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Dynamic models of the complex microbial metapopulation
of lake mendota
Phuongan Dam1, Luis L Fonseca1, Konstantinos T Konstantinidis2 and Eberhard O Voit1

Like many other environments, Lake Mendota, WI, USA, is populated by many thousand microbial species. Only about 1,000 of
these constitute between 80 and 99% of the total microbial community, depending on the season, whereas the remaining species
are rare. The functioning and resilience of the lake ecosystem depend on these microorganisms, and it is therefore important to
understand their dynamics throughout the year. We propose a two-layered set of dynamic mathematical models that capture and
interpret the yearly abundance patterns of the species within the metapopulation. The first layer analyzes the interactions between
14 subcommunities (SCs) that peak at different times of the year and together contain all species whereas the second layer focuses
on interactions between individual species and SCs. Each SC contains species from numerous families, genera, and phyla in
strikingly different abundances. The dynamic models quantify the importance of environmental factors in shaping the dynamics of
the lake’s metapopulation and reveal positive or negative interactions between species and SCs. Three environmental factors,
namely temperature, ammonia/phosphorus, and nitrate+nitrite, positively affect almost all SCs, whereas by far the most interactions
between SCs are inhibitory. As far as the interactions can be independently validated, they are supported by literature information.
The models are quite robust and permit predictions of species abundances over many years both, under the assumption that
conditions do not change drastically, or in response to environmental perturbations.
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INTRODUCTION
Lake Mendota, WI, is home to over 18,000 microbial Operational
Taxonomic Units (OTUs). The OTUs are defined at the 97% 16S
rRNA gene identity level and serve as proxies for species.1 1,140
OTUs (5%) constitute between 80 and 99% of the total microbial
community (Supplementary Figure S2), depending on the time of
the year, whereas the remaining OTUs are rare. The OTU
composition of the community changes markedly throughout
the year, and the dynamics of these changes is an important
determinant of the functionality of the lake. In particular, it has
been shown that higher microbial species diversity is typically
associated with more robust and resilient ecosystems.2 Thus, if the
normal, healthy interaction dynamics could be quantified, then
one could possibly develop tests, based on sentinels or early
biomarkers, predicting ecosystem health or potential problems in
the near future. The challenge is that the interaction dynamics
of OTUs is difficult to assess owing to their sheer number,
and because most of the microbes cannot be cultured in the
laboratory.3 Simple algebra says that potentially over 300,000,000
pairwise interactions would have to be considered, because the
interactions can easily be ‘asymmetric’ in a sense that the effect of
OTU-A on OTU-B is different from the reverse effect.
Two approaches are currently used to infer the relationships

among microbial species from 16S-rRNA amplicon data.4 The first
establishes correlation networks that are based on the presence,
absence, or abundance of the species across multiple locations or
time points.5–9 The vertices represent species, whereas the edges
represent either pairwise or complex relationships. Pairwise
interactions are typically characterized with a similarity index or
a modified Pearson Correlation Coefficient (PCC),5–9 while complex

relationships are derived from regression or rule-based
networks.4,10 Although static correlation networks can address
large and complex communities of thousands of species across
multiple environments,5,10 they do not capture potentially
important dynamic trends and typically ignore the asymmetry of
relationships between species.
The second approach utilizes differential equations to

reconstruct dynamic networks.11–21 These equations often include
terms that describe growth and decay, pairwise interactions
between species, and the effects of nutrients or environment.
Most of these approaches have been linear owing to the ease of
parameter estimation. Among the nonlinear approaches, the
Lotka–Volterra (LV) model has been used extensively,12–15,17,19–21

because it is easily interpreted and allows the incorporation of
time-dependent external perturbation.22 The main challenge of
this approach is the estimation of parameters.
Here we propose slightly modified LV models, which become

manageable owing to a novel manner of parameter estimation
based on linear regression.23 The models capture not only the
metapopulation dynamics of the more than 1,000 highly
abundant species in Lake Mendota, but also the pairwise
interactions between individual OTUs and other SCs. To the best
of our knowledge, this is the first time that LV models of the
magnitude addressed here are applied to a real-world system.

RESULTS
Yearly abundances of 14 subcommunities
The top 200 parametric instantiations of the SC model (see
Materials and Methods) are able to capture the dynamic trends
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well (Figure 1). They also correlate well with the trends of the
observed abundances. Although the figure only shows the
abundances during 2 years, the models successfully run for at
least 50 consecutive years, if the conditions do not change
drastically (not shown).
Twelve of the 14 SCs peak once per year, whereas SC 13 and SC

14 peaks twice (Figure 1 and Supplementary Figure S5).
Supplementary Figure S5 shows that the fold-change profiles
within SCs are very similar. It also reveals that the peaks are highly
relevant, with an abundance that is 3- to 10-fold higher at the
peak than the minimum abundance. Throughout the year, the
total abundances of SC1–SC13 constitute 88.4–94.9% of the entire
population (Supplementary Figure S6a).

Pairwise interactions between the 14 subcommunities
Using the best 200 model instantiations, we computed the means
and s.d. of the parameter values (Figure 2). Among them, the
estimated αij and βik values, when normalized (divided by − αii),
are consistent with very small s.d. About two-thirds of all αij’s
(62–67% in each model) are negative, which suggests strong
competition between SCs (Supplementary Figure S7). Intriguingly,
the terms βik× Xk are usually much higher than the corresponding
terms αij× Xj: although Xj and Xk change over time, the median
values of normalized αij× Xj and βik× Xk are 2.8 and 9.6,
respectively. Expressed differently, the environmental conditions
appear to have a greater effect (per unit of abundance) on
the abundance of a SC than other SCs, at least qualitatively
(Figures 2 and 3).
Interestingly, the means of the αii values for SC 7, 8, and 9 are

the smallest in magnitude (Supplementary Figure S7). This result
may reflect that these SCs, which peak in July through September

when the water temperature is highest and biomass is higher,
have the lowest death rates due to ‘crowding.’
The αij matrix is asymmetrical, because interaction effects are

not necessarily reciprocal. Among the pairs αij and αji, about 75%,
4%, and 21% are − /− , +/− or +/+, respectively. The number of
positive αji values is smaller than in studies of communities
growing in human or mouse gut or on spoiling pork,13,14,21

suggesting that the availability of food sources may affect the
types of relationships differently within each habitat.
Except for SC 4, 11, 13 and 14, all SCs are positively affected

by environmental conditions (Figures 3 and 4). Ammonia/
phosphorus, which rapidly declines in April, negatively affects SC
4, which peaks in April. Nitrate+nitrite, which is low in November,
negatively affects SC 11, which peaks in November. In SC 11, two
of the five top OTUs belong to the family Oxalobacteraceae and
one to the family ACK-M1. These families are either responsive to
ammonia24 or have members that fix nitrogen25 (Supplementary
Figure S10, Supplementary Table S5). Interestingly, SC 13 and 14
have very small (βik) values, indicating relative tolerance to
variations in environmental conditions.
To summarize, the pairwise interactions between SCs are mostly

negative, whereas the environmental effects on SCs are mostly
positive.

Figure 1. Predicted annual abundance of 14 subcommunities of
bacteria. The x axis shows the days of a 2-year period, and the y axis
shows the abundances of the subcommunities. The mean of the
observed values measured between year 2000 and 2011 (red) and
the maximum and minimum values of the ensemble of our top 200
parametric instantiations of the SC model (shaded gray) are shown.
Note different scales of the y axes.

Figure 2. Estimated interactions (αij) between pairs of the 14
subcommunities (SCs). The y axis shows αij values, scaled by
− 1/αii, of SC 1 to 14. Each blue bar shows the mean value and
each yellow extension represents the s.d. of the top 200 parametric
instantiations of the SC model. It is evident that most interaction
parameters are negative, at least for SC1 to SC12. SC14, and to a
lesser degree SC13, are different in their effects and in how they are
affected.
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Bacterial distribution within subcommunities
Almost all (18,642) of the identified OTUs were classified into 63
phyla; only 12 OTUs do not have a phylum classification. For each
OTU, we computed the average abundance over all data points,
and for each phylum, we summed the abundances for all OTUs,
then ranked them based on the total abundance. The top seven
phyla, accounting for 92.6–99.9% of the population are:
Actinobacteria, dominant in SC1, 3, 4, and 13; Proteobacteria in
SC2, 7–11 and 14; and Bacteroidetes in SC5 and 12 (Table 1).
Notwithstanding the dominance of particular phyla, each bacterial
SC contains bacterial OTUs from a broad range of taxonomic
groups. This result is not surprising, because each SC has to
execute a wide array of tasks. It also reveals why clustering by
taxonomy is not an effective strategy for characterizing the
interaction dynamics in the lake.
Using the software PICRUSt26 and the Greengenes Database,27

we assigned KEGG functions to the the OTUs presented in 14 SCs.
In total, 42.2% of the total community were mapped to KEGG
pathways. We observed specific enrichment of certain pathways in
SCs, as shown in Supplementary Figure S13. Data are available at
http://www.bst.bme.gatech.edu/research.php.

Abundances of individual OTUs
We assessed the abundances of individual OTUs using three
models, as described in the Methods Section. Among the top
1,140 OTUs, 89.3% can be predicted successfully when the
individual OTU is implemented as a new group and the
parameters are reoptimized (Model #3; Supplementary
Figure S14). Interestingly, the αij× Xj and βik× Tk terms of OTUs
belonging to the same phylum, class, or order cluster together and
are significantly different from random clusters (Supplementary
Table S4). For the top 1,140 OTUs, we extracted 922 OTUs whose
abundances are predicted best by Model #3. We found that the
pairs αi,sc/αi,sc are often positively correlated, whereas the pairs βik/
αi,sc are often negatively correlated (data not shown). This result
suggests that the change in the abundance of an OTU is driven
either by competition with other bacteria in the community or by
positive influences from the environment. Examples of the

dynamics of individual OTUs are given in Figure 5. The
Supplement Information provides further details.
The individual OTU–SC interaction network adds a second layer

to our investigation. The first layer (SC model) captures pairwise
interactions between SCs that reflect average effects contributed
by all OTUs in each SC. At the second layer, OTU–SC interactions
describe the effects of each SC and of the environmental
conditions on an individual OTU. As an example, OTU#141903
(a member of the family Nitrosomonadaceae) has a large positive
βi,2 value, which indicates that it is strongly, positively affected by
ammonia. Although we cannot assign this OTU to a more specific
taxonomic group, previous studies suggest that all cultivated
representatives of this group are able to oxidize ammonia,28 which
reflects our result. OTU#517152 (a member of the genus
Roseomonas) has a small negative αii value and a large positive
βi,2 value, suggesting that this species has a relatively low death
rate and is strongly affected by temperature. Various members of
this genus are well-studied aquatic organisms. They were
described as slow growing29 and growing better at 25–28 °C,29

than in colder water, in some cases thriving up to 42 °C.30

The Supplementary Information offers further discussions
(Supplementary Table S6).
Among these results, we identified 33 OTUs with outliers in βik

or αi,sc values and good abundance prediction results and
searched the literature for evidence to support or reject our
predictions. We found indirect evidence to support the prediction
of 15 OTUs and evidence for one, suggesting that further
investigation is needed (Supplementary Tables S7a,b). For the
remaining OTUs, little is known about their characteristics. These
results are summarized in the Supplementary Information.
A table with notable interactions among SC-OTUs is available at
http://www.bst.bme.gatech.edu/research.php.

DISCUSSION
Naturally occurring microbial consortia in lakes, and elsewhere,
follow annual cycles, where species abundances are correlated
with seasonal changes in environmental conditions.31–34 It is

Figure 3. Estimated environmental effects (βik) on the 14 subcommunities. The plot shows βik values, scaled by − 1/αii of SC 1 to 14. Each bar
shows the mean value and each yellow extension represents the s.d. of the top 200 parametric instantiations of the SC model. The three
environmental conditions are ordered as water temperature, ammonia, and nitrate–nitrite. Most environmental effects are positive.
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important to understand this dynamics because it is, without
doubt, associated with the health of the ecosystem.
Recent metagenomic sequencing technologies have revolutio-

nized this line of investigation. However, while OTU abundances are
informative, they do not by themselves convey the dynamics
within a metapopulation, but require computational analysis. We
perform such an analysis here with LV models (Supplementary
Figures S8–S12 and S15, Supplementary Tables S1–S3 and S5). Our
models suggest that the dynamics of OTUs can be described in
terms of the parameters αij and βik, and that these parameters are
biologically relevant, as they signify the strength and nature of
interactions between OTU groups as competitive, parasitic,

commensal, or neutral (Supplementary Figure S8). The interaction
models of individual OTUs furthermore generate hypotheses about
the importance of environmental factors and other bacterial groups
on the growth of individual OTUs. The models could in principle be
used to predict consequences of changes in OTU distribution, but it
is unclear how to validate such predictions. For example, we used
the SC model to test the effect of environmental conditions on the
abundances of SCs (Supplementary Figure S11). Seven SCs (1, 3, 5,
10, 11, 13, and 14) were predicted to return to their normal
abundance patterns when the disturbances ended. Other SCs were
strongly affected by the environment and their abundance profiles
did not recover even several years after the disturbances stopped.

January February March

April May June

July August September

October November December  

Figure 4. Networks of strongest interactions among the 14 subcommunities, as well as environmental conditions, by month. The interaction
network for each month was computed from the best subcommunity model and weighted by the monthly average abundance of the
subcommunities. The mean and s.d. of all values were computed, and only those interactions were retained that are at least one s.d. away
from the mean. This cutoff corresponds to 31.73% of all interactions. Networks for other cutoffs are shown in the Supplementary Information.
Each vertex size is proportional to the size of the subcommunity (yellow) or the abundance of environmental conditions (pink). The thickness
of each edge is proportional to the strength of a positive (green) or negative (red) interaction.

Dynamic models of a complex microbial metapopulation
P Dam et al

4

npj Systems Biology and Applications (2016) 16007 © 2016 The Systems Biology Institute/Macmillan Publishers Limited



In most other network models, the grouping of OTUs has been
based on taxonomy,12–14,35 resulting in very large networks with
millions of pairwise interactions that are difficult to manage. In
contrast, our model captures the bacterial dynamics in the lake at
the levels of SCs and individual OTUs. This approach succeeded
due to the grouping of OTUs into SCs based on their abundance
peak times and to our novel estimation strategy. Notably, the
OTUs in each SC are taxonomically very diverse at the species and
genus levels, suggesting that taxonomically related OTUs are
distributed over SCs throughout the year, such that each SC
contains representatives of all functionally important taxonomic
genera. Horizontal gene transfer, which is frequent in the
microbial world and often accounts for the functional redundancy
among phyla,36 is likely to contribute to the widely distributed
abundances.
Although the paper focuses on an aquatic metapopulation, it is

easy to imagine that similar types of analyses could be applied to
other microbial consortia that display periodic annual or daily
patterns.

MATERIALS AND METHODS
Data
The data were collected at 91 time points, from March 2000 to June
2011,31,32,37 and made publicly available at www.lter.limnology.wisc.
edu.37,38 The dataset consists of abundance measurements, which were
interpreted through 16S-sequences. Using the software Qiime,39 with 97%
identity as a cutoff, and the Greengenes database27 (greengenes.lbl.gov),
18,696 OTUs were identified (see Supplementary Information for details).
Also measured were nineteen physical and chemical conditions

of the lake, collected from 1995 to 2013;38 see references 6,40 and
Supplementary Figure S1. Fourteen of these remain fairly constant, while
water temperature, nitrate+nitrite, ammonia, total phosphorus unfiltered,
dissolved reactive phosphorus, and dissolved reactive silica vary
substantially over time.

Data processing
In order to manage the large number of OTUs, we first followed
conventional wisdom and clustered the OTUs by taxonomy (cf. references
12–14,35). Specifically, we identified the top seven phyla, but found that
their abundance profiles varied widely among OTUs within the phyla

Table 1. Distribution of the top 7 phyla within the 14 bacterial subcommunities (ordered from top to bottom) examined in our model

Peak Time Actino. Proteo. Bactero. Cyano. Verruco. Chlorobi. Plancto.

January 54.86 42.85 0.80 1.17 0.32 0.01 0.00
February 4.77 47.34 21.60 26.20 0.07 0.01 0.01
March 66.51 23.67 4.29 0.17 4.38 0.00 0.97
April 50.54 22.72 25.17 1.19 0.12 0.00 0.26
May 31.75 16.82 47.31 4.03 0.03 0.01 0.04
June 34.90 22.25 33.02 2.31 7.46 0.00 0.05
July 3.33 34.16 21.80 26.24 13.80 0.02 0.66
August 8.20 28.13 11.21 19.85 21.76 8.04 2.80
September 21.74 23.01 13.88 17.90 16.63 3.40 3.44
October 8.20 31.48 24.68 18.14 10.05 0.64 6.81
November 19.87 59.15 13.50 0.24 4.93 2.16 0.16
December 22.34 24.79 46.40 0.07 6.40 0.00 0.00
Twice 99.99 0.01 0.00 0.00 0.00 0.00 0.00
Twice 32.62 37.61 29.21 0.05 0.50 0.01 0.01

The abundance of each phylum, scaled by the abundance of all phyla in the same subcommunity, is shown. The phyla in columns 2–8 are Actinobacteria,
Proteobacteria, Cyanobacteria, Verrucomicrobia, Chlorobi, and Planctomycetes, respectively.

Figure 5. Predictions of abundances of individual OTUs plotted over a period of 2 years. Each subplot shows the mean of observed
abundances (red dots) and the annual predicted values of Model #3 (green). The x axis shows the day within a 2-year period, and the y axis
represents the abundances as percentages of the overall population.

Dynamic models of a complex microbial metapopulation
P Dam et al

5

© 2016 The Systems Biology Institute/Macmillan Publishers Limited npj Systems Biology and Applications (2016) 16007



(Supplementary Figures S3 and S6b). Grouping by order, class, or genus
yielded similar results. In spite of extensive efforts, none of these
taxonomic clustering modalities led to new insights or interesting results.
We therefore decided to cluster differently, based on the annual peak

time for each OTU. For each OTU, the abundances throughout the years
2000–2011 were superimposed, which resulted in a single, ‘collective
1-year period.’ The results were smoothed by computing the mean value
of each 30-day window (Supplementary Figure S4). These smoothed
profiles reflect the seasonal changes in abundances well. We omitted from
clustering OTUs with only one observed data point and OTUs whose
abundances were indicated by the smoothed curves to be zero.
For each OTU profile, we identified the positions of the top one or two

abundance peaks and then clustered OTUs based on these peak profiles.
This analysis resulted in 13 groups plus one additional group for all
remaining OTUs. We refer to these 14 groups as subcommunities (SCs).
We chose water temperature and two chemical conditions (ammonia

and total nitrate+nitrite) that follow distinct annual pattern. The patterns of
other chemical conditions were omitted because they were highly related
to the chosen patterns (Supplementary Figure S1a). The data were
processed similarly to the abundance data. Their variability over the years
fell within ranges of the mean± s.d. of the observed data, superimposed
onto one ‘typical year’ (Supplementary Figure S1b).

Model
In our modeling format, Xi is the abundance of an OTU or SC i. The
interactions between Xi and other Xj’s and with environmental conditions
Tk are described through product terms, which have their origin in mass
action kinetics.41 The model takes the form:

_X i ¼
Xn

j¼1
αijXiXj þ

Xm

k¼1
βikXiTk : ð1Þ

X
�
i is the rate of change of variable i, and the indexed parameters α and β

indicate the type and strength of an interaction between pairs of OTUs or
between OTUs and the environment, respectively. We use this structure to
represent interactions among the 14 bacterial SCs and among individual
OTUs and SCs. The quality of results is assessed with two similarity scores
(see Supplementary Information).
Ignoring the less interesting situation that Xi=0, Equation (1) can be

rewritten as

_X i

Xi
¼

Xn

j¼1
αijXj þ

Xm

k¼1
βikTk : ð2Þ

If abundances and slopes can be determined from the time courses of all
SCs, this equation becomes an algebraic system of linear equations.23,42–45

Thus, even though the system is highly nonlinear, linear regression can be
used to solve for all parameter values (for details, see Supplementary
Information).

Predicting the abundances of individual OTUs
We also used the model to predict the abundances of individual OTUs.
Formally, the model has exactly the same format as in Equation (1).
However, to test whether environmental conditions alone could model the
data (Model #1), all αij parameters were set to zero, except for αii, and the
βik values were re-estimated. For Model #2, αij and βik values were chosen
from the filtered parameter values described in the Supplementary
Information. For Model #3, we removed the OTU of interest from its SC and
considered it as a new group. The αij and βik values were then re-estimated
for individual OTUs, based on 100 values for αii selected from the range
[− 1, 0]. The goodness of fit was evaluated with similarity scores (see
Supplementary Information).
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