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Abstract
Scientific and technological advances of the past decade have shed light
on the mechanisms underlying cell fate acquisition, including its
transcriptional and epigenetic regulation during embryonic development.
This knowledge has enabled us to purposefully engineer cell fates in vitro
by manipulating expression levels of lineage-instructing transcription
factors. Here, we review the state of the art in the cell programming field
with a focus on the derivation of neural cells. We reflect on what we know
about the mechanisms underlying fate changes in general and on the
degree of epigenetic remodeling conveyed by the distinct reprogramming
and direct conversion strategies available. Moreover, we discuss the
implications of residual epigenetic memory for biomedical applications such
as disease modeling and neuroregeneration. Finally, we cover recent
developments approaching cell fate conversion in the living brain and
define questions which need to be addressed before cell programming can
become an integral part of translational medicine.

Keywords
Cell programming, Direct conversion, Transdifferentiation, Forward
programming, In vivo conversion, Translation, Disease modelling,
Transplantation

       Reviewer Status

  Invited Reviewers

 version 1
published
30 Aug 2019

     1 2 3 4

, Washington University School ofAndrew Yoo

Medicine, St. Louis, USA
1

, The Scripps ResearchKristin Baldwin

Institute, La Jolla, USA
2

, Leopold-Franzens-UniversityJerome Mertens

Innsbruck, Innsbruck, Austria
3

, University of Copenhagen,Agnete Kirkeby

Copenhagen, Denmark
4

 30 Aug 2019,  (F1000 Faculty Rev):1548 (First published: 8
)https://doi.org/10.12688/f1000research.18926.1

 30 Aug 2019,  (F1000 Faculty Rev):1548 (Latest published: 8
)https://doi.org/10.12688/f1000research.18926.1

v1

Page 1 of 17

F1000Research 2019, 8(F1000 Faculty Rev):1548 Last updated: 16 SEP 2019

https://f1000research.com/browse/f1000-faculty-reviews
http://f1000.com/prime/thefaculty
https://f1000research.com/articles/8-1548/v1
https://f1000research.com/articles/8-1548/v1
https://orcid.org/0000-0002-2746-6519
https://f1000research.com/articles/8-1548/v1
https://doi.org/10.12688/f1000research.18926.1
https://doi.org/10.12688/f1000research.18926.1
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.18926.1&domain=pdf&date_stamp=2019-08-30


 

 Oliver Brüstle ( )Corresponding author: brustle@uni-bonn.de
  : Conceptualization, Investigation, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Author roles: Flitsch LJ Brüstle

: Conceptualization, Funding Acquisition, Investigation, Supervision, Visualization, Writing – Original Draft Preparation, Writing – Review & EditingO
 No competing interests were disclosed.Competing interests:

 This work was supported by grants from the European Union (FP7-HEALTH-F4-2013-602278-Neurostemcellrepair andGrant information:
H2020-667301-Comorbidity and Synapse Biology in Clinically Overlapping Psychiatric Disorders-COSYN), the German Federal Ministry of
Education and Research (grant 01EK1603A-Neuro2D3), the ERA-Net Neuron program (grant 01EW1812A-Synaptic Dysfunction in Intellectual
Disability Caused by SYNGAP1-TREAT-SNGAP), and the National Institutes of Health (R01 NS100514).
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

 © 2019 Flitsch LJ and Brüstle O. This is an open access article distributed under the terms of the Copyright: Creative Commons Attribution
, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.License

 Flitsch LJ and Brüstle O. How to cite this article: Evolving principles underlying neural lineage conversion and their relevance for
 F1000Research 2019,  (F1000 Faculty Rev):1548 (biomedical translation [version 1; peer review: 4 approved] 8

)https://doi.org/10.12688/f1000research.18926.1
 30 Aug 2019,  (F1000 Faculty Rev):1548 ( ) First published: 8 https://doi.org/10.12688/f1000research.18926.1

Page 2 of 17

F1000Research 2019, 8(F1000 Faculty Rev):1548 Last updated: 16 SEP 2019

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/f1000research.18926.1
https://doi.org/10.12688/f1000research.18926.1


An introduction to cell programming and lineage 
conversion
The term cellular programming describes the modulation of 
transcriptional networks underlying cell identity. Research on cell 
programming has a remarkable history. First reports describing 
the principal feasibility of converting one cell type into another 
were published as early as 1987, when Davis, Weintraub, and 
Lassar derived myoblasts by overexpressing the myoblast tran-
scription factor (TF) Myod3 in a mouse fibroblast line1. However, 
at that time, cellular programming was restricted to the conver-
sion of lineage-related cells of the same germ layer (see the 2009 
review by Graf and Enver2). This changed dramatically when 
Kazutoshi Takahashi and Shinya Yamanaka revealed that over-
expression of the four TFs Oct3/4, Sox2, Klf4, and c-Myc is 
sufficient to induce a pluripotent state in mouse3 and human4 
fibroblasts (for a more detailed review, see 5). Today, protocols 
are available to obtain these embryonic stem cell (ESC)-like 
induced pluripotent stem cells (iPSCs) from various species 
and starting cell types.

The success of the iPSC approach demonstrated that cell pro-
gramming is not restricted to the conversion of related cell 
types and fueled attempts to achieve somatic-to-somatic cell 
conversion across germ layers. One avenue pursued in this direc-
tion has been the combination of time-restricted expression of 
the classic iPSC reprogramming TF cocktails with growth factors 
and small molecules promoting neural lineage development. 
An exemplar for such a “partial” reprogramming is the Oct3/4-, 
Sox2-, Klf4-, and c-Myc-driven derivation of neural stem cells 
(NSCs) from fibroblasts6–10 or blood cells11, where transgene 
expression was combined with an exposure to FGF2, FGF4,  
and/or EGF6,7,10,11, FGF2 and/or EGF in conjunction with LIF8, 
or LIF in combination with the TGFβ-inhibitor SB431542 
and the GSK3β-inhibitor CHIR990219. It is worth men-
tioning that in accordance with the transient expression 
of TFs used for generating iPSCs, partial reprogramming 
to NSCs may involve a short transit through a pluripotency-like 
state and can result in mixed cultures of iPSCs and NSCs12,13. 
Interestingly, such a pluripotency transit can also occur without 
forced Oct4 expression. Lineage tracing using an Oct4 reporter 
revealed that NSCs derived by overexpression of Sox2, Klf4, and 
c-Myc in conjunction with the neural-specific TF Brn4 instead 
of Oct4—a protocol originally published by Han et al.14 in 
2012—originate from Oct4-expressing iPSC-like cells12. Such a 
pluripotency transit can be used to mechanistically discriminate 
partial reprogramming from direct cell fate conversion (hereafter 
also denoted as transdifferentiation) based on the overexpression 
of lineage-specific TFs.

A major breakthrough concerning transdifferentiation across 
germ layers was in 2010, when the group of Marius Wernig suc-
ceeded in inducing neurons from mouse fibroblasts by overex-
pressing the neural lineage-specific TFs Ascl1, Brn2, and Myt1l15. 
Soon thereafter, conversion of human fibroblasts to induced neu-
rons (iNs) was achieved by using exactly this ASCL1, BRN2, 
and MYT1L TF combination16,17; ASCL1, BRN2, and MYT1L 
in conjunction with NEUROD118; or BRN2 and MYT1L together 
with the neuronal microRNA miR12419 (Table 1).

While direct transdifferentiation into a neuron remains a fascinat-
ing concept, the applicability of this approach can be limited by 
the fact that neurons are post-mitotic, thereby restricting large-
scale applications. In addition, since not all cells undergo success-
ful transdifferentiation, elimination of partially reprogrammed 
cells remains an issue. Finally, each transdifferentiated neuron 
represents a singular event and thus cannot be subjected to com-
mon batch control-based quality-control regimens, limiting the 
degree of standardization that can be reached with iN cultures. 
In light of this, expandable NSCs or neural progenitor cells 
(NPCs) could offer an interesting alternative. Indeed, several 
groups reported on the successful transdifferentiation of mouse20,21 
and human22–27 fibroblasts into still-proliferative NSCs or NPCs 
using different NSC-enriched TFs or TF combinations (Table 2). 
Subsequently, other somatic cells, too, were found to be amena-
ble to direct neural conversion. In this context, easily accessible 
cell populations such as blood-derived28–31 and urine-derived32 cells 
are of particular interest. Alongside converting non-central nerv-
ous system (non-CNS)-resident cells, there has been significant 
progress with neural conversion of non-neural, CNS-resident 
cells such as brain pericytes33,34 and yolk sac-born microglia35, 
which both represent attractive candidates for in vivo reprogram-
ming. In parallel, transdifferentiation of astrocytes—which can 
be regarded as derivatives of neurogenic radial glia cells at the 
end of neural development (for further details on the relation-
ship of radial glia cells, NSCs, and neurogenesis, see Falk and 
Götz36)—has been rapidly developing37–39, although most stud-
ies have been focusing on transdifferentiating astrocytes in vivo 
(see “Destabilizing and converting cell fates in vivo” section below 
and Table 3). As for the in vitro conversion of astrocytes into 
neurons, Benedikt Berninger, Magdalena Götz, and colleagues 
already showed in 2007 that this can be achieved by overexpression 
of the single neurogenic TF Ngn2 or Ascl140. In the meantime, 
additional paradigms based on TF combinations41, microRNAs42, 
or small molecules43 (or a combination of these) have been 
reported for astrocyte-to-neuron conversion.

Since the beginning of this century, the cell programming 
toolbox has expanded rapidly. The aims of this review are to con-
cisely recapitulate recent advances in this field, to briefly sum 
up our current understanding of general mechanisms underly-
ing cell fate conversion, to summarize commonalities and differ-
ences between the available methods, and to discuss their pros 
and cons with respect to biomedical applications such as disease 
modeling and neuroregeneration.

Boosting transdifferentiation efficiency and fine-
tuning sublineage specification
The first seminal reports on transdifferentiating somatic cells into 
neurons raised strong interest to make this process more efficient 
and, in particular, to tailor it toward the generation of distinct 
neural subpopulations. Since neurons are generally post-mitotic, 
conversion efficiency is a major limiting factor. Several studies 
addressed this bottleneck. It has been shown that modulation of 
signaling pathways by small molecules significantly improves 
iN conversion. For example, combined inhibition of SMAD and 
GSK3 signaling in human fibroblasts by small molecules can 
increase iN purity and yield (percentage of neurons in relation to 
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Table 1. Transcription factor–based generation of induced neurons in vitro.

Derived cell type Starting cell type Species Transcription factors used for 
reprogramming Reference

Trans-germ layer conversion

Neurons (generic) Fibroblasts Mouse Ascl1, Brn2, Myt1l Vierbuchen et al. (2010)15

Fibroblasts, 
Hepatocytes

Mouse Ascl1, Brn2, Myt1l Marro et al. (2011)44

Fibroblasts Mouse Ascl1, Brn2, Myt1l Adler et al. (2012)45

Fibroblasts Mouse Ascl1, Brn2 and Myt1l or Ascl1, Brn2, 
Ngn2

Meng et al. (2012)46

Fibroblasts Mouse None (chemical reprogramming) Li et al. (2015)47

Fibroblasts Mouse Several (CRISPR activation screen) Liu et al. (2018)48

Fibroblasts Mouse Several (TF screen) Tsunemoto et al. (2018)49

Fibroblasts (in situ) Mouse, Human Ascl1, Brn2, Myt1l Torper et al. (2013)50

Fibroblasts Human miR124, BRN2, MYT1L Ambasudhan et al. (2011)19

Fibroblasts Human ASCL1, BRN2, MYT1L, NEUROD1 Pang et al. (2011)18

Fibroblasts Human ASCL1, BRN2, MYT1L Pfisterer et al. (2011)17

Fibroblasts Human miR9/9* and miR124 (+ ASCL1, MYT1L 
and/or NEUROD2)

Yoo et al. (2011)51

Fibroblasts Human ASCL1, NGN2 Ladewig et al. (2012)52

Fibroblasts Human miR-124 regulated ASCL1, BRN2, MYT1L Lau et al. (2014)53

Fibroblasts Human ASCL1, BRN2, MYT1L Pereira et al. (2014)54

Fibroblasts Human shp16 and/or shp19 or hTERT Sun et al. (2014)55

Fibroblasts Human ASCL1, NGN2 (Ladewig et al. (2012)52) Mertens et al. (2015)56

Fibroblasts Human miR9/9*, miR124 (Yoo et al. (2011)51) Huh et al. (2016)57

Fibroblasts Human ASCL1, BRN2, MYT1L (Pereira et al. 
(2014)47)

Pfisterer et al. (2016)58

Fibroblasts Human NGN2 Smith et al. (2016)59

Fibroblasts Human ASCL1, BRN2 (+ shRNA REST) Drouin-Ouellet et al. (2017)60

Fibroblasts Human ASCL1, NGN2 (Mertens et al. (2015)56) Kim et al. (2018)61

Fibroblasts Human ASCL1, NGN2 Herdy et al. (2019)62

Microglia Mouse Neurod1 Matsuda et al. (2019)35

Glutamatergic 
neurons

Fibroblasts Mouse, Human Ascl1 Chanda et al. (2014)63

Fibroblasts Human None (chemical reprogramming) Hu et al. (2015)64

Fibroblasts Human BRN2, MYT1L, FEZF2 Miskinyte et al. (2017)65

GABAergic 
neurons

Adipose-derived 
stem cells

Human None (chemical reprogramming) Park et al. (2017)66

Fibroblasts Mouse Ascl1 Shi et al. (2016)67

Pericytes Human ASCL1, SOX2 Karow et al. (2012)33

Pericytes Human ASCL1, SOX2 (Karow et al. (2012)33) Karow et al. (2018)34
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the initial number of plated cells) to up to 80% and 210%, 
respectively52. Following up on this observation, Pfisterer et al. 
screened five annotated compound libraries for small molecules 
positively affecting fibroblast-to-neuron transdifferentiation and 
identified additional pathways (for example, cAMP signaling), 

whose modulation can increase neuronal yield58. More recently, 
Herdy et al. reported that combining JAK2 inhibition (promot-
ing cell cycle arrest and mesenchymal-to-epithelial transition) 
with integrin and RAF1 activation (facilitating morphologi-
cal rearrangements) as well as HIF1α inhibition (fostering the 

Derived cell type Starting cell type Species Transcription factors used for 
reprogramming Reference

Trans-germ layer conversion

Midbrain 
dopamine-like 
neurons

Fibroblasts Mouse Ascl1, Nurr1, Lmx1a, Pitx3, Foxa2, En1 Kim et al. (2011)68

Fibroblasts Mouse, Human Ascl1, Nurr1, Lmx1a Caiazzo et al. (2011)69

Fibroblasts (in situ) Mouse, Human Ascl1, Brn2, Myt1l, Lmx1a, Lmx1b, 
Foxa2, Otx2

Torper et al. (2013)50

Fibroblasts Human ASCL1, BRN2, MYT1L, LMX1A, FOXA2 Pfisterer et al. (2011)16

Fibroblasts Human ASCL1, BRN2, MYT1L, LMX1A, LMX1B, 
FOXA2, OTX2

Pereira et al. (2014)54

Fibroblasts Human ASCL1, NURR1, LMX1A, miR124  
(+ shp53)

Jiang et al. (2015)70

Striatal medium 
spiny neurons

Fibroblasts Human miR9/9*, miR124, CTIP2, DLX1, DLX2, 
MYT1L

Victor et al. (2014)71

Fibroblasts Human miR9/9*, miR124, CTIP2, DLX1, DLX2, 
MYT1L (Victor et al. (2014)71)

Victor et al. (2018)72

Serotonergic 
neurons

Fibroblasts Human ASCL1, NGN2, NKX2.2, FEV, GATA2, 
LMX1B

Vadodaria et al. (2016)73

Fibroblasts Human ASCL1, FEV, LMX1B, FOXA2 (+ shp53) Xu et al. (2016)74

Motoneurons Fibroblasts Mouse Ascl1, Brn2, Myt1l, Ngn2, Lhx3, Hb9, Isl1 Ichida et al. (2018)75

Fibroblasts Mouse, Human Ascl1, Brn2, Myt1l, Ngn2, Lhx3, Hb9, 
Sox1, Pax6, Nkx6.1, Olig2 (+ Isl1)

Son et al. (2011)76

Fibroblasts Human NGN2, SOX11, ISL1, LHX3 Liu et al. (2016)77

Fibroblasts Human miR9/9*, miR124, ISL1, LHX3 Abernathy et al. (2017)78

Fibroblasts Human NGN2, SOX11, ISL1, LHX3 Tang et al. (2017)79

Sensory neurons Fibroblasts Mouse, Human Brn3a, Ngn1 or Brn3a, Ngn2 Blanchard et al. (2015)80

Fibroblasts Mouse, Human Ascl1, Myt1l, Ngn1, Isl2, Klf7 Wainger et al. (2015)81

Intra-germ layer conversion

Neurons Astrocytes Mouse Ngn2 or Ascl1 Berninger et al. (2007)40

Astrocytes Mouse Ngn2 or Ascl1 or Dlx2 (+ Ascl1) Heinrich et al. (2010)82

Astrocytes Mouse Ascl1 (+ Bcl2) Gascón et al. (2016)83

Astrocytes (in situ) Mouse, Human Ascl1, Brn2, Myt1l Torper et al. (2013)50

Astrocytes Human OCT4, SOX2, or NANOG Corti et al. (2012)41

Astrocytes Human miR302/367 Ghasemi-Kasman et al. 
(2015)42

Astrocytes Human None (chemical reprogramming) Zhang et al. (2015)43

Midbrain 
dopamine-like 
neurons

Astrocytes (in situ) Mouse, Human Ascl1, Brn2, Myt1l, Lmx1a, Lmx1b, 
Foxa2, Otx2

Torper et al. (2013)50

Astrocytes Human ASCL1, NEUROD1, LMX1A, miR218 Rivetti di Val Cervo et al. 
(2017)84
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Table 2. Approaches for the direct in vitro conversion of somatic cells into neural stem cells/neural progenitor cells.

Starting cell type Species Transcription factors used for reprogramming Reference

Trans-germ layer conversion

Cord blood cells (CD133+) Human SOX2, c-MYC Giorgetti et al. (2012)28

Cord blood cells (CD133+) Human SOX2, c-Myc Castano et al. (2016)29

Cord blood cells (CD34+) Human OCT4 Liao et al. (2015)85

Cord blood cells (CD34+), 
Fibroblasts

Human SOX2, HMGA2 Yu et al. (2015)24

Cord blood cells (CD34+), 
Peripheral blood cells

Human SOX2, c-MYC Sheng et al. (2018)30

Peripheral blood cells (CD34+) Human OCT3/4, SOX2, KLF4, c-MYC Wang et al. (2013)11

Peripheral blood cells Human OCT4, SOX2, KLF4, c-MYC, LIN28, NANOG, SV40LT Tang et al. (2016)86

Peripheral blood cells, 
Fibroblasts

Human SOX2, KLF4, BRN2, ZIC3 Thier et al. (2019)31

Fibroblasts Mouse Oct4, Sox2, Klf4, c-Myc Kim et al. (2011)6

Fibroblasts Mouse Brn4, Sox2, Klf4, c-Myc (+ Tcf3) Han et al. (2012)14

Fibroblasts Mouse Brn2, Sox2, Foxg1 Lujan et al. (2012)20

Fibroblasts Mouse Oct4, Sox2, Klf4, c-Myc Matsui et al. (2012)8

Fibroblasts Mouse None (chemical reprogramming) Cheng et al. (2014)87

Fibroblasts Mouse Oct4, Sox2, Klf4, c-Myc Thier et al. (2012)7

Fibroblasts Mouse Sox2, c-Myc, Brn2, Nr2e, Bmi1 Tian et al. (2012)21

Fibroblasts Mouse None (chemical reprogramming) Han et al. (2016)88

Fibroblasts Mouse Brn4, Sox2, Klf4, c-Myc Kim et al. (2016)89

Fibroblasts Mouse None (chemical reprogramming) Zhang et al. (2016)90

Fibroblasts Mouse None (chemical reprogramming) Zheng et al. (2016)91

Fibroblasts Mouse, Human Sox2 Ring et al. (2012)22

Fibroblasts Mouse, Human Ptf1a Xiao et al. (2018)27

Fibroblasts Pig Oct4, Sox2, Klf4, l-Myc, Lin28 Xu et al. (2014)92

Fibroblasts Monkey, Human Oct4, Sox2, Klf4, c-Myc Lu et al. (2013)9

Fibroblasts Human SOX2, PAX6 Maucksch et al. (2012)93

Fibroblasts Human OCT4, SOX2, KLF4, c-MYC Meyer et al. (2014)10

Fibroblasts Human Oct4 Zhu et al. (2014)94

Fibroblasts Human SOX2 Mirakhori et al. (2015)95

Fibroblasts Human OCT3/4, SOX2, KLF4, l-Myc, LIN28, shp53 Capetian et al. (2016)96

Fibroblasts Human ZFP521 Shabazi et al. (2016)25

Fibroblasts Human CBX2, HES1, ID1, TFAP2A, ZFP42, ZNF423 or FOXG1, 
GATA3, NR2A2, PAX6, SALL2, TFAP2A, ZFP42

Hou et al. (2017)26

Fibroblasts Human SOX2, PAX6 Connor et al. (2018)97

Fibroblasts Human Exosomes Lee et al. (2018)98

Urine cells Human OCT4, SOX2, KLF4, SV40LT, miR302-367 Wang et al. (2013)32

Mesenchymal stem cells Human SOX2 Kim et al. (2018)99

Adipose-derived stem cells Human None (chemical reprogramming) Park et al. (2017)66
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switch from glycolysis to oxidative phosphorylation) efficiently  
improves human fibroblast-to-neuron conversion62. Moreover, 
in inducible viral systems, delivering multiple programming fac-
tors by all-in-one, polycistronic vectors62 and including a recovery 
phase between viral transduction and transgene activation54 have 
been shown to increase conversion efficiency. Lastly, reducing 
reprogramming barriers in somatic cells, such as inhibiting REST 
signaling in human fibroblasts60, overcoming senescence55, or 
inducing epigenetic remodeling by TET1 activation70, has been 
reported to boost iN generation, too.

In addition to increasing iN conversion efficiency as such, the 
generation of defined neuronal subpopulations has been a key focus 
of this emerging field. While the initial TF combinations used 
for iN generation resulted primarily in excitatory neurons, these 
cultures also contained inhibitory GABAergic neurons18,19,35,47,52. 
However, some groups reported on iN paradigms that strongly 
enrich for either glutamatergic63–65 or GABAergic33,34,66,67 neurons. 
With respect to potential clinical prospects, the controlled induc-
tion of midbrain dopamine neurons and striatal medium spiny 
neurons (MSNs)—the prime targets of Parkinson’s disease 
(PD) and Huntington’s disease (HD), respectively—remains 
a key focus. In order to derive dopaminergic iNs from human 
fibroblasts, the classic iN reprogramming cocktail of ASCL1, 
BRN2, and MYT1L can be combined with the dopaminergic 
fate-specifying TFs LMX1A and FOXA217 or a further enriched 
combination of LMX1A, LMX1B, FOXA2, and OTX250,54. 
Alternatively, Ascl1 alone has been shown to be sufficient to induce 
a dopaminergic fate in fibroblasts when combined with Nurr1 

and Lmx1a69; Nurr1, Lmx1a, Foxa2, Pitx3, and En168; or Nurr1, 
Lmx1a, and miR12470. For the derivation of MSNs, combined 
overexpression of the CNS-enriched miR9/9* and miR124 with 
MYT1L and the striatal TFs CTIP2, DLX1, and DLX2 was 
used to convert human fibroblasts into mainly DARPP32- 
positive GABAergic neurons71. Direct conversion has also been  
used to generate serotonergic neurons73,74 as well as peripheral 
sensory neurons80,81 and motor neurons (MNs)75–78 (see Table 1 
for further details). A number of these directly converted neuronal  
subpopulations have been successfully used for in vitro disease 
modeling72,77,81 and drug testing77 (for the use of iNs in disease mod-
eling, see also Drouin-Ouellet et al.113). In parallel to improving 
trans-germ layer conversion, the generation of neuronal subtypes 
from astrocytes has been refined. Pioneering studies by Berninger 
and Götz already indicated that overexpression of Ngn2 yields 
mostly glutamatergic neurons whilst direct conversion of astro-
cytes with Dlx2 results in neurons biased toward a GABAergic 
phenotype82,114. More recently, in vivo transdifferentiation into 
neurons with a predominantly dopaminergic fate was achieved84.

With regards to fine-tuning direct conversion paradigms, it is 
worth mentioning that experimental tools other than classic ret-
roviral or lentiviral systems have been employed for the deliv-
ery of TFs or activation of endogenous reprogramming-inducing 
genes. These include non-integrating viruses30,46,53, plasmids 
and episomal vectors45,85,86,92,94,96, pro-neural exosomes released 
upon ultrasound stimulation98, mRNAs97,99 and microRNAs51,  
proteins93,95, or even transdifferentiation paradigms based  
solely on chemical cocktails47,64,66,87–91.

Table 3. Approaches for neural conversion in vivo.

Derived cell type Starting cell type Transcription factors used for 
reprogramming Reference

Neurons (generic) Proliferating non-neuronal cells 
Reactive astrocytes 
Reactive astrocytes 
Reactive astrocytes

Ngn2 
OligVP16 or Pax6 
OligVP16 or Pax6 
Ascl1

Grande et al. (2013)100 
Buffo et al. (2005)37 
Kronenberg et al. (2010)38 
Faiz et al. (2015)101

Astrocytes 
Astrocytes 
Astrocytes 
Astrocytes 
Astrocytes 
Astrocytes 
Astrocytes, NG2 cells 
Reactive astrocytes, NG2 cells 
Reactive astrocytes, NG2 cells 
NG2 cells 
Microglia 
Neurons (layer IV to V) 
Neurons (layer II/III to V)

Sox2 
Sox2 
miR302/367 
Ascl1 
Sox2 (Niu et al. (2013)102) 
Sox2 and shp53 or shp21 
Ascl1, Nurr1, and Lmx1a 
Neurod1 
Ngn2 (+ Bcl2) 
Sox2 (+ Ascl1) 
Neurod1 
Fezf2 
Fezf2

Niu et al. (2013)102 
Su et al. (2014)103 
Ghasemi-Kasman et al. (2015)42 
Liu et al. (2015)104 
Niu et al. (2015)105 
Wang et al. (2016)106 
Torper et al. (2015)107 
Guo et al. (2014)108 
Gascon et al. (2016)83 
Heinrich et al. (2014)109 
Matsuda et al. (2019)35 
De la Rossa et al. (2013)110 
Rouaux and Arlotta (2013)111

Dopaminergic neurons Reactive astrocytes Ascl1, Neurod1, Lmx1a, and miR218 Rivetti di Val Cervo et al. (2017)84

Interneurons NG2 cells Ascl1, Nurr1, and Lmx1a Pereira et al. (2017)112
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Forward programming as fallout of transcription 
factor-based somatic cell fate conversion
Given the tremendous efficacy of TFs in converting somatic cell 
fates, it is not surprising that this concept has been rapidly adopted 
to instruct cell fates from pluripotent stem cells (PSCs), thereby 
replacing or supplementing classic differentiation paradigms using 
extrinsic factors. “Forward programming” approaches such as 
the overexpression of neurogenins (NGNs)115–120 or ASCL163,121 
in human PSCs significantly accelerate neuronal differentia-
tion and maturation times. These PSC-derived human neurons 
have been shown to become electrophysiologically functional as 
early as two weeks after NGN induction115,116, and synchronized 
network activity can be detected already after three weeks in  
culture122. This acceleration is associated with an increased  
synchronization of the differentiation process, which facilitates 
disease modeling applications focusing on functional phenotypes 
as, for example, in schizophrenia and autism123,124 and tuberous 
sclerosis and epilepsy115,117. As with somatic cell fate conversion, 
combined overexpression of classic neurogenic TFs with TFs pro-
moting distinct regional fates can be used to further fine-tune the 
generation of distinct neuronal subtypes. For example, overexpres-
sion of ASCL1 along with the midbrain-associated TFs NURR1 
and LMX1A in human iPSCs has been demonstrated to yield 
neuronal cultures enriched for TH-positive dopamine-like  
neurons125. The TFs Ngn2 and Isl1 in combination with 
Lhx3 and Phoxa2 instruct mouse ESCs to differentiate into  
cholinergic spinal and cranial MNs, respectively126.

A need for pioneers?
Pioneer TFs are defined as TFs being able to bind to and open 
up closed chromatin. Therefore, pioneer TFs can not only induce 
their own target genes in non-permissive epigenetic states but 
also enable binding and regulation of secondary TFs. By this 
mechanism, pioneers are thought to specifically orchestrate the 
acquisition of new cell fates. Dissecting the process of iN repro-
gramming, Wapinski et al.127 demonstrated in 2013 that Ascl1 
acts as a neuronal pioneer TF exactly in this manner: Ascl1 binds 
almost the same target genes in NSCs and fibroblasts, although 
these sites are mostly in closed chromatin states in fibroblasts. In 
contrast to Ascl1, Brn2 and Myt1l preferentially bind to open and 
accessible chromatin regions. In the context of iN reprogram-
ming with the Ascl1, Brn2, and Myt1l cocktail, Ascl1 at least par-
tially mediates the recruitment of Brn2 and thereby regulates the 
binding of Brn2 to a proportion of its pro-neural target genes127. 
Moreover, Ascl1 alone is, in principle, sufficient to induce 
a neuronal state in fibroblasts, although transdifferentiation with 
Ascl1 in conjunction with Brn2 and Myt1l is far more efficient 
and exhibits faster maturation dynamics63.

It is worth mentioning that overexpression of different neuro-
nal pioneer TFs in otherwise identical cellular contexts might 
lead to varying results. This was recently exemplified by Aydin 
et al., who overexpressed Ascl1 or Ngn2 in isogenic mouse ESC 
lines128. The authors report that although Ascl1 and Ngn2 did 
not differ in their capacity to target inaccessible (and accessible) 
genomic regions, their individual binding patterns are largely 
non-overlapping. In fact, 90% of all targeted sites were found 
to be differentially bound by the two TFs as a consequence of 

their bHLH domain-mediated specificity to distinct E-box motifs. 
As Ascl1 and Ngn2 both increase chromatin accessibility at their 
respective target sites, they recruit shared downstream TFs such 
as Brn2 to different genomic sites, thereby leading to distinct 
patterns of transcriptional activity. Thus, albeit equivalently 
inducing pan-neuronal genes, the divergent binding of Ascl1 and 
Ngn2 elicits distinct neuronal subtype-specific signatures128.

Notably, the effect of a given pioneer TF in PSCs might be quite 
different from that in somatic cells. This was demonstrated in 
2016 by Smith et al., who studied the effect of NGN2 overex-
pression in human fetal fibroblasts59. They revealed that although 
NGN2 is able to act as a pioneer TF in this transdifferentiation 
setting (that is, targeting regions in a closed chromatin state), 
converting fibroblasts into iNs with NGN2 alone is extremely 
inefficient. However, this low efficiency is significantly enhanced 
by the small molecules forskolin and dorsomorphin, which 
promote chromatin accessibility at pro-neural NGN2 binding 
sites. More specifically, forskolin and dorsomorphin enhance the 
enrichment of CREB1 at sites bound by NGN2, thereby induc-
ing the expression of the pro-neural gene SOX4. SOX4, in turn, 
elicits further downstream chromatin remodeling and conse-
quently facilitates the activation of other pro-neural genes such as 
NEUROD1 and NEUROD459. For other somatic cell types, dif-
ferent pioneer factors might be required to promote cell fate 
conversion. In mouse microglia, for instance, not Ngn2 or Ascl1 
but Neurod1 acts as a neuronal pioneer TF, specifically inducing 
transcription of its bivalently marked pro-neural target genes35. 
Along the same lines, oligodendrocytes, which also feature biva-
lent histone modifications at pro-neural Neurod1 target genes, 
were successfully reprogrammed into neurons by Neurod1 
overexpression35.

As the reprogramming field progressed, major advances were 
made in profiling cell fate trajectories by single-cell RNA sequenc-
ing (scRNAseq). Using this technology, Treutlein et al. stud-
ied the conversion of mouse embryonic fibroblasts to iNs and 
specifically analyzed the contribution of the neuronal pioneer TF 
Ascl1 to the induction and stabilization of the fibroblast-to-iN 
fate switch in the Ascl1–Brn2–Myt1l paradigm129. Concordant 
with the results of Wernig’s group, they showed that overexpres-
sion of Ascl1 alone is sufficient to homogenously induce down-
regulation of fibroblast-enriched transcriptomic signatures, to 
upregulate the expression of neuronal genes, and to promote cell 
cycle exit. They found the continued expression of Ascl1 as 
well as co-expression of Brn2 and Myt1l to be essential for the 
stabilization of neuronal fate and subsequent neuronal matura-
tion, whereas silencing of Ascl1 in the course of the conversion 
process resulted in the reappearance of fibroblast signatures129. 
Notably, the majority of Ascl1-only-induced cells do not acquire 
a neuronal identity, even if Ascl1 expression levels are main-
tained, but activate a myocyte-related transcriptional program129. 
This observation might be explained by the lack of Myt1l 
induction in Ascl1-only conditions. Mall et al. investigated the 
role of this non-pioneer TF during fibroblast-to-neuron conver-
sion and revealed that its main function is to interact with the 
Sin3b–HDAC1 complex to repress non-neuronal transcriptional 
programs130. Myt1l-repressed targets include genes promoting 
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proliferation, such as Hes1, and genes inducing alternative line-
ages, including targets relevant for myocyte differentiation130. 
Together, these data indicate that, in addition to pioneer fac-
tors, secondary fate-specifying or alternative fate-repressing cues 
(or both) are necessary to ensure proper phenotype stabilization. 
Consequently, Tsunemoto et al. recently screened a library of 
598 TF pairs for their ability to convert mouse embryonic fibrob-
lasts into functional iNs49. As expected, almost all successful 
combinations included at least one member of the Ascl, Ngn, or 
Neurod families. However, pairs of pro-neural TFs comprising 
no pioneer TF also yielded functional iNs, demonstrating that 
pioneer TFs are not an indispensable condition for direct cell 
fate conversion49. Along similar lines, the group of Lei Qi per-
formed a CRISPR activation screen to identify single TFs and TF 
combinations that promote differentiation of mouse ESCs and 
direct conversion of fibroblasts into neurons48. In addition to 
known pro-neural TFs such as Ngns or Brn2, their top hits included 
non-pioneer TFs and even non-neural-specific TFs such as 
the epigenetic regulator Ezh248.

Taken together, the currently available data support a two-stage 
architecture of the conversion process. First, target cell type-
specific genes need to be made accessible in case they are in an 
unfavorable chromatin state in the starting cell type. In addition 
to pioneer TFs, epigenetic modifiers or other factors modulat-
ing chromatin accessibility can exert this effect. Overexpression 
of miR9/9* and miR124, for instance, has been shown to pro-
mote gradual remodeling of chromatin accessibility at fibroblast- 
specific enhancers (change to closed chromatin) and chromatin 
opening at pan-neuronal gene loci78. Second, after induction of 
epigenetic plasticity, acquisition and stabilization of a new cell 
fate have to take place. Although this process can be initiated and 
orchestrated by pioneer TFs too, it mostly involves additional 
TFs. These can be co-transduced in the starting cell along with 
the pioneer TF (that is, by overexpressing TF combinations) or 
induced by small molecules used to promote the direct conver-
sion process or they are direct transcriptional targets of the pio-
neer TF and thus secondarily induced by the pioneer itself. 
Eventually, pioneer as well as non-pioneer TFs instruct the adop-
tion of a specific cell fate through either active induction of 
target lineage-specific genes (as was demonstrated for, for exam-
ple, Ascl1129 or Neurod135) or transcriptional repression of 
genes instructing alternative cell fates (as shown for, for exam-
ple, Myt1l130). Notably, however, the process of fate acquisition 
might involve additional intermediate steps, since scRNAseq 
time-course analyses of the iN conversion process indicate the 
presence of transient, unstable progenitor-like identities before 
a stable neuronal phenotype is adopted34,129. As overarching 
mechanistic principles underlying cell fate conversion become 
increasingly uncovered, it is important to note that the exact 
mechanisms of fate switches will always comprise components 
highly specific to the identity of the interconverted cell types and 
the individual conversion paradigm.

Tampering with epigenetic age
The epigenetic memory of a cell falls into two major categories: 
cell fate and age. Since significant transcriptomic and epigenetic 
remodeling plays a pivotal role in the process of cell programming, 

it seems natural to ask how different programming paradigms  
affect a cell’s aging signature. However, age is a highly multi-
faceted phenomenon and hard to assess by simple means (see the 
2015 review by Studer, Vera, and Cornacchia131). Some aspects of 
cellular aging, such as compromised nuclear architecture, cannot be 
easily assessed in a quantitative manner. Others, such as telomere 
length, might not strictly correlate with biological age, depend-
ing on the tissue context132. One alternative way to estimate the 
biological age of a cell independent of its somatic cell fate is to 
analyze DNA methylation (DNAm) signatures and apply algo-
rithms calculating a DNAm age133. When applied to iPSC genera-
tion, DNAm ages have been shown to be reset upon induction of 
pluripotency, which is in line with the fact that iPSC reprogram-
ming resets the starting cell’s identity back to an embryonic- 
like state133,134. Thus, somatic-to-iPSC reprogramming represents 
a tool to derive epigenetically rejuvenated cells. Conversely, in 
2015, the groups of Yixuan Wang and Fred Gage demonstrated 
that aging hallmarks such as age-specific transcriptional sig-
natures and the age-dependent loss of nucleocytoplasmic com-
partmentalization are preserved in mouse135 and human56 iNs, 
respectively. One year after these reports, it was demonstrated 
that the DNAm ages of iNs are retained, too, and almost perfectly 
correlate with their donors’ chronological ages57. Over the last 
two years, several other studies corroborated the notion that age-
associated cellular alterations such as senescence, susceptibility 
to DNA damage, mitochondrial defects, loss of heterochromatin, 
and alterations in nuclear organization are preserved in fibrob-
last-derived iNs61,79. These findings indicate that iNs maintain not 
only epigenetic but also functional age-related phenotypes of their 
cells of origin. Interestingly, all of these studies were conducted in 
a scenario where the converted cells immediately enter the post-
mitotic stage of an iN. Thus, we became interested in the ques-
tion of how age preservation would work upon transdifferentiation 
into a proliferative somatic stem cell population. Following up 
on this idea, we used temporary overexpression of SOX2 and  
c-MYC to convert adult peripheral blood cells into induced NSCs 
(iNSCs). Using the Horvath and other epigenetic age predictor 
algorithms, we found that iNSCs generated in this manner undergo 
massive epigenetic rejuvenation similar to what is observed during 
iPSC reprogramming30. This observation is noteworthy, as our 
conversion approach is OCT4-free and there is no evidence of a 
transit through a pluripotent state. Although the mechanism under-
lying the reset of biological age remains to be unveiled, this find-
ing strongly suggests that epigenetic rejuvenation does not require 
an intermediate pluripotent stage and can also be achieved during 
transdifferentiation of somatic cell types. This notion is further 
supported by very recent analyses of DNAm changes upon iPSC 
reprogramming, which show that the reset of DNAm age and the 
establishment of a stable and self-sustaining pluripotent state fol-
low different time dynamics136. From a conceptual point of view, 
these observations support the idea that epigenetic rejuvenation, 
in principle, can be achieved in somatic cells.

The question of whether or not reprogrammed cells preserve 
age signatures is especially relevant when it comes to modeling 
age-related diseases. In particular, successful modeling of neu-
rodegenerative diseases might depend on the preservation of 
cellular defects naturally accumulating over an organism’s life 
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span. The importance of age preservation for disease modeling 
was recently illustrated in the context of HD. The group of Andrew 
Yoo found that aggregation of the disease-causing mutant hunt-
ingtin protein can be readily recapitulated in directly converted 
MSNs but not in iPSC-derived MSNs, a phenomenon the authors 
attributed to the erasure of age signatures such as the restoration of 
proteasomal activity in iPSC-derived MSNs72. Acknowledging 
that the lack of aging hallmarks in iPSC-derived somatic cells 
can impede modeling of age-associated pathophenotypes, strat-
egies such as progerin overexpression or telomerase inhibition 
have been explored to promote the emergence of age-associated 
phenotypes137,138. Owing to their age memory, directly converted 
neurons might not require additional age-promoting treatments 
for modeling late-onset neurodegenerative diseases, for exam-
ple. However, it is fair to say that iNs might, vice versa, be less 
suitable for modeling neurodevelopmental disorders.

Somatic memory and authenticity
Although some diseases affect neurons rather broadly, others 
are known to target preferentially specific subtypes such as PD, 
which is associated with a loss of mesencephalic dopaminergic 
neurons in the substantia nigra. Since cellular pathomechanisms 
might be cell type dependent, the authenticity of the transdiffer-
entiated neural subpopulation might contribute significantly to 
the validity and power of cellular disease models. While there is 
evidence for low levels of residual somatic memory in low-passage 
iPSCs134,139,140, these signatures appear to vanish after prolonged 
in vitro cultivation140. This presents differently in directly con-
verted cells. Tsunemoto et al. analyzed four fibroblast-derived 
iN populations reprogrammed by different TF combinations and 
revealed that although the global transcriptome of iNs is highly 
similar to that of endogenous neurons, all iN populations showed 
residual low-level expression of a subset of fibroblast-specific 
genes49. Residual somatic signatures were also recently reported 
for iNSCs. Thier et al. derived iNSCs with neural plate bor-
der identity from different populations of human fibroblasts and 
blood cells31. They found that dermal fibroblast-derived but not 
blood-derived iNSCs still express the fibroblast marker COL3A1, 
although other fibroblast-lineage markers are significantly 
downregulated upon transdifferentiation31. Nevertheless, resid-
ual somatic signatures in directly converted cells appear to be 
insufficient to maintain the identity and function of the cell of ori-
gin. For example, hepatocyte-derived iNs were shown to retain 
more than 10% of the liver-specific transcriptomic signature, 
but resulting iNs are capable of neither secreting albumin nor 
producing urea44.

However, the questions of whether and to what extent the func-
tion of the converted iNs can be compromised by residual 
somatic signatures of the donor cell certainly merit further inves-
tigation, and recent data suggest that authenticity is an issue not 
restricted to direct cell fate conversion. Ichida et al. compared 
primary mouse spinal MNs with ESC-derived, iPSC-derived, 
and directly converted MNs and revealed that all in vitro-derived 
MN populations, regardless of the reprogramming paradigm 
used, expressed only about 55% to 86% of the primary MN  
transcriptome75. These differences were accompanied by even 
more pronounced discrepancies in the methylation status75. From 

a technical point of view, this study illustrates a fundamental  
bottleneck of contemporary cell fate reprogramming and conver-
sion research: traditionally, cell fate identification has been based 
mostly on the expression of cell type-specific marker profiles, and, 
if applicable, further characteristic features such as specific func-
tional properties, including electrophysiological data, have been 
considered. These approaches are biased, however, as they are 
hypothesis driven. More holistic approaches such as the in-depth 
analysis of transcriptomic data, ideally in single-cell resolu-
tion, and comparative methylation analysis, as performed by the 
Eggan lab, might represent means to provide more reliable and 
biologically meaningful measures of cell identity and authenticity. 
From a biological perspective, such findings also point to more 
general limitations of in vitro cell systems in recapitulating in vivo 
scenarios. On the other hand, it remains unclear what degree 
of somatic authenticity is eventually required to, for example, 
recapitulate disease-specific phenotypes—an issue which also 
depends on the specific experimental hypothesis. For other bio-
medical applications such as replacement of distinct neuronal 
subpopulations, utmost authenticity will always represent the 
ultimate goal.

Destabilizing and converting cell fates in vivo
Translation of in vitro paradigms of direct cell fate conversion to 
an in vivo scenario remains one of the most fascinating perspec-
tives of regeneration. From a translational point of view, such 
approaches could eventually replace cell transplantation. From a 
biological perspective, transdifferentiation of region-specific 
cells in a native tissue environment might represent the ultimate 
approach to approximate authenticity.

In the CNS, the longest history of in situ transdifferentiation has 
astrocyte-to-neuron conversion (Table 3), starting with the obser-
vation that antagonizing Olig2 or overexpressing Pax6 after 
traumatic brain injury enables neurogenesis from resident reac-
tive astrocytes37; this phenomenon has also been recapitulated 
after infliction of mild brain ischemia38. Similarly, Neurod1 
has been shown to convert reactive astrocytes as well as NG2-
positive progenitors into neurons in mouse stab injury and  
Alzheimer’s disease models108. Heinrich et al. demonstrated 
that retrovirus-mediated overexpression of Sox2 alone or in 
combination with Ascl1 transdifferentiates NG2 cells into  
neurons in the acutely injured cortex109. Astrocyte-to-neuron 
conversion has also been achieved in the healthy, unlesioned 
rodent CNS, for example, by the overexpression of the pioneer  
TFs Ascl1101,104 and Sox2102,103,106 or mediated by miR302/36742.

As with in vitro conversion, in vivo transdifferentiation is being 
increasingly refined toward the generation of distinct neuronal sub-
populations. Torper et al.107 tested the TF combination of Ascl1, 
Nurr1, and Lmx1a, which specifies dopaminergic-like neurons 
from human PSCs125 and fibroblasts69 in vitro. Notably, although 
this TF cocktail successfully converted astrocytes and NG2 glia 
into neurons in vivo, these neurons did not adopt a dopamin-
ergic phenotype107. Instead, this TF combination was found to 
promote the generation of interneurons exhibiting a fast-spiking 
parvalbumin-positive phenotype107,112, highlighting the neces-
sity to re-assess tools developed in vitro for their applicability  
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in vivo. The team of Ernest Arenas then showed that supplementa-
tion of the TF combination of Ascl1 and Lmx1a with Neurod1 and 
miR218 can successfully instruct the conversion of astrocytes to 
dopamine neurons, which alleviated gait impairments in a mouse 
model of PD84, emphasizing the relevance of this approach for 
clinical translation. Recent work by Matsuda et al. extended  
in vivo transdifferentiation to mouse microglia, which they  
converted with Neurod1 into striatal projection neuron-like 
cells, which were electrophysiologically active and formed  
excitatory synapses with host neurons35. Interestingly, even post- 
mitotic neurons appear to be amenable to TF-based fate shift-
ing: the TF Fezf2 was shown to be competent of re-specifying  
post-mitotic mouse layer II/III callosal projection111 and layer IV 
spiny neurons110 into layer V corticofugal projection neurons.

Escalating the concept of TF-mediated in vivo cell fate shifts, the 
results of several studies point to the possibility of reprogram-
ming cells in situ toward pluripotency141–144. Interestingly, in 
accordance with the concept of partial reprogramming, the group 
of Juan Carlos Belmonte demonstrated that short-term cyclic 
expression of Oct3/4, Sox2, Klf4, and c-Myc in vivo does not lead 
to the establishment of a stable pluripotent fate but can increase 
the regenerative capacity of multiple organs in physiologically 
aged mice and promote cellular rejuvenation in progeria mice 
suffering from premature aging145.

Challenges for clinical application
Even though in vivo conversion is a promising strategy to exploit 
endogenous sources for cell replacement, a number of limita-
tions have to be overcome before this approach is fit for clini-
cal translation. First, the delivery of fate-instructing factors has 
to be good manufacturing practice compliant and applicable in 
living humans. Here, established viral vector systems suc-
cessfully applied in gene therapy approaches such as adeno- 
associated viruses104,107,112 might represent an attractive solution. 
Alternatively, non-viral approaches such as transducible proteins, 
mRNAs, or small molecules might qualify for delivering the 
required cell programming cues in vivo (for a review on recent 
technologies facilitating in vivo reprogramming, see Larouche and  
Aguilar146). Whatever delivery system is chosen, it has to  
enable factor distribution to the lesion site. For focal lesions, 
stereotaxic delivery can be considered, but more global cell  
loss might require modes of systemic administration that are 
not impeded by the blood–brain barrier. Moreover, dependent 
on the individual transdifferentiation regimen, multiple rounds 
of factor administration or delivery of depots such as scaffold- 
bound conversion factors might be necessary (reviewed in  
2019 by Larouche and Aguilar146 and Bruggeman et al.147).

In vivo conversion is further complicated by the fact that this 
process can be strongly context dependent. Grande et al. showed 
that Ngn2-mediated conversion of proliferating non-neuronal 
cells yields GABAergic neurons in the mouse striatum but results 
in the emergence of glutamatergic neurons in the neocortex100. In 
addition, the local microenvironment can affect conversion 
efficiency. Wang et al.106 found that decreasing p53–p21 sig-
naling increases the yield of astrocyte-derived neuroblasts by 
preventing p53-induced cell cycle exit, while locally secreted 

neurotrophins can support their maturation105. Götz and her team 
reported that counteracting oxidative stress and ferroptosis can 
significantly increase neuron derivation from glial cells in vivo83.

Another risk factor to be considered in the context of in vivo 
conversion is the emergence of partially programmed cells, the 
potential tumorigenicity of such cells, and their potential impact 
on tissue homeostasis. Finally, as in vivo conversion efficiencies 
increase, depletion of the target cell population can become a seri-
ous issue. This is particularly true for astrocytes, oligodendro-
cytes, and microglia, which serve a plethora of vital functions 
in tissue homeostasis and neuronal function. In this context, cells 
with residual self-renewal capacity might serve as particularly 
attractive targets for neuronal conversion.

Implications
Notwithstanding the many fundamental and translational ques-
tions that remain to be addressed in the context of direct cell fate 
conversion, this field provides fascinating prospects for a number 
of biomedical applications ranging from disease modeling via 
drug discovery to cell therapy and endogenous regeneration 
(Figure 1). For disease-related research, the prospect of age pres-
ervation in iNs could render these cells a preferred resource for 
patient-specific modeling of late-onset neurodegenerative disor-
ders and establishing in vitro systems for compound screening. 
As for regeneration, somatic cell fate conversion and TF-based 
forward programming of PSCs could enable intricate approaches 
for generating neural subtypes faster and with much higher preci-
sion than conventional methods. Finally, in vivo transdifferentia-
tion is about to revolutionize our concepts for neuroregeneration 
and, for some applications, might eventually substitute traditional 
cell transplantation strategies. However, although epigenetic 
remodeling is a general principle underlying cell programming, the 
preservation of somatic and age memory seems to be unique for 
each conversion paradigm. Thus, developing a better understand-
ing of the mechanisms underlying specific conversion trajecto-
ries is essential in order to fully exploit this emerging technology 
for biomedical research and therapy.

Abbreviations
Ascl1, Achaete-scute homolog 1; bHLH, basic helix–loop–helix; 
Brn2 aka POU3F2, POU domain class 3 transcription factor 2; 
Brn4 aka POU3F4, POU domain class 3 transcription factor 4; 
cAMP, cyclic adenosine monophosphate; CNS, central nervous 
system; c-Myc, avian myelocytomatosis viral oncogene cellu-
lar homolog; COL3A1, collagen type III alpha 1 chain; CREB1, 
cAMP responsive element-binding protein 1; CRISPR, clustered 
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protein phosphatase 1 regulatory subunit 1B; Dlx, distal-less 
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induced pluripotent stem cell; ISL1, islet1; JAK2, Janus kinase 
2; Klf4, Krueppel-like factor 4; LIF, leukemia inhibitory fac-
tor; LHX3; LIM homeobox 3; Lmx1, LIM homeobox TF 1; MN, 
motor neuron; MSN, medium spiny neuron; Myod3, myogenic dif-
ferentiation 3; Myt1l, myelin transcription factor 1 like; Neurod1, 
neurogenic differentiation 1; NG2, neuron-glial antigen 2; NGN, 
neurogenin; NPC, neural progenitor cell; NSC, neural stem cell; 
NURR1, nuclear receptor related 1; Oct3/4, octamere-binding 
transcription factor 3/4; Olig, oligodendrocytes TF; OTX,  

orthodenticle homeobox; PAX, paired box protein; PD, Parkinson’s 
disease; PHOX2A, paired like homeobox 2A; PSC, pluripotent 
stem cell; Pitx, pituitary homeobox; RAF1, rapidly accelerated 
(rat) fibrosarcoma 1; REST, RE1 silencing TF; scRNAseq, single- 
cell RNA sequencing; Sin3b, SWI-independent transcription 
regulator family member b; Sox2/SOX4, sex determining region 
Y-box 2/4; TET, Ten-eleven translocation methylcytosine 
dioxygenase; TF, transcription factor; TGF, transforming growth 
factor; TH, tyrosine hydroxylase

Figure 1. Direct cell fate conversion strategies in the context of biomedical applications. Depending on the choice of programming 
factors, direct conversion can be fine-tuned to derive different cell types and even distinct neuronal subtypes, which can serve as platforms 
for disease modeling and drug discovery or as donor source for neural transplantation. Notably, different cell fate programming paradigms 
are characterized by varying degrees of scalability (that is, cell yield), retention of epigenetic memory, and standardization (for example, cell 
culture homogeneity and feasibility to provide quality-controlled batches), which might influence their applicability for biomedical applications. 
In contrast to transplantation of in vitro-derived cells, in vivo cell fate conversion might enable restoration of neuronal circuitry from endogenous 
sources. NSC, neural stem cell; TF, transcription factor.
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