale, considering e.g. that skin and gastric/intestinal

habitats are arguably more similar to each other than they are to

aquatic or soil habitats.

Global-scale ecological consistency of OTUs depends on
clustering method

To refine our above observations on general OTU ecological

homogeneity, we developed an Ecological Consistency Score (ECS, see

Methods). Adopting a global perspective rather than focusing on

individual examples, the ECS is a measure of ecological

consistency of entire OTU partitions, taking into account all the

clusters provided by a given clustering method. Moreover,

focusing on more fine-scale ecological associations than provided

by the broadly defined habitat types discussed above, the ECS

provides increased ecological resolution. High ECS values indicate

that ecologically similar organisms are clustered, more so than

expected by chance.

We tested cluster consistency with respect to four distinct

ecological signals: (i) 7,202 ecological terms (Figure 3A–C), which we

filtered from sequence annotations, provided detailed descriptions

of sampling context; (ii) 672 EnvO terms (Figure 3D), which we

filtered from annotation keywords using the EnvO ontology,

provided an alternative and curated hierarchy of ecological

descriptions; (iii) sampling site information (Figure 3E), for which we

considered whether a given OTU contained many sequences that

had been sampled from the same site; and (iv) host taxonomy

(Figure 3F), assuming that closely related host organisms generally

provide more similar environments than more distantly related

ones. We processed these signals independently, calculating an

ECS for a given OTU partition for each ecological signal.

We calculated the ECS for OTU sets obtained from clustering

our global set of roughly one million sequences to nominal

similarity thresholds of 80%–99% (92%–99% for al, see Text S1)

according to different methods: al, cl, sl, uclust and cd-hit (Figure 3

and Table S2). For all tested datasets, and over the entire range of

tested OTU set sizes, we observed similar trends in ecological

consistency (ECS from highest to lowest): cl, uclust, cd-hit/al and sl.

Over wide ranges of tested OTU counts, differences between

OTU definitions were statistically significant (one-sided t-test on

jackknifed estimate of ECS variability, p,,0.01). Jackknifed ECS

variability was low and constant for all tested datasets and OTU

set sizes (coefficient of variation, 0.06,cV,0.08).

We observed different and reproducible trends in ECS within

clustering methods. With increasing clustering stringency (increas-

ing similarity threshold, increasing number of total clusters), ECS

values monotonically decreased for cl, uclust and al, and for cd-hit in

the high-cutoff range. This general decrease in ecological

consistency might indicate that the rather broad ecological

descriptions aligned better with OTUs at lower nominal similarity

thresholds, while more closely defined OTUs (higher cluster

counts) were not equally well resolved on an ecological scale. In

contrast, we observed the opposite trend (decreasing ECS with

decreasing stringency) for sl, and to a lesser extent sometimes cd-hit,

at lower clustering thresholds. As sl is an inclusive algorithm (see

above), it tends to cluster sequences that share below-threshold

similarity. For example, in the previous section we pointed out ‘sl

OTU 10’, the 10th largest sl OTU when clustering to 97%

similarity, which clustered sequences sharing below-threshold

similarity (mean internal similarity of 95.2%, most dissimilar

sequence pair sharing 86% similarity). Since such lumping

behavior aggravates with decreasing clustering stringency, it may

explain the observed decrease in ecological consistency.

ECS differences between methods were more pronounced with

increasing levels of clustering: while at very high similarity

thresholds ($99%), partitions were similar and sometimes

indistinguishable on an ECS scale, differences of up to ,5-fold

between cl and sl were observed at lower sequence similarity levels.

At the frequently-used similarity threshold of 97%, ECS scores of cl

were between 10% and 20% higher than those of sl, depending on

the feature tested (Table S2). Cl also consistently showed the

highest ECS values when the set of SSU sequences was restricted to

those from completed sequenced genomes only (Figure S3).

Distinct ecological signals provided different levels of ECS

resolution: at higher OTU counts, keyword-based measures were

less distinctive on an ECS scale (ecological term consistency,

Figure 3A, and EnvO term consistency, Figure 3D), while

sampling site consistency separated OTU definitions better

(Figure 3E). Likewise, the archaeal sequence dataset (Figure 3B)

distinguished different OTU definitions better than the larger

bacterial (Figure 3A) and smaller eukaryal (3C) datasets. However,

the general trend was the same across all tested datasets, and

across all indicators of ecological consistency: complete linkage (cl)

generated ecologically more consistent OTUs than the other

methods; single linkage (sl) resulted in the lowest ECS values in all

tests; and the remaining methods fell into an intermediate range,

while uclust generally provided higher ecological consistency than

cd-hit and al which in turn were mostly indistinguishable from each

other.

Discussion

Ecological consistency of OTUs is a matter of perspective
Are SSU-based OTUs ecologically consistent? Our results

indicate that they are, to a large extent. We detected high levels of

ecological consistency both at broad ecological scale in individual

the ten largest clusters and the fraction of sequences they contain, as well as total OTU counts are shown. (C) Sampling events contributing to ‘sl OTU
10’. Geographic locations and isolation sources are shown for nine of the largest sampling events. Marker colors indicate habitat type.
doi:10.1371/journal.pcbi.1003594.g002
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examples (Figure 2) and at finer ecological scale for a global SSU

dataset (Figure 3). In contrast, Koeppel and Wu [13] recently

reported an ‘extensive ecological heterogeneity among OTUs’ for

very fine-scale habitat definitions of two model datasets of marine

Vibrio [5] and hot spring Synechococcus [38] communities. Thus,

OTU ecological consistency may in fact be a matter of perspective:

while OTU clustering may conflict with very high-resolution

ecological associations for specific environments, OTUs are

generally, though not perfectly, consistent on broader ecological

scales. Considering that OTU clustering is a phenomenological

approach to diversity analysis, the observed levels of ecological

consistency are remarkable: although OTU definitions are mostly

independent of underlying assumptions on microbial ecology, they

capture groupings of ecologically coherent organisms.

Figure 3. Global Ecological Consistency Scores of OTUs. (A) Ecological term consistency when clustering 887,870 bacterial full-length 16S
sequences according to different methods. ECS values (y-axis) describe how non-random the enrichment of ecological affiliations is in a given OTU set
(see main text). The total number of clusters including singletons (x-axis) provides for better comparability of methods than nominal clustering
thresholds; lower numbers of OTUs correspond to less stringent similarity cutoffs. Error bars indicate jackknifed estimates of ECS variability (see Text
S1). Data points for OTU sets clustered to 97% nominal sequence similarity are highlighted with a grey shade. The raw data are available in Table S2.
For the ecological term consistency when clustering 42,402 archaeal sequences (B), or 20,120 eukaryotic 18S sequences (C), as well as for the bacterial
dataset EnvO term consistency (D), sampling site consistency (E), and host taxonomy consistency (F), error bars are not drawn, but variability was in
the same range as for (A) (coefficients of variation, 0.06,cV,0.08).
doi:10.1371/journal.pcbi.1003594.g003
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Are the observed levels of ecological consistency sufficient for

OTUs to be useful in the ecological characterization of microbial

communities? Indeed, it is difficult to globally define appropriate

levels of required ecological consistency for ‘good’ units of

microbial diversity. This is largely due to the ecological plasticity of

microbial taxa at different levels of taxonomic and ecological

resolution: while broad-scale ecological coherence in general is

deeply rooted in phylogeny [34], several cases of wide ‘intra-

species’ ecological variation have been reported, e.g. within the

genera Bacillus [39] or Escherichia [40]. In other words, though

relatedness at family, order or even phylum level is often predictive

of a common broad ecological niche, very closely related lineages

frequently exhibit surprisingly wide ecological differentiation.

Another frequently cited criterion for biologically meaningful

basic diversity units is phylogenetic consistency. While Koeppel and

Wu recently reported ‘extensive and pronounced paraphyly and

polyphyly among OTUs’ when compared with the ecotype simulation

algorithm (which uses a phylogenetic tree as input, [13]), we found

surprisingly high levels of phylogenetic coherence of complete linkage

OTUs: with respect to a maximum likelihood tree of 42,024

archaeal sequences, .80% of all non-singleton OTUs at different

clustering thresholds were monophyletic (Text S2).

In general, conceptually more sophisticated algorithms to

demarcate OTUs such as ecotype simulation [4], CROP [41] or M-

Pick [42] may be suited for focused problems, but arguably suffer

from throughput problems due to high computational demands

(we were not able to execute any of them on our set of one million

sequences). On the other hand, impartial OTU clustering

conquers large and complex datasets rapidly, while still providing

reasonably high levels of ecological consistency. For in-depth

studies on broader ecological scopes, OTUs may thus provide

good approximations of ecologically coherent lineages.

How good is ‘good enough’? Ecological consistency and
cluster quality

While we found that OTUs are ecologically consistent in

general, there were significant differences between clustering

methods. Are these differential levels of ecological consistency

indicative of clustering quality? We have shown that an ecological

similarity signal, calculated based on contextual data alone,

corresponds to SSU similarity for a global, environmentally

heterogenous dataset, as well as for the well-defined human skin

microbiome dataset (Figure 1). Based on this observation, high

internal SSU similarity in microbial diversity clusters is expected to

correspond to high ecological consistency. In other words,

metadata-based ecological consistency can provide a non se-

quence-based, external measure of cluster quality. Moreover, it is

arguably useful to consider ecological consistency when evaluating

the quality of diversity units in the context of microbial ecology;

nevertheless, ecologically plastic diversity units should not be

considered inherently ‘wrong’, since ecological differentiation may

occur within groups of closely related organisms. The Ecological

Consistency Score casts these ideas into an objective framework; it is a

global measure of ecological consistency for entire partitions of

microbial diversity datasets. Several previous approaches to

assessing clustering quality relied on measures such as Normalized

Mutual Information or Variation of Information; these can be

problematic, as they are biased by variation in total cluster counts

and cluster size distributions [27]. Correcting for these effects, ECS

values are comparable between different diversity unit definitions.

Considering that our dataset provides a comprehensive survey

of microbial diversity, the observed differences in ecological

consistency have several interesting implications when interpreted

in terms of cluster quality. The tested methods implement different

assumptions on the fundamental organization of microbial

diversity. Conceptually, sl clustering is inclusive (guaranteeing that

all pairs of above-threshold similarity are clustered, tending to

provide fewer and large clusters), while cl, uclust and cd-hit are

exclusive (preventing any below-threshold pair from clustering and

thus tending to provide smaller and more compact clusters); al,

which focuses on average similarity, provides a balanced middle

ground. Our results indicate that exclusive clustering regimes, and

in particular cl, provide ecologically much more consistent

partitions than the inclusive regime of sl, and somewhat

surprisingly also than al. While exclusive and inclusive regimes

by definition may provide different partitions at the same nominal

similarity threshold in terms of cluster counts, sizes and

composition, ECS values correct for these effects, in particular

when compared across partitions of similar total cluster counts

rather than similar nominal sequence similarity. We note that the

most rigidly exclusive clustering regime, uclust, which at any given

threshold provided significantly more (and smaller) OTUs than all

other methods, did not provide the highest ECS values, probably

indicating an over-partitioning of ecologically homogenous clus-

ters.

One potential pitfall of our dataset is sampling bias: clearly, a

comprehensive survey of available SSU data will be ‘anthropo-

centric’, since in the past, sequencing efforts have been

disproportionally concentrated on the human microbiome; for

example, ‘skin’ was the overall most frequent ecological term in

the set, annotated to as many as 30% of all sequences. However,

the ECS framework corrects for potential impacts of this sampling

bias by providing the exact same input sequences for each tested

method, by using weighted background frequencies for every

ecological feature, and by randomizing partitions conservatively.

Indeed, our dataset meets many characteristics of reference

datasets for reference-based approaches to OTU demarcation, as

implemented e.g. in QIIME [16]. Such approaches rely on well-

defined, comprehensive and usually pre-clustered sets of reference

sequences that serve as a ‘backbone’ to guide the mapping and

OTU binning of novel reads. Consequently, the choice of

reference pre-clustering method can have a strong impact on

resulting reference-based picked OTUs; some of the most

commonly used reference sets, provided by the Greengenes [43]

and SILVA [44] databases, rely on uclust for pre-clustering. As

ecological consistency can be an important parameter to optimize

for in such globally applicable reference sets, our results may

inform the choice of pre-clustering method in such contexts.

Finally, as our findings pertain to global taxonomic and

ecological scopes, they are of potential interest for the ongoing

debate between taxonomic ‘lumpers’ and ‘splitters’ [45–47],

considering that exclusive clustering corresponds to ‘splitting’

regimes, while ‘lumping’ is inclusive.

When designing a workflow to analyze large sequence datasets,

informed choices of methods and parameters are needed at many

levels. For example, different denoising protocols, filters for

chimeric sequences and alignment methods have previously been

benchmarked and are not within the scope of our study. Here, we

have focused on sequence clustering into OTUs, and our results

may contribute to a more informed choice of clustering method

when studying microbial communities: of all tested methods,

complete linkage (cl) may provide the ecologically most consistent

partitions of large sequence datasets. Moreover, there are clearly

other aspects of clustering quality that we have not touched upon

here, such as robustness to the choice of sequenced SSU gene

subregion, portability across studies or the impact of dataset

context (does a given method cluster ‘rich’ and ‘sparse’ datasets

differently?). Nevertheless, ecological consistency is an important
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parameter to optimize for, in particular when later using OTUs

for the ecological characterization of microbial communities.

To our knowledge, our study provides the first benchmark for

SSU clustering methods that employs a signal external to both

taxonomy and sequence. As more and more environments become

available to in-depth ecological characterization, it will be

interesting to explore alternative paths towards adopting ecology

not only into species concepts, but also into definitions of microbial

diversity units. Indeed, our results suggest that ‘traditional’ OTU

clustering has yet an important role to play in this process.

Supporting Information

Figure S1 Pairwise sequence similarities within human
skin microbiome habitats. This figure contains un-smoothened

versions of the sequence similarity distributions shown in Figure 1B.

Pairwise internal sequence similarity distributions are shown for

every skin habitat from the HSM dataset. Background similarities

(indicated in grey) were calculated from 20 sets of 10,000 sequences

which were randomly drawn from the global set of bacterial 16S

sequences. All similarities were calculated using hpc-clust [33].

(PDF)

Figure S2 Sequence similarities within human skin
microbiome habitat types. Skin habitats were classified into

three types (‘moist’, ‘dry’, ‘sebaceous’) in the original publication by

Grice et al [37]. In the upper panel, this figure shows un-smoothened

versions of the sequence similarity distributions shown in the middle

panel of Figure 1B. Pairwise sequence similarities within habitat types

were plotted against similarities between sequences drawn from the

global background set (indicated in grey; see Figure S1).

(PDF)

Figure S3 Ecological consistency of OTUs from 4,485 16S
gene sequences from fully sequenced genomes. We

extracted 4,485 16S genes from fully sequenced genomes download-

ed from the RefSeq database [29] and clustered them into OTUs

according to different methods (see Methods section in the main text).

ECS values for all five tested methods are shown; partitions at 97%

nominal sequence similarity are highlighted with a grey shade.

(PDF)

Table S1 Sequence similarities within human skin
microbiome subsets. This table provides the main statistics

on sequence similarities for all tested HSM habitats, habitat types

and the global background set (Fig. 1B, S1, S2). The rightmost

column indicates the p value for a one-sided unpaired Mann-

Whitney-U-test of the type ‘internal sequence similarity within habitat X

is greater than background similarity’. To calculate internal similarities

for the different habitat types (indicated by a star, ‘*’), 10,000

sequences were randomly drawn from the full sets per habitat type.

(XLSX)

Table S2 Ecological term consistency of clustering
methods across similarity thresholds when clustering
887.870 bacterial sequences. 887.870 bacterial sequences

were clustered using the hierarchical clustering algorithms average

linkage, complete linkage and single linkage (implemented in hpc-clust,

[33]) and the heuristics uclust and cd-hit. An Ecological Consistency

Score (ECS) was calculated with respect to filtered ecological

annotation terms. The table reports total OTU counts and ECS

values (mean and jack-knifed standard deviation, see Methods in

main text); the data corresponds to that shown in Figure 3A in the

main text.

(XLSX)

Text S1 Supplementary Methods.

(PDF)

Text S2 Phylogenetic consistency of OTUs. For a global

dataset of 42,024 archaeal sequences, complete linkage OTUs were

tested for monophyly with regard to a maximum likelihood

phylogenetic tree.

(PDF)
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