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Abstract

Potassium (K) channels exhibit exquisite selectivity for conduction of K+ ions over other cations, 

particularly Na+. High resolution structures reveal an archetypal selectivity filter (SF) 

conformation in which dehydrated K+, but not Na+, ions are perfectly coordinated. Using single 

molecule FRET (smFRET), we show that the SF-forming loop (SF-loop) in KirBac1.1 transitions 

between constrained and dilated conformations as a function of ion concentrations. The 

constrained conformation, essential for selective K+ permeability, is stabilized by K+ but not Na+ 

ions. Mutations that render channels non-selective result in dilated and dynamically unstable 

conformations, independent of the permeant ion. Further, while wild type KirBac1.1 channels are 

K+-selective in physiological conditions, Na+ permeates in the absence of K+. Moreover, while K+ 

gradients preferentially support 86Rb+ fluxes, Na+ gradients preferentially support 22Na+ fluxes. 

This suggests differential ion selectivity in constrained versus dilated states, potentially providing 

a structural basis for this anomalous mole fraction effect.
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Non-technical summary:

Electrical activity of living cells, as underlies neuronal and cardiac function, for instance, depends 

on selective permeation of charged ions across cell membranes. Central to this process, potassium 

channels exhibit an exquisite sensitivity for permeating potassium ions over sodium ions. 

Crystallographic and cryo-electron microscopy studies show a specific structural conformation in 

the channel pore that accommodates potassium ions but not sodium ions. By visualizing 

movements within individual channel proteins, we show that rather than being pre-formed, this 

specific structure is actually stabilized by potassium ions themselves. This helps explain how the 

structure is so perfectly arranged to accommodate potassium ions and not other ions.

Introduction

Selective permeation of potassium (K+) ions at near diffusion limited rates, through 

membrane proteins known as potassium (K) channels, is fundamental to the development of 

cellular membrane potentials, and is essential for control of the intracellular ionic milieu, 

electrical activity, and life itself1. The highly conserved K channel selectivity filter (SF) 

discriminates K+ over other cations, particularly Na+1. High resolution crystal structures of 

multiple K+ channels all reveal a common SF structure that forms multiple sites which 

coordinate K+, and through which K+ ions process in single file2–4. The polarity, size and 

geometry of these K+ binding sites mimic those of the water dipoles that coordinate K+ ions 

in solution, thermodynamically favoring the binding of K+ over Na+. Selective conduction of 

K+ is then proposed to result from a ‘knock-on’ mechanism, whereby entering ions 

destabilize the next ion in the file5–9. Central to this proposed mechanism of selective 

conductance is that the SF must maintain a relatively fixed conformation in order to maintain 

optimal coordination of K+ ions. However, we have little insight as to how or whether or 

how such a conformation would be maintained without the coordinated K+ ions being 

present, and there have been no direct observations of the temporal dynamics of the SF. 

There are many reports that the SF ‘collapses’ into an inactivated state in the absence of K+ 

ions10–12, the reversibility of which is not always clear. There have been few reports of 

successful crystallization of potassium-selective channels in pure Na+-containing solutions 

to provide a view of the structural correlates, and no experimental approaches to assessing 

the dynamics of such processes.

Results

smFRET reveals ion-dependent SF-loop dynamics

We recently developed a single-molecule FRET approach to permit real time assessment of 

conformational dynamics in the inward rectifier K channel KirBac1.1 embedded in a lipid 

membrane (Supplementary Fig. 1a)13. In that first study we reported a constrained 

conformation of the SF-loop, demonstrated by stable, high (~0.8) FRET efficiencies 

between fluorophores placed at diagonal T120C sites of the homotetrameric channel (Fig. 

1a)13. That study was carried out in the presence of 150 mM [K+], which generates high K+ 

occupancies within the SF14. However, even in these conditions, some channels occasionally 

transit to low FRET efficiency conformations. We speculate that these transitions might be 
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related to changes in SF conformation, and might be affected by K+ ion occupancies. To 

investigate this possibility further, we have examined conformational dynamics of the SF-

loop in the complete absence of K+ (replaced with 150 mM Na+). Strikingly, under these 

conditions, the SF-loop FRET signals are no longer predominantly high FRET efficiencies, 

but switch predominantly to additional low (~0.2) and medium (~0.45) FRET efficiencies 

with frequent transitions between them (Fig. 1a, top). Although we cannot discount the 

possibility that such distinct FRET efficiencies actually represent states of different 

fluorophore mobility, T120C residues are well exposed and, therefore, the attached 

fluorophores are likely to adopt random orientations and conform to κ2 = 2/3 (see 

Discussion). With this assumption, the predicted distances of FRET 0.8, 0.45 and 0.2 

efficiency states are 40, 52 and 64 Ǻ. The highest (0.8) FRET efficiency-predicted distance 

being very close to that predicted by KirBac1.1 crystal structure (PDB 1P7B, 36 Ǻ for T120 

Cα-Cα distance, obtained in high [K+]), while the FRET 0.45 and 0.2 state could represent 

dilation (i.e. outward movement from the pore axis) of one or both of the diagonally labeled 

subunits, respectively, although the structural motion required (~10 Ǻ in each subunit) is 

several-fold bigger than that typically suggested by ‘collapsed’ or ‘flipped’ structures of the 

SF reported in crystal structures or in dynamic simulations.

Over the whole range of [K+], the FRET amplitude distributions (Supplementary Fig. 1b) 

show clear peaks, requiring a minimum sum of 3 Gaussians for adequate fitting 

(Supplementary Fig. 1b), with FRET peaks at 0.2, 0.45 and 0.8. Addition of low 

concentrations of K+ in the presence of 150 mM Na+ results in a dramatic concentration-

dependent change in dynamic behaviors at the SF-loop, which switch from being dilated and 

dynamic back to being compact and relatively stable, above ~1mM K+ (Fig. 1b). Occupancy 

of the intermediate FRET state (FRET ~0.45) shows a shallow dependence on [K+], with a 

peak at ~1 mM [K+], while relative occupancies of the low and high FRET states decrease or 

increase, respectively, with apparent Kd of ~1 mM and Hill coefficient (nH) of ~0.5 (Fig. 

1c). This is similar to the concentration-dependence of K+ ion binding in the SF obtained 

using other approaches15,16.

In contrast to the marked ion-dependence of FRET signals at residue T120C, the FRET 

distributions and dynamics at residue A45C, which is located in the cytoplasmic slide helix 

region, are insensitive to switching from 150 mM K+ to 150 mM Na+ (Fig. 1d). This 

important control data set indicates that the channel complex remains intact in the latter 

condition and, moreover, that conformational effects of K+ are local to the SF region and are 

not propagated through the channel complex. Interestingly, although the stable high FRET 

state predominates at what would be physiological external [K+] of 5 mM (Fig. 1b), dynamic 

transitions to intermediate and low FRET states are still clearly detectable. Zhou et al3 

previously suggested that SF structural transitions between ‘conducting’ and non-

conducting’ states should occur under physiological conditions, but were unable to detect 

them in crystal or Cryo-EM structures. We confirmed that spontaneous SF conformational 

transitions do occur under physiological ionic conditions by immobilizing KirBac1.1 

proteoliposomes asymmetrically, such that the ‘cytoplasmic’ domain of the channel faces 

145 mM [K+], while the extracellular side of the channel faces 5 mM [K+] (Fig. 1e).
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[K+]-dependent conformational kinetics

The [K+]-dependence of FRET amplitude distributions (Fig. 1c) suggests a simple scenario 

in which the SF-loop of the two diagonally apposed subunits contributing to the FRET 

signal are predominantly dilated away from the pore axis (generating the low FRET0.2 state, 

L), or in intermediate position (the intermediate FRET0.45 state, M), or constricted towards 

the pore axis (the high FRET0.8 state, H). To gain further insight to potential kinetic 

schemes that might account for the observed transitions, we have analyzed the kinetics of 

idealized concatenated FRET records (Fig. 2a, Supplementary Fig. 2, see Methods). In 

general, individual trajectories are dominated by single FRET states within the available 

duration of the FRET recording. In 150 mM [K+], ~92% of traces exhibit high FRET states, 

and only 6.8% of traces exhibit single, low FRET states. In 150 mM [Na+], only ~15% 

traces exhibit stable high FRET states, and in these conditions, only ~10% and 8% of traces, 

respectively, exhibit all three FRET states, due to the limiting lifetime of single molecule 

FRET imaging. We considered any traces exhibiting 2 or 3 distinct FRET states as dynamic 

traces, the percentage of dynamic traces for 0, 0.005, 0.05, 0.5, and 150 mM [K+] were 42, 

54, 44, 51, 47 and 35%, respectively. To overcome the limitations of short recordings and 

attempt to estimate lifetimes, we randomly concatenated all trajectories obtained under the 

same condition17 (see Methods). This analysis indicates that lifetime distributions are 

generally exponential, and that mean FRET lifetimes increase for the H state as [K+] 

increases, and M state lifetimes show bell-shaped dependence on [K+], although there is no 

obvious decline in mean lifetime for the L state (Fig. 2b). Not only lifetimes, but also 

transition paths, are obtained from such idealizations, allowing calculation of individual rate 

constants for each transition (Fig. 2c, see Methods). This analysis indicates that increase in 

the M>H and L>H transition rates, and decrease in the M>L transition rate, are the 

predominant drivers of altered FRET distributions as [K+] increases, with relatively [K+] 

independent L>M, H>L and H>M transitions (Fig. 2c). We considered whether an allosteric 

3-state kinetic model, in which transition rate constants depend on [K+], might suffice to 

explain the FRET distributions and transition kinetics. Such a model (see Supplementary 

Fig. 3a,b), in which transition rate constants and [K+]-dependence were manually adjusted 

(but constrained to maintain micro-reversibility, Fig. 2b), readily accounts for the 

distribution of FRET amplitudes (Supplementary Fig. 3c, left). However, it does not fully 

account for the measured [K+]-dependent lifetimes (Supplementary Fig. 3c, right), although 

we note that given the limitation of short time recordings, lifetimes are likely to be 

underestimated, even after concatenation.

Pore blocking ions also control SF dynamics

Tetra-alkylammonium compounds (e.g. TEA+ and THA+) mimic hydrated K+ ions and are 

classical blockers of K channels, including Kir channels14–20, binding at the extracellular or 

intracellular entrances to the channel20–21. We examined the effects of TEA+ and THA+ on 

SF-loop FRET signals, in the presence of 0.5 mM K+/150 mM Na+. Even at this low [K+], 

the stable high FRET conformation otherwise predominates (Fig. 1b), but addition of either 

TEA+ (Fig. 3a) or THA+ (Supplementary Fig. 4a) causes a dramatic shift of the FRET 

distribution to low and medium FRET states. The apparent Kd values are ~0.5 mM for TEA
+ (Fig. 3b) and ~0.05 mM for THA+ (Supplementary Fig. 4b), close to those obtained for 

TEA+ and THA+ block of K channels in electrophysiological studies20,22. In crystal 
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structures of KcsA complexed with TEA+ (extracellular side) or THA+ (inner cavity side), K
+ occupancies are decreased at the inner (S2, S3) binding sites but are increased at outer sites 

(S1, S4) 20,21. We thus suggest that the striking TEA+ and THA+ de-stabilization of the 

constrained SF-loop conformation may reflect decreased K+ ion occupancy of deep sites 

within the SF itself.

NMDG+ is a large organic cation that is sterically excluded from the selective ion binding 

sites in K channels. Neither addition of NMDG+ on the 150 mM Na+ background, nor of Na
+ on a 150 mM NMDG+ background, affected the SF-loop conformation (Supplementary 

Fig. 5). However, when K+ ions were introduced on the 150 mM NMDG+ background, 

restoration of the constrained conformation again occurred (Fig. 3c), but with a higher 

affinity and steeper [K+]-dependence compared to K+ addition to 150 mM Na+ (Fig. 3d), 

consistent with functional and structural findings that Na+, but not NMDG+, may compete 

for SF binding sites when K+ ions are present within the SF23,24.

Ion-independent SF-loop dynamics in non-selective mutants

The signature amino acid sequence ‘TxGYG’ within the K channel SF-loop generates the 

canonical K+ binding sites and is highly conserved throughout the K channel superfamily25 

(Supplementary Fig. 6). As shown in Fig. 4a, specific mutations in the signature sequence 

that can abolish K+ selectivity (as first identified in the voltage-dependent Shaker K 

channel26), also abolish K+ selectivity of KirBac1.1 when introduced at the equivalent 

residues. Critically, these mutations also all lead to highly dynamic 120C FRET efficiencies 

that are insensitive to the ionic conditions (Fig. 4b,c). These results strikingly demonstrate 

that loss of K+-selectivity is coupled to loss of K+-dependent stability of the SF-loop 

conformation. These results thus provide consistency with the idea that the constrained high 

FRET state, K+-selective SF-loop conformation, rather than being a pre-existing state, is 

actually maintained by K+ ion-SF interactions. This is in turn consistent with biochemical 

demonstration that, in SDS, K+ ions control quaternary stability of KcsA15 and KirBac1.1 

channels27.

The mechanism of K-selectivity

Highly selective K+ permeation through K channels requires preferential binding of K+ ions 

over Na+ ions in the channel SF. The above results imply that the SF conformation is itself 

dependent on the ions that are present. This has important additional implications regarding 

ion permeation through the channel. First, the dilated, dynamic, SF conformations that we 

observe in pure Na+ solutions are time-stable within the time course of our experiments and 

are fully reversible upon re-addition of K+ ions. They therefore do not reflect an irreversibly 

collapsed filter state, and raises the possibility that these conformations might actually be Na
+ permeating states. We tested this directly by examining ion fluxes into KirBac1.1-

containing liposomes, under driving forces generated solely by Na+ or by K+ ions (Fig. 

5a,b). Robust Na+-driven Na+ fluxes are clearly detectable in KirBac1.1, implying that the 

dilated SF conformation can accommodate and permeate Na+ ions (Fig. 5a,b). Importantly, 

we also detect 22Na+ fluxes when the driving force is generated by K+ ions, but these K+-

driven 22Na+ fluxes are actually smaller than Na+-driven fluxes (Fig. 5a). Since the channel 

is highly K+ (or Rb+)-selective under physiological conditions28,29, it is unlikely that the 
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driving membrane voltage is lower with K+-driven fluxes, further suggesting that K+ ions 

actually inhibit Na+ flux. Conversely, K+-driven Rb+ fluxes are much higher than Na+-driven 

Rb+-fluxes (Fig. 5b). This then suggests that 22Na+ fluxes are lower when K+ ions provide 

the driving force (and generate the constrained conformation) because Na+ actually 

permeates the dilated SF conformation, rather than, or at least better than, it does the K+-

selective, constrained, conformation.

Discussion

We have visualized conformational dynamics of the KirBac1.1 channel SF-loop using 

smFRET. Our results indicate that the SF-loop is stabilized in a constrained, high FRET 

conformation by high [K+], but becomes conformationally more dynamic, with frequent 

transitions between lower FRET conformations, at low or zero [K+]. Conformational 

flexibility of the SF has been reported using solid state NMR previously30,31, but the 

relevance has not been fully clear and has not been examined at the single molecule level, 

nor with the temporal and conformational resolution that our studies provide. A major role 

for K+ ion binding in maintaining stability of the entire channel tetramer has been shown in 

detergent-solubilized K channels15,27,32, suggesting that, in the absence of K+ ions, the 

canonical SF structure is at least less stable. The notion of a relatively fixed K channel SF 

conformation has been repeatedly cautioned against by computational models of SF 

dynamics 33–38. Importantly, the present results do not support an ion-independent pore 

conformation, and are therefore difficult to reconcile with previous crystallographic studies 

which have suggested a stably canonical K channel SF conformation, even in the absence of 

Na+ 39. It is conceivable that crystal constructs help to stabilize the constrained, canonical 

conformation in such experiments. Here we provide experimental evidence for 

conformational dynamics of the SF-loop in the presence of Na+ or impermeant organic 

cations, and stabilization in a high FRET conformation by high concentrations of K+ ions. 

Kinetic analysis indicates that the rate of transitions into the constrained high FRET state are 

increased by K+, and transitions out of this state are decreased by K+. This is consistent with 

preferentially K+ ion binding sites being generated in this state, and in turn suggests that 

selectivity for K+ against Na+ may originate with the inability of Na+ ions to stabilize the 

backbone carbonyls of the SF-loop in the necessary tetrameric conformation that selectively 

permits efficient K+ diffusion across the membrane.

Although we do not interpret FRET efficiencies in terms of absolute distances, it is 

important to consider whether the FRET efficiencies we observe are feasible, given the 

known features of the channel structure. We assessed predicted FRET efficiencies using the 

FRET-restrained Positioning and Screening (FPS) software package40 for the KirBac1.1 

crystal structure (2WLL) obtained in high KCl conditions (>50 mM). FPS analysis indicates 

full fluorophore accessibility to a cone-like space centered at T120, supporting assumption 

of 2/3 for the orientation factor (Supplementary Fig. 7). The predicted average donor-

acceptor distance is 52±11 Å, and predicted mean FRET efficiency is ~0.48. Our smFRET 

measurements indicate 3 predominant FRET efficiencies (0.8, 0.45, 0.2), with average FRET 

0.62 in high [K+]. This is higher than the FPS-predicted average FRET 0.48, but a 

significant portion of the calculated accessible volume extends into the space which is 

presumed to be occupied by membrane (Supplementary Fig. 7). As a result, the real 
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accessible volume and the average donor-acceptor distances may be over-estimated by the 

FPS software package. With the above assumptions, the lowest (0.2) amplitude FRET 

conformation we report would imply significant ~10 Å increase in the residue 120 Cα-Cα 
separation. However, we cannot assess the degree of anisotropy in our measurements, and 

increased anisotropy in the lowest amplitude FRET conformations could result in the above 

distance changes being overestimated. Nevertheless, we note that in the HCN channel 

structure41, which contains a GYG SF-filter but is non-selective, the Cα-Cα distance 

between diagonal residues at the external glycine is at least 10 Å wider than in the K+-

selective KcsA41. Potentially the low FRET states we observe reflect similar structural 

conformations.

Our results demonstrate marked, ion-dependent, conformational dynamics in the potassium 

channel extracellular region. They lead us to conclude that selective K+ or Rb+ permeation is 

achieved primarily by the stabilization of the constrained, high FRET (K+ conducting) state 

by ion-channel interactions. Similarly, the dynamic, low FRET state might be specifically 

stabilized by interactions with other (i.e. Na+) ions, potentially generating a Na+ conducting 

state, and explaining why Na+ permeation is inhibited by K+ ions, and vice versa K+ 

permeation is inhibited by Na+ ions (Fig. 5). Such an ‘anomalous mole fraction effect’ has 

been detected in many ion channels, including Ca+-activated and Na+-conducting K+ 

channels, as well as Ca2+ channels39,42,43. The prevailing explanation involves the 

interaction of ions of different species with one another inside an implicitly fixed 

conformation multi-ion pore but, as has been explicitly acknowledged, changing the mole 

fraction of two permeant ions (e.g. K+ and Na+) “might alter the fraction of time that the 

channel exists in conformations of different permeability1”.

Online Methods

a. Plasmids

Plasmids containing tandem dimeric KirBac1.1 protein-encoding cDNAs (A45C-WT, 

T120C-WT) were constructed in previous studies using the pQE60 expression vector 

(Ampr)13,28. For KirBac1.1 non-selective mutants, mutations were introduced by 

QuikChange II XL site-directed mutagenesis kit (Agilent Inc.) and confirmed by DNA 

sequencing.

b. Protein expression, purification and fluorophore labeling

Tandem dimeric KirBac1.1 (WT and mutant) proteins were expressed and purified following 

protocols reported previously13,27. The metal affinity-purified proteins were passed through 

a Superdex-200 10/300 size exclusion column (GE Healthcare Inc.) with running buffer 

containing 20 mM Hepes, 150 mM KCl, 5 mM DM, pH7.0. Tetrameric fractions were 

pooled and concentrated via Amicon Ultra-4 centrifugal filter (MWCO 100 KDa, Millipore 

Inc.). Fluorophore labeling was started immediately after gel filtration by adding 1:1 (molar 

ratio) mix of Alexa Fluor 555 and 647 c2 maleimide to protein solution at final 

protein:fluorophore molar ratio of 1:5. Labeling reactions proceeded at room temperature for 

1 hr and were then terminated by addition of 2-mercaptoethanol at final concentration of 10 

mM. A second metal affinity purification was performed to remove free fluorophores or 
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those associated with protein through non-covalent bonds. The labeled proteins were loaded 

onto a size exclusion column (Superdex-200 10/300, GE Healthcare Inc) and tetrameric 

fractions were collected and concentrated for liposome reconstitution. A labeling control 

using KirBac1.1 WT protein with no intrinsic cysteine was always included to evaluate 

fluorophores bound non-specifically or associated with protein through non-covalent bonds. 

All purifications were performed at 4°C except for labeling reactions.

c. Protein reconstitution

POPE and POPG lipids (3:1, w/w) were dissolved in buffer containing 20 mM Hepes, 150 

mM KCl and 30 mM CHAPS, pH 7.5, at final concentration of 10 mg/ml. Protein labeled 

with Alexa Fluor 555 and 647 fluorophores was mixed with lipid solution at protein:lipid 

ratio of 1:200 (w/w), with or without 2% biotinylated-POPE (w/w, of the total lipids), 

depending on the sample immobilization configuration. The lipid/protein mix was incubated 

at room temperature for 20 min then passed through a sephadex G-50 desalting column to 

remove detergents, thereby forming proteoliposomes. Residual detergents were removed by 

dialysis against 1 L buffer containing 20 mM Hepes, 150 mM KCl, pH7.5 for 2 times and 

proteoliposomes were harvested and stored at −80 °C freezer for single molecule imaging.

d. Single molecule imaging

Chamber slides were prepared following the protocol of Joo et al44. An objective-based 

TIRF microscope, built on a Nikon inverted microscope (TE-2000s) with 100x APO TIRF 

NA1.49 objective lens, 532 nm and 640 nm lasers, was used for single molecule imaging. 

Donor and acceptor emissions were separated by OptoSplit II (Cairn Inc.) with 638 nm 

longpass beam splitter, passed through 585/65 nm and 700/75 nm emission filters (Chroma 

Inc.) and then collected by Evolve 512 delta EMCCD camera (Photometrics Inc.). A CRISP 

auto focus system (ASI Inc.) was incorporated to compensate focus drift due to mechanical 

vibrations and thermo fluctuations. Liposomes containing fluorophore-labeled KirBac1.1 

proteins were immobilized on the slide surface by biotin-neutravidin interactions either with 

biotinylated-POPE in liposomes or biotin conjugated monoclonal anti-His-tag antibodies 

(1:200 dilution, ThermoFisher Inc.). Fluorophores were excited by 532 nm laser and movies 

were collected using NIS-element (Nikon Inc) with frame rates of 10 per second (i.e. time 

resolution of 100 ms). Laser power was ~ 9.1 W/cm2 (at the objective lens side). Recording 

times were typically <3 min, with half bleaching times typically ~45 sec. Except for the 20 

mM Hepes and different concentrations of cations, all imaging buffers contained ~3 mM 

Trolox, 2 mM NBA, 2 mM COT, 5 mM PCA and 15 μg/μL of PCD to enhance the 

photostability of the fluorophores45,46. 50 μM β-escine to permeabilize liposomes47 was 

omitted for experiments with asymmetric ionic conditions. Control liposomes reconstituted 

with labeled control KirBac1.1 WT protein at the same concentration were included to 

evaluate the fluorescent impurities, ensuring that they were less than 5%, in comparison with 

sample liposomes. For every protein, at least 2 independent labeled samples were used; for 

every sample, at least 6 movies were collected.

e. Single molecule imaging data analysis

For every movie, there were typically, 400–600 molecules per field of view with ~80 

molecules containing both acceptor and donor fluorophores. Individual molecules were 
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identified and donor and acceptor fluorescence intensity profiles were extracted by IDL 

scripts developed by the Ha group48,49. Leak and direct excitation corrections were not 

applied, since leakage was lower than 0.06 and direct excitation was essentially 

undetectable. Traces were inspected and selected manually following criteria described in 

previous publications13,50. The bin size of all time histograms was set at 0.02x recording 

time, ensuring equal contribution from each trace to avoid dominant effects of long traces17. 

FRET contour plots were generated from the first 3 s data from each trace. For idealizing 

smFRET traces using Clampfit software, FRET levels were updated independently with 

level contribution as 5% and ‘Ignore short level changes’ and ‘Latency Mode’ disabled. 

Traces in the same condition were concatenated into a single file17. The number of 

transitions in each records was usually >>5x the number of ‘stitched’ records, and false 

transitions at stitch points were ignored.

f. Fluorescence liposome flux assay

KirBac1.1 proteins were reconstituted into POPE/POPG liposomes with protein:lipid ratio 

of 1:500, by passing through Sephadex G-50 desalting columns equilibrated with buffer 20 

mM Hepes, 150 mM KCl, pH7.5. Immediately before flux assay, the extraliposomal buffer 

was replaced by buffers containing different concentration of counter cations, such as LiCl, 

NaCl, KCl, RbCl and CsCl and the total external cation concentration was adjusted to 150 

mM by adding NMDG·HCl. ACMA stock was then added to reach a final concentration of 

13 μM and liposomes loaded into a 96-well plate. Baseline fluorescence (excitation 

wavelength 400/30 nm and emission wavelength 495/10 nm, Top50 Mirror) were measured 

by a Synergy 2 plate reader. After 3 min, CCCP stock was added by the Synergy2 injection 

system to final concentration of 3.2 μM and the ACMA fluorescence was monitored 

continuously with the same setting for 25 min. The ionic flux was evaluated by ACMA 

fluorescence quenching with the following equation:

Flux = (Fb ‐ Fa) ∕ Fb

Where Fb and Fa are the average fluorescence intensities of the sample before, and 20 min 

after, adding CCCP. All flux data were normalized to the flux with no external counter 

cations.

g. Radioactive rubidium and sodium flux assays

KirBac1.1 proteins were reconstituted and 86Rb+ and 22Na+ flux assays were performed as 

described previously27.

h. Kinetic modeling

FRET kinetics and amplitude distributions were examined using a simple 3-state kinetic 

model in which the transition rates (k) between states were dependent on occupancy by K+ 

ions according to the following equation:

k = kzero + kdiff(KD
nH ∕ (1 + KD

nH),
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where kzero = rate constant in zero K+, kdiff = change in k at saturating [K+], and nH = Hill 

coefficient.

i. Statistics

The FRET histogram data of each sample/condition was presented as mean ± s.e.m. with 

equal contribution from all individual traces (rather than each data point). The FRET contour 

map for each sample/condition was calculated from the first 3 s of all traces, with equal 

contribution from all individual traces (all selected traces were longer than 5 secs). The trace 

number n for each sample/condition is included in the accompanying figure legends.

Data Availability and Code Availability Statements

Data collection is described in the Online Methods. Source codes are also listed.Software for 

initial data processing was IDL scripts developed by the Ha group (fully described in refs 

48,49), and available upon request. Subsequent analysis was carried out using Clampfit v7.0 

and in Microsoft Excel.
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NMDG n-methyl-D-glucamine

POPE 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine

POPG 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1’-rac-glycerol)

Trolox 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid

NBA 4-nitrobenzyl alcohol

COT cyclooctatetraene

PCA protocatechuic acid

PCD protocatechuate-3,4-dioxygenase

ACMA 9-amino-6-chloro-2-methoxyacridine

CCCP carbonyl cyanide m-chlorophenyl hydrazine

TEA tetraethylammonium
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Fig. 1. The SF-loop conformation is dependent on ion occupancies
a. Representative smFRET trajectories (above) and associated FRET amplitude histograms 

(below) at T120C sites under different ionic conditions as indicated. Fluorescence intensities 

of the donor Alexa Fluor 555 and acceptor Alexa Fluor 647 are colored cyan and red, 

respectively, FRET is colored blue. The FRET levels 0.2, 0.45 and 0.8 are marked by dashed 

lines. b. FRET contour maps and histograms for AF555/647 fluorophores labeled at 

diagonal T120C sites in the SF-loop, at increasing [K+] from 0–5 mM, on a 150 mM Na+ 

background, as indicated (n= 173, 333, 345, 422 and 386 traces). c. Fractional amplitudes 

from 3 state fits to FRET contour maps in b, plus Hill equation fits of [K+] dependence of 

fractional occupancy of high (F0.8, red, K1/2= 1.34 mM, nH= 0.5) and low (F0.2, blue, 

K1/2= 0.69 mM, nH= 0.5) states. The amplitudes of medium (F0.45, green) FRET 

populations were not fitted. d. FRET contour maps and histograms for AF555/647 

fluorophores labeled at the diagonal A45C sites in the SF-loop, in 150 mM [K+] (n= 396 

traces) or 150 mM Na+ (n= 524 traces), as indicated. e. FRET contour map and histogram 

for AF555/647 fluorophores labeled at the diagonal T120C sites in the SF-loop in 
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asymmetric 145 mM [K+] on the cytoplasmic side, while the extracellular side of the 

channel faces 5 mM [K+] (n= 335 traces).

Wang et al. Page 15

Nat Chem Biol. Author manuscript; available in PMC 2019 September 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. Permeant ion-dependent kinetics of SF-loop conformational dynamics
a. Concatenated smFRET trajectories (blue) in 150 mM KCl (n=363 traces) and 150 mM 

NaCl (n= 173 traces), together with raw idealizations (brown) and subsequent cut-off 

idealization into low (0.2), middle (0.45) and high (0.8) FRET states (green). b. Mean 

lifetime in low (L), medium (M) and high (H) FRET states as a function of [K+], from cut-

off idealization into 3 states for concatenated trajectories as in a (and Supplementary Fig. 2). 

c. Transition rate constants between L, M and H (ML is rate constant for transition from M 

to L, etc) as a function of [K+].
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Fig. 3. Quaternary ammonium ions and impermeant NMDG stabilize low FRET states
a. FRET contour maps and histograms for AF555/647 fluorophores labeled at diagonal 

T120C sites of KirBac1.1 SF-loop with different concentrations of TEA+ (n= 420, 185, 177 

and 214 traces). b. Fractional amplitudes from 3 state fits to FRET contour maps in a. Hill 

equation fits of dependence of fractional occupancy of high (F0.8, red) and low (F0.2, blue) 

states. The amplitudes of medium (F0.45, green) FRET populations were not fitted. c. FRET 

contour maps and histograms for AF555/647 fluorophores labeled at the diagonal T120C 

sites in the SF-loop, with increasing [K+] from 1–5 mM, on a 150 mM NMDG+ background, 

as indicated (n= 234, 212, 252, 191 and 240 traces). d. Fractional amplitudes from 3 state 

fits to FRET contour maps in b. Hill equation fits of [K+] dependence of fractional 

occupancy of high (F0.8, red, K1/2= 0.12 mM, nH= 2.0) and low (F0.2, blue, K1/2= 0.22 

mM, nH= 2.0) states. Comparable fits for 150 mM Na+ background (Fig. 1e) are shown as 

dashed lines. The amplitudes of medium (F0.45, green) FRET populations were not fitted.
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Fig. 4. Non-selective KirBac1.1 mutants exhibit dynamic conformations that are not stabilized by 
either K or Na.
a. Ion-selectivity of KirBac1.1 WT and mutants labeled at diagonal T120C sites with Alexa 

Fluor 555 and 647 fluorophores. WT channels show flux inhibition by permeant K+, Rb+ 

and Cs+ ions but not by impermeant Na+ or Li+, whereas the mutant channels are inhibited 

by all ions. b. Representative smFRET trajectories at T120C sites for KirBac1.1 non-

selective mutations, in 150 mM KCl or 150 mM NaCl, as indicated. Fluorescence intensities 

of the donor Alexa Fluor 555 and acceptor Alexa Fluor 647 are colored cyan and red, 

respectively, FRET is colored blue. c. FRET contour maps and histograms at diagonal 

T120C labeling sites of KirBac1.1 non-selective mutants (from left to right, n= 524, 485, 

220, 238, 263 and 254 traces) in either 150 mM KCl (left) or 150 NaCl (right).
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Fig. 5. Permeant ion induced conductance in KirBac1.
a, b. Time course of 22Na+ (A) or 86Rb+ (B) uptake into liposomes (POPE:POPG, 75: 25%), 

with 450 mM internal and 0.05 mM external [K+] (blue), or with 450 mM internal and 0.05 

mM external [Na+] (green). Liposomes were reconstituted with no protein (open symbols), 

or with KirBac1.1 (2.5 μg/mg lipid, filled symbols), n=3 in each condition. c. Cartoon 

representation of proposed model for ion-dependent conformational transitions in 

KirBac1.1. The selectivity filter exists predominantly in a constrained high FRET state (H), 

an intermediate medium FRET state (M) or a dilated low FRET state (L). Na ions in the pore 

favor transitions away from the H state, particularly the H to M and M to L transitions. K+ 

ions in the pore favor transitions to the H state, in which the SF generates the ‘canonical’ K+ 

selective ion binding sites.
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