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Abstract

Pregnancy is associated with extraordinary plasticity in the maternal brain. Studies in humans and other mam-
mals suggest extensive structural and functional remodeling of the female brain during and after pregnancy.
However, we understand remarkably little about the molecular underpinnings of this natural phenomenon. To
gain insight into pregnancy-associated hippocampal plasticity, we performed single nucleus RNA sequencing
(snRNA-seq) and snATAC-seq from the mouse hippocampus before, during, and after pregnancy. We identi-
fied cell type-specific transcriptional and epigenetic signatures associated with pregnancy and postpartum ad-
aptation. In addition, we analyzed receptor-ligand interactions and transcription factor (TF) motifs that inform
hippocampal cell type identity and provide evidence of pregnancy-associated adaption. In total, these data
provide a unique resource of coupled transcriptional and epigenetic data across a dynamic time period in the
mouse hippocampus and suggest opportunities for functional interrogation of hormone-mediated plasticity.
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The female brain undergoes extraordinary plasticity during and after pregnancy, but the molecular mechanisms that
regulate this hormone-responsive critical period are poorly understood. We performed an integrated analysis of sin-
gle nucleus RNA-sequencing (SnBRNA-seq) and snATAC-seq before, during, and after pregnancy in the female
mouse hippocampus. We identified candidate transcriptional and epigenetic regulators of maternal plasticity, in-
cluding those implicated in neurogenesis, neurotransmission, and structural remodeling. Ligand-receptor analysis
revealed signaling networks that are dynamically responsive to hormone levels during and after pregnancy. Our
multiomics characterization provides a detailed landscape of complementary layers of regulatory control governing
\peripartum plasticity and identify candidate regulators of hormone-mediated adaptation in the maternal brain. /

ignificance Statement

Introduction
Pregnancy is a period of remarkable physiological adap-

temporal and regional specificity (Leuner and Sabihi,
2016). The profound molecular and cellular changes in the

tation in the maternal brain. Pregnancy-associated neuro-
plasticity is observed across mammals, with variations in
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maternal brain are presumed to promote offspring survival
and alter maternal behavior (Brunton and Russell, 2008),
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but these changes also have implications for maternal
mental health. Critical periods for plasticity, like preg-
nancy, are also periods of vulnerability for neurologic
disease. Pregnant and postpartum women are at in-
creased risk for psychiatric disorders, including de-
pression, anxiety, and psychosis (Hillerer et al., 2014).
Therefore, insight into physiologic pregnancy plasticity
may also shed light on potential mechanisms for preg-
nancy-associated mental illness.

Maternal brain plasticity is predominantly driven by
dynamic hormone levels in the peripartum period, as
pregnancy-associated neurologic changes have been
reproduced in virgin female rodents through exogenous
hormone treatment (Keyser-Marcus et al., 2001; Kinsley
et al., 2006). Steroid hormones, which are in flux during
and after pregnancy, markedly affect neurologic function
via intracellular and membrane-bound steroid receptors
expressed throughout the brain (Moraga-Amaro et al.,
2018). Steroids such as progesterone regulate cell sur-
vival, synapse formation and dendritogenesis, whereas
estrogens modulate synaptic plasticity and learning
(Rossetti et al., 2016). Similarly, female sex steroids have
notable effects in non-neuronal cells, such as promoting
myelination, glutamate uptake in astrocytes, and the in-
flammatory action of microglia (Kipp et al., 2016). While
the precise trajectory of hormone concentrations vary
between rodents and humans, both progesterone and
estradiol increase during gestation in mammals, ulti-
mately peaking around parturition (Duarte-Guterman et
al., 2019). Similarly, glucocorticoids follow an upward
trend during pregnancy, and in mice, glucocorticoid lev-
els increase dramatically from mid to late gestation
(Solano and Arck, 2020).

There is a major gap in knowledge in the molecular
underpinnings of adaptation in the brain during preg-
nancy. Given that pregnancy-associated plasticity is
highly brain region-specific, we focus on the hippocam-
pus because of its importance in postpartum maternal
care behavior, as well as memory, mood, and stress re-
siliency (Duarte-Guterman et al., 2019). Neither the cell
type-specific transcriptional nor cis-regulatory mecha-
nisms underlying maternal brain plasticity have been
previously explored. To begin to address this gap, we
leveraged complementary single nuclei RNA-sequenc-
ing (snRNA-seq) and snATAC-seq of the maternal hip-
pocampus before, during, and after pregnancy. We
probe cell network ligand-receptor interactions during
and after pregnancy and characterize enriched tran-
scription factor (TF) motifs that define cell type identity
and function in the murine hippocampus. This joint
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transcriptional and epigenetic atlas provides molecular
support of pregnancy-associated structural remodeling
of hippocampal architecture, as well as changes in neu-
rogenesis and neurotransmission.

Materials and Methods

Tissue collection and generation of single-nuclei
suspensions

All animal procedures were performed in accordance
with the Harvard Medical School animal care commit-
tee’s regulations. Virgin female mice were euthanized at
eight weeks of age. Pregnant mice were euthanized at
embryonic day (E)18, and postpartum female mice were
euthanized three weeks after parturition. The hippo-
campus was freshly dissected and flash frozen at —80°C.
Frozen tissue was thawed in 500 ul buffer HB (0.25 m su-
crose, 25 mm KCI, 5 mm MgCl2, 20 mm Tricine-KOH pH 7.8,
0.15 mm spermine tetrahydrochloride, 0.5 mm spermidine
trihydrochloride, and 1 mm DTT). The tissue was transferred
to a 2 ml dounce; 500 ul 5% IGEPAL CA-630 (Sigma) and
1 ml HB were added to the tissue, and the tissue was ho-
mogenized with a tight pestle 10-15 times. The sample
was transferred to a 15 ml tube and total solution brought
to 9 ml with HB. In a Corex tube (Fisher Scientific), 1 ml
30% iodixanol layered on top of 1 ml 40% iodixanol. The
9-ml sample was layered on top of the iodixanol cushion.
The sample was spun at 10,000 x g for 18 min; 1 ml of
sample at the 30-40% iodixanol interface was collected.
After counting nuclei with a hemocytometer, the sample
was diluted to 100,000 nuclei/ml with 30% iodixanol (with
Rnasin) and subjected to single nuclear droplet encapsula-
tion with inDrop (Klein et al., 2015).

snRNA-seq and analysis

Individual nuclei were captured and barcoded using the
inDrop platform as previously described (Klein et al.,
2015). Briefly, single-cell suspensions were fed into a mi-
crofluidic device that packaged the cells with barcoded
hydrogel microspheres and reverse transcriptase/lysis re-
agents. After cell encapsulation, primers were photo-re-
leased by UV exposure. Two technical replicate libraries
were collected for each sample. Indexed libraries were
pooled and sequenced on a Nextseq 500 (lllumina) to an av-
erage depth of ~30,000 reads/nucleus. Sequencing data
were aligned to the genome and processed according to a
previously published pipeline (https://github.com/indrops/
indrops). Unique molecular identifiers (UMIs) were used to
link sequence reads back to individual captured molecules.
All steps of the pipeline were run using default parameters.

All data processing was performed using Seurat (v. 4.0).
Raw data were log normalized and scaled using default val-
ues. Variable features and principal components were then
calculated using default values. Uniform manifold approxi-
mation and projection (UMAP) and t-distributed stochastic
neighbor embedding (tSNE) dimensionality reductions were
performed with default values. Batch effects were not evi-
dent in the dimensionality reductions, and therefore, the
data were then analyzed as-is without further corrections.
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Identification of cell types in snRNA-seq

We used scPred (Alquicira-Hernandez et al., 2019) to
train radial basis kernel support vector machines (SVMs)
in a one versus all fashion using data deposited to Allen
Brain Atlas (Yao et al., 2021). For consistency, we only
used cells from the hippocampus (212,939 cells) to train
the predictor models. Before training, the training data
were independently preprocessed in the same fashion
as above. For each cell type annotated in the Allen Brain
Atlas, we trained a separate one versus all SVM model
with a Radial Basis Function kernel. The training data
were split 80/20; 80% of the training data were centered,
scaled, and normalized in the same fashion as our data-
set. Models were trained using a 5-fold cross validation
approach and only models with area under the receiver
operating characteristic (AUROC)>0.95 were used.
Using the remaining 20% of the training dataset, we then
predicted the cell types of each cell in our dataset. Only
cells with in-class prediction (e.g., CA1 vs all others)
probability >0.95 were retained. We manually confirmed
cell types based on known marker gene expression.
Identified cell types (as some cell types corresponded to
multiple clusters) with <100 cells per condition were not
used for further analysis.

Differential expression and ligand-receptor analysis
For each identified cell type, we performed differential
expression analysis using Seurat with MAST method be-
tween different conditions (e.g., virgin CA3 vs E18 CA3).
We used Benjamini-Hochberg corrected p-values for sig-
nificance. Genes with <5% false discovery rate (FDR) met
statistical criteria for significant differential expression.
Ligand-receptor analysis was performed using CellChat
(version 1.1.3) with default parameters (Jin et al., 2021).

snATAC-seq

Tissue was processed for single nucleus suspensions
as described above. Nuclei were processed using the
10x Chromium scATAC-seq kit (v1.0) per manufacturer’s
instructions. Libraries were sequenced to an average
depth of ~50,000 reads/nucleus. Sequencing reads were
demultiplexed and aligned to the mm10 genome using
CellRanger with default parameters. Resulting outputs
were then processed using Signac (v 1.5; Stuart et al.,
2021). Low quality cells were removed using filters peak
region fragments <100,000, percent reads in peaks >40,
blacklist site ratio <0.025, nucleosome signal <4, and
transcriptional start site (TSS) enrichment score >2.
Remaining preprocessing and dimensionality reduction
was performed according to Signac recommendations
using default parameters.

Cell types were determined using the snRNA-seq data
labels based on Signac recommendations (Stuart et al.,
2021). We used FindTransferAnchors and TransferData
functions to annotate cell types. We then again checked
for consistency between unsupervised clustering and
label transfer. Similar to snRNA-seq data, clusters with
high cell type heterogeneity were discarded and cell types
were assigned to clusters based on the majority of the
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labels. Cell types with <100 cells per condition were not
analyzed further.

Differential accessibility and TF motif analysis

Using cell type labels described above, we performed dif-
ferential accessibility analysis using Signac’s FindMarkers
function with log fold change threshold 0.1 and n_count_-
peaks as a latent variable. FDR <5% was used as the statis-
tical significance threshold. Motif analysis was done using
RunChromVAR function in Signac with default parameters.
For differential motif activity, we used log2 fold change
threshold of 0.1 with a 0 pseudocount. For statistical signifi-
cance, we used an FDR threshold of 5%.

Integrative analysis with ArchR

In order to perform co-accessibility and peak-to-gene
linkage analysis, we processed snATAC-seq data with
ArchR (Granja et al., 2021). Data were processed using
default parameters. We used the addCoAccessibility and
getCoAccessibility functions to generate co-accessibility
data frames and figures. We performed peak-to-gene
linkage analysis using the addPeak2GenelLinks function,
and the plotPeak2GeneHeatmap function was used to
generate a heatmap of peak-to-gene results.

Data accessibility

Raw and processed sequencing data have been depos-
ited in the Gene Expression Omnibus (GEO) under acces-
sion number GSE198447.

Results

Cell type-specific transcriptomic landscape of the
maternal hippocampus

To identify cell type-specific programs governing plas-
ticity during pregnancy, we performed droplet-based
snRNA-seq from the female hippocampus under three
conditions: eight-week-old virgin female mice, E18 preg-
nant female mice, and P21 (postpartum) female mice (Fig.
1a). These time points were selected to span the contin-
uum of hormonal shifts that occur before, during, and
after pregnancy. We analyzed three biological replicates
at each time point, for a total of nine independent sam-
ples. Virgin mice were synchronized in their estrous cycle
before tissue collection.

Nuclei were isolated from frozen tissue (see Materials
and Methods) and processed using the inDrop platform
(Klein et al., 2015). After computational filtering of low
quality and doublet nuclei, we profiled a total of 40,652
nuclei by snRNA-seq. Quality control metrics are dis-
played in Figure 1b. We used the R package Seurat
to perform unsupervised graph-based clustering of all
nuclei, followed by cluster visualization with UMAP, a
nonlinear dimensional reduction algorithm. To aid in the
confident identification of cell types, we leveraged previously
published high quality datasets from Allen Brain Atlas
(Alguicira-Hernandez et al., 2019). With these expert la-
beled datasets, we used scPred (Alquicira-Hernandez et
al., 2019) to train one versus all SVM models with radial

eNeuro.org
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Figure 1. Single-cell investigation of the female hippocampus before, during, and after pregnancy. a, Experimental schematic of
snRNA-seq and snATAC-seq of the female hippocampus in virgin, pregnant (E18), and postpartum mice. b, Quality control (QC)
plots of UMIs and genes per nucleus in nuclei included in the final snRNA-seq dataset. ¢, UMAP of snRNA-seq data with major cell
types identified. Extended Data Figure 1-1 provides AUROC, sensitivity, and specificity data for SYM model for cell type identifica-
tion in snRNA-seq. d, Violin plots of canonical marker gene expression across cell types, as measured by snRNA-seq. e, UMAPs of

nuclei included in snRNA-seq dataset, separated by condition.

kernels to identify cell types. Models were trained using a 5-
fold cross-validation approach. Using each of the models, we
then predicted the cell types of each cell in our dataset. Only
cells with in-class prediction (e.g., CA1 pyramidal neurons
versus all others) probability >0.95 were retained. Complete
AUROC values are provided in Extended Data Figure 1-1.

In total, we identified clusters corresponding to major hip-
pocampal cell types: glutamatergic (granule cells, pyramidal
cells), GABAergic, and non-neuronal (microglia, astrocytes,

September/October 2022, 9(5) ENEURO.0117-22.2022

oligodendrocytes; Fig. 1c). Expression of canonical cell type
marker genes affirmed cell identifies (Fig. 1d). Cell cluster
assignment did not globally differ between conditions,
suggesting that no new cell types were detected be-
tween the three conditions (Fig. 1e). Hippocampal cell
types were subclustered into glutamatergic, GABAergic,
and non-neuronal groups (Fig. 2a-d).

We implemented differential gene expression analysis
to investigate transcriptomic changes across pregnancy

eNeuro.org
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Figure 2. Subclustering analysis of snRNA-seq of the female hippocampus before, during, and after pregnancy. a, UMAP of gluta-
matergic cells, with DG granule cells, CA1 pyramidal cells, and CA3 pyramidal cells labeled by color. b, Violin plots of canonical in-
terneuron marker genes, as measured by snRNA-seq. ¢, UMAP of GABAergic cells, with interneuron subtypes labeled by color. d,

UMAP of non-neuronal cells, with subtypes labeled by color.

within each cell type. Statistical significance was assigned
to genes with a FDR < 5%. All differential gene expres-
sion output is summarized by cell type in Extended Data
Figure 3-1. We identified cell type-specific changes in
gene expression across the time course of pregnancy and
postpartum period (Fig. 3a). We performed gene ontol-
ogy (GO) analysis of statistically significant differentially
expressed genes between timepoints to identify func-
tional pathways that exhibit peripartum cell type-specific
changes (Fig. 3b-d; Extended Data Fig. 3-2). Regulation
of the actin cytoskeleton (including the profilin complex),
endocytosis, trans-synaptic signaling, and the trafficking
of neurotransmitter receptors were commonly identified
pathways, consistent with hippocampal plasticity during
this critical window.

We then focused our interpretation of the snRNA-seq
data on three specific themes, neurogenesis, neurotrans-
mission, and structural remodeling, that are known to be
perturbed in the female brain during and after pregnancy

September/October 2022, 9(5) ENEURO.0117-22.2022

(Galea et al., 2014; Hillerer et al., 2014; Duarte-Guterman
etal., 2019).

Neurogenesis

The effect of pregnancy on the birth of new neurons
demonstrates temporal, region, and species specificity
(Leuner and Sabihi, 2016). In the maternal mouse brain,
hippocampal neurogenesis is decreased at E18 relative to
age-matched nonpregnant controls (Kim et al., 2010).
This reduction in hippocampal neurogenesis is sustained
following parturition, with the number of neural precursor
cells (NPCs) returning to prepregnancy levels three weeks
postpartum (Rolls et al., 2008). Thus, fluctuations in neu-
rogenesis might contribute to the reductions in hippo-
campus volume that occur in pregnancy in both rats and
humans (Galea et al., 2000; Hoekzema et al., 2017).

The dentate gyrus (DG) is the site of hippocampal neu-
rogenesis. We probed our snRNA-seq dataset of the hip-
pocampus and identified gene expression patterns in DG

eNeuro.org
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Figure 3. Cell type-specific differential gene expression analysis across the peripartum period. a, Strip plots of average log2 fold
change by cell type. Colored dots indicate genes with statistically significant changes (FD <5%) between conditions. Extended
Data Figure 3-1 provides complete differential gene expression results. b, GO analysis of differentially expressed genes (FDR < 5%)
between virgin and E18 in DG granule cells. Extended Data Figure 3-2 provides complete results of GO analysis. ¢, GO analysis of
differentially expressed genes (FDR < 5%) between virgin and E18 in CA1 pyramidal cells. Extended Data Figure 3-2 provides com-
plete results of GO analysis. d, GO analysis of differentially expressed genes (FDR < 5%) between virgin and E18 in CA3 pyramidal
cells. Extended Data Figure 3-2 provides complete results of GO analysis.

granule cells consistent with decreased neurogenesis
during late pregnancy. Specifically, we found reduced ex-
pression of the transcriptional activator Sox77 at E18
compared with virgin mice (Fig. 4a). Sox11 is highly ex-
pressed in regions of adult neurogenesis and is sufficient
to induce the differentiation of NPCs to immature neurons
(Haslinger et al., 2009). Notably, the expression of Neurite
outgrowth inhibitor (Nogo), also known as Reticulon 4, is
increased at E18 relative to virgin mice in DG granule cells
(Fig. 4a). This is consistent with the role of Nogo and its re-
ceptor NgR1 as negative regulators of NPC proliferation
(Rolando et al., 2012). We found that the expression of
other reticulon family members, including Reticulon (Rtn)

September/October 2022, 9(5) ENEURO.0117-22.2022

1 and 3, also exhibit higher expression in DG granule cells
during pregnancy when compared with virgin levels (Fig.
4a). Reticulon family members are known to promote apo-
ptosis (Yang and Strittmatter, 2007) which is notable
given the importance of apoptosis in shaping cell fate dur-
ing neurogenesis (Tashiro et al., 2006; Sierra et al., 2010).
We also identified coordinate changes in insulin-like
growth factor signaling in the hippocampus during preg-
nancy. Insulin-like growth factor 2 (/gf2) expression in
CA1 and CAS3 pyramidal neurons, as well as in GABAergic
interneurons, is lower during pregnancy relative to virgin
controls (Fig. 4b—d). In parallel, insulin-like growth factor 1
receptor (Igf1r) expression is also lower during pregnancy

eNeuro.org
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Figure 4. Differential gene expression analysis to identify candidate regulators of peripartum plasticity. a, Volcano plot of differential
gene expression between virgin and E18 condition in DG granule cells. Statistically significant genes (FDR <5%) are colored, with
blue indicating lower expression and pink indicating higher expression at E18. b, Volcano plot of differential gene expression be-
tween virgin and E18 condition in CA1. Statistically significant genes (FDR < 5%) are colored, with blue indicating lower expression
and pink indicating higher expression at E18. ¢, Volcano plot of differential gene expression between virgin and E18 condition in
CAB3. Statistically significant genes (FDR < 5%) are colored, with blue indicating lower expression and pink indicating higher expres-
sion at E18. d, Volcano plot of differential gene expression between virgin and E18 condition in GABAergic cells. Statistically signifi-
cant genes (FDR < 5%) are colored, with blue indicating lower expression and pink indicating higher expression at E18. e, Volcano
plot of differential gene expression between virgin and E18 condition in astrocytes. Statistically significant genes (FDR <5%) are
colored, with blue indicating lower expression and pink indicating higher expression at E18.

in the DG (Fig. 4a). IGF2 primarily binds to IGF1R and increases mRNA expression of the canonical stem cell
regulates cell proliferation during adult hippocampal TFs Oct4 and Sox1 (Ziegler et al., 2012).

neurogenesis (Bracko et al., 2012; Ferron et al., 2015). We further identified lower expression of cell cycle reg-
Specifically, IGF2 in NPCs stimulates self-renewal and  ulators in DG granule cells of pregnant mice relative to
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virgin controls, including three subunits of the anaphase-
promoting complex (Anapci1, Anapc5h, and Anapc?7) and
ataxia telangiectasia and Rad3 related (Atr; Fig. 4a). In
mouse embryos, ANAPC facilitates neurogenesis, and
ATR governs the transition from G, to M in the mitotic
cycle of NPCs (Delgado-Esteban et al., 2013; Enriquez-
Rios et al., 2017).

Neurotransmission

In both humans and rodents, memory function is pro-
foundly altered in the peripartum and postpartum peri-
ods (Pawluski et al., 2016). Given that memories are
stored through enhanced connectivity between groups
of neurons, changes in neurotransmission may underlie
modifications in memory by affecting synaptic strength
(Josselyn et al., 2015). For example, in rats, motherhood
induces long-term potentiation (LTP) with higher NMDA
and non-NMDA-mediated hippocampal neurotransmis-
sion relative to virgin controls (Lemaire et al., 2006).

Accordingly, we analyzed our snRNA-seq dataset for
molecular mediators of neurotransmission. We found that
several conventional protein kinase C isozymes, including
a, B, and vy, have increased expression in DG granule
cells and CA1 pyramidal neurons during pregnancy com-
pared with virgin mice (Fig. 4a,b). PKC« is the requisite
isozyme for structural LTP, and PKC is likely connected
to LTP through its phosphorylation of the NMDA receptor
(NMDAR) subunit NR1 (Gomis-Gonzalez et al., 2021). We
identified further changes in gene expression related to
LTP in the hippocampus during pregnancy. Specifically,
at E18 relative to virgin, we noted increased expression of
the a and B isoforms of calmodulin-dependent protein ki-
nase Il (CaMKIl) in DG granule cells and CA1 pyramidal
neurons (Fig. 4a,b). This serine/threonine-protein kinase is
a vital component of LTP by modulation of AMPAR inser-
tion and conductance (Lisman et al.,, 2012). Consistent
with increased CaMKII, we identified the increased ex-
pression of Synapsin 1 (Syn7) and Synapsin 2 (Syn2) in
DG granule cells at E18 relative to virgin (Fig. 4a). These
phosphoproteins are subject to CAMKII activation and
have many neuronal functions, including linking vesicles
to the cytoskeleton at the presynaptic terminal (Cesca et
al., 2010). Syn1 deficient mice have impaired glutamate
release (L Li et al., 1995), and likewise, GABA neurotrans-
mission is distorted in Syn2 deficient mice (Medrihan et
al., 2013). We also found increased expression of Ras-re-
lated protein Rab-3A (RAB3A) and Rab-3C (RAB3C) in
DG granule cells at E18 relative to virgin (Fig. 4a), consist-
ent with changes in the presynaptic terminal. These small
GTP binding proteins control calcium-induced exocytosis
(Schltiter et al., 2004) and BDNF-dependent glutamate re-
lease (Simsek-Duran and Lonart, 2008).

Non-neuronal cells, particularly astrocytes, are essen-
tial regulators of neuronal communication because of
their ability to sense and respond to neurotransmitter
release (Hwang et al., 2021). In astrocytes, we found in-
creased expression of glutamate receptor ionotropic
AMPA type subunit 1 (Gria) in pregnant mice relative to
virgin controls (Fig. 4e). Astrocytes regulate glutamate
homeostasis through glutamate uptake, enabling them
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to modulate neighboring neuronal activity (Droste et al.,
2017; Mahmoud et al., 2019).

Structural remodeling

The maternal neural circuit architecture exhibits sub-
stantial structural plasticity during pregnancy (Hillerer et
al., 2014). Notably, membrane-bound estrogen recep-
tors are prevalent in the mammalian hippocampus and
act through a defined mechanism to mediate dendritic
spine as well as synapse formation (Hara et al., 2015). In
our data, we identified differential expression of genes
implicated in structural remodeling during and after
pregnancy.

Strikingly, we found numerous candidates pertinent to
actin restructuring to be more highly expressed during preg-
nancy. This is relevant because dendritic spines have a com-
plex cytoskeleton of branched and linear actin filaments
(Basu and Lamprecht, 2018). Consequently, dendritic size
and morphology regulation, such as in response to glutamate
stimulation, requires tightly controlled actin polymerization
and depolymerization (Matsuzaki et al., 2004; Borovac et al.,
2018). The expression of Actin Depolymerizing Factor
(ADF) is higher during pregnancy in DG granule cells com-
pared with virgin controls (Fig. 4a). The ADF/Cofilin family
governs the structural plasticity of dendritic spines, and ac-
tive ADF/Cofilin enables increases in spine size during LTP
and the diminishing of spines associated with LTD (Rust,
2015). Similar to ADF/Cdfilin, the Rho GTPase family modi-
fies dendrite morphology through actin skeleton dynamics
(Murakoshi et al., 2011). In DG granule cells, we noted in-
creased expression of RhoB and Rac1 at E18 relative to
virgin mice (Fig. 4a). Consistent with this RhoGTPase
mechanism, we identified increased expression of p21
activated kinase (Pak7) at E18 relative to virgin in DG
granule cells (Fig. 4a). Pak1 is a notable downstream ser-
ine/threonine kinase effector of the Rho GTPase family,
and its phosphorylation is associated with neurite organi-
zation and outgrowth (Rashid et al., 2001; Nikoli¢, 2008).

Moreover, in CA1 pyramidal neurons and DG granule
cells during pregnancy, we found increased expression of
the postsynaptic density protein 95 (PSD-95) and syn-
apse-associated protein 102 (SAP-102) compared with
postpartum mice (Fig. 4a,b). Together, these membrane-
associated guanylate kinases (MAGUKS) are critical struc-
tural components of the postsynaptic density (PSD) and
serve to regulate its size (Zheng et al., 2011). Interestingly,
the translation of PSD-95 mRNA is stimulated by estrogen
signaling, and this process is thought to partly underlie
estrogen’s positive effect on synaptogenesis (Akama and
McEwen, 2003).

Ligand-Receptor analysis of the maternal
hippocampus

Cells in the brain communicate through soluble and
membrane-bound components. To map ligand-receptor
networks in the maternal hippocampus at single cell reso-
lution, we used the open-source R toolkit CellChat (Jin et
al., 2021). We identified several signaling networks in the
hippocampus that are perturbed during or after preg-
nancy. The CX3C signaling pathway is upregulated during
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Figure 5. Ligand-receptor analysis of snRNA-seq reveals dynamic signaling networks during pregnancy. a, Chord diagram of cell
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cated in the outermost edge of the diagram, while cell identity of the “receiving” cell is indicated by the color second from the out-
side. Colored arrows in the diagram indicate specific ligand/receptor pathways. b, Chord diagram of cell type-specific signaling
pathways that are downregulated at E18 compared with virgin. Cell type identity of the “sending” cell is indicated in the outermost
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lated postpartum compared with pregnancy. Cell type identity of the “sending” cell is indicated in the outermost edge of the dia-
gram, while cell identity of the “receiving” cell is indicated by the color second from the outside. Colored arrows in the diagram

indicate specific ligand/receptor pathways.

pregnancy relative to virgin conditions (Fig. 5a). CX3C
signaling regulates neuronal network maintenance and is
dependent on interactions between the transmembrane
chemokine CX3CL1 and its G-protein coupled receptor
CX3CR1, found only in microglia (Cardona et al., 2006;
Paolicelli et al., 2011; Pawelec et al., 2020). The domi-
nant interaction occurs between the CX3CR1 on microglia
and fractalkine secreted by somatostatin interneurons.
Thus, we posit that a method of synapse refinement dur-
ing pregnancy involves microglial phagocytosis driven
by the CX3C pathway. Alternatively, CX3C signaling
might underlie the increased oligodendrocyte differen-
tiation during pregnancy (Gregg, 2009), as interneurons
mediate developmental oligodendrogenesis through
secretion of CX3CL1 (Voronova et al., 2017).

We also found that the pleiotrophin (PTN) network is up-
regulated during pregnancy compared with both virgin
and postpartum conditions (Fig. 5a). Interactions between
PTN with PTPRZ receptors on oligodendrocyte precursor
cells (OPCs) stimulate differentiation to oligodendrocytes,
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and therefore the capacity for myelination might be in-
creased during pregnancy (Tanga et al., 2019). This is
consistent with murine lineage-tracing experiments that
indicate a 74% increase in oligodendrocyte formation in
the corpus callosum at E18 relative to virgin controls
(Gregg et al., 2007).

Three signaling networks (CXCL12/Ackr3, IGF1/IGF1r,
Wnt5a/Fzd6) were significantly downregulated in preg-
nancy (E18) compared with virgin (Fig. 5b). Signaling be-
tween chemokine CXCL12 and its receptor ACKR3 on
endothelial cells declined in pregnancy but increased
postpartum. CXCL12/ACKR3 signaling is important in
directing cell migration and mediating angiogenesis
(Guyon, 2014; Quinn et al., 2018). Similarly, IGF1/IGF1R
signaling declined during pregnancy, which is notable
given that IGF1 deficiency in the hippocampus is linked
to depression (Torres Aleman, 2005; Mitschelen et al.,
2011) Wnt5a signaling in endothelial cells also declined
during pregnancy compared with virgin (Fig. 5b). Wnt
ligands are important for angiogenesis, tight junction
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Figure 6. Clustering and quality control metrics of snATAC-seq of the murine hippocampus before, during, and after pregnancy. a,
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formation, and blood brain barrier integrity, which is no-
table given changes in permeability of the blood brain
barrier during pregnancy (Daneman et al., 2009; Cipolla
etal., 2011).

The Prosaposin (PSAP)/GPR37 signaling network in-
creases postpartum compared with pregnancy (E18; Fig. 5¢).
PSAP and its receptors (GPR37 and GPR37I1) are expressed
in astrocytes, OPCs, and oligodendrocytes. GPR37I1 signal-
ing inhibits glutamate uptake in astrocytes and reduces neu-
ronal NMDAR activity (Jolly et al., 2018). Loss of GPR37 in
oligodendrocytes accelerates differentiation and hypermyeli-
nation, and therefore, lower levels of PSAP/GPR37 signaling
may support increased myelination during pregnancy (Yang
et al., 2016; Smith et al., 2017)

Cis-regulatory landscape of the maternal
hippocampus

Chromatin organization governs transcription factor (TF)
binding and transcriptional regulation, which are neces-
sary for the dynamic adaptation of neural circuits. To

September/October 2022, 9(5) ENEURO.0117-22.2022

complement the cell type-specific transcriptional atlas
of the maternal hippocampus, we performed snATAC-
seq at identical timepoints to those described above.
Our snATACseq dataset includes 38,123 nuclei that
pass quality filtering (Fig. 6a—d), with an average of
216,990 unique nuclear genome fragments. The propor-
tion of accessible regions within genes, promoters, or
distal regulatory sites was 69.6%, 0.1%, 30.3%, respec-
tively. We assigned cell type identity to snATAC-seq
clusters using anchoring and label transfer from our
snRNA-seq data via Signac (Stuart et al., 2021). Label
transfer and integration of snRNA-seq and snATAC-seq
demonstrated strong agreement between computation-
al and supervised (marker gene-driven) linkage of the
datasets (Fig. 6e,f). To further correlate transcriptional
and chromatin dynamics within cell types, we analyzed
the combined datasets using ArchR Peak2GeneLinkage
(Granja et al., 2021). We identified strong cell type-spe-
cific modules of gene-chromatin correlations, as evi-
denced by the heatmap in Figure 7a, suggesting distinct
gene regulatory interactions.
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continued

Figure 7. Analysis of TF motifs and differential accessibility from snATAC-seq of the murine hippocampus. a, Integrated analysis of
snRNA-seq and snATAC-seq with ArchR peak-to-gene linkage. The heatmap displays k-means clustered genes or chromatin loci
as rows. Colored columns indicate cell types. b, Motif feature plot and position weight matrix (PWM) for the TF Nrg1, enriched in
GABAergic cells. ¢, Motif feature plot and PWM for the TF Neurog1, enriched in glutamatergic cells. d, Motif feature plot and PWM
for the TF IRF1, enriched in microglia. e, Motif feature plot and PWM for the TF Sox2, enriched in mature oligodendrocytes. f,
ArchR-based chromatin co-accessibility analysis of the Olig1 and Olig2 loci. Top panels display genomic tracks of chromatin acces-
sibility, organized by cell type. Bottom panels display location and linkage of co-accessible peaks near the Olig1 and Olig2 loci. g,
ArchR-based chromatin co-accessibility analysis of the Cx3cr1 locus. Top panels display genomic tracks of chromatin accessibility,
organized by cell type. Bottom panels display location and linkage of co-accessible peaks near the Cx3cr1 locus.

First, given limited existing data on the chromatin land-
scape of the murine hippocampus, we identified chromatin
accessibility signatures for distinct cell types in the mouse
hippocampus across all timepoints in a pooled analysis
(virgin, E18, postpartum). In the GABAergic neuronal popu-
lation, we noted the marked increase in the accessibility of
the Nuclear Respiratory factor 1 (NRF-1) motif relative to
glutamatergic neurons (Fig. 7b). This TF serves as an activ-
ity-dependent activator for the transcription of the 81 sub-
unit of the GABA-A receptor (Z Li et al., 2018). Conversely,
we identified the enhanced accessibility of the Neurogenin
1 (Neurog1) motif in the glutamatergic population relative
to GABAergic neurons (Fig. 7c). Neurog1 is a critical TF for
glutamatergic fate specification (Reyes et al., 2008; Shaker
et al., 2012). In astrocytes relative to oligodendrocytes, there
was increased accessibility of the Interferon regulatory fac-
tor 1 (IRF1) motif (Fig. 7d); IRF1 restricts the differentiation of
OPCs to oligodendrocytes (Tanner et al., 2011). We also
found the accessibility of the Sex determining region Y-box
2 (SOX2) motif to be greater in oligodendrocytes (Fig. 7e).
In murine brain development, the proliferation and differen-
tiation of oligodendrocytes are upregulated by SOX2
expression, and in adulthood, SOX2 facilitates remye-
lination following white matter damage (S Zhang et al.,
2018). These results, while largely expected based on
known mechanisms of TF activity in brain cell types,
support the fidelity of chromatin accessibility signa-
tures in our dataset.

We then constructed chromatin co-accessibility net-
works for canonical cell type identity genes for the murine
hippocampus, again across all timepoints in a pooled
analysis (virgin, E18, postpartum). Co-accessibility is a
correlation in chromatin accessibility between two peaks
across many single cells. We used ArchR to map proximal
and distal chromatin regulatory elements associated with
target genes. We identified chromatin co-accessibility in
regulatory elements linking Olig1 and Olig2 loci, which are
genes predominantly expression in oligodendrocyte line-
age cells (Fig. 7f). We also mapped the complex cis-regu-
latory landscape surrounding the Cx3cr1 locus, which is
associated with microglial identity (Fig. 7g).

We next asked whether there were cell type-specific
changes in chromatin accessibility consistent with preg-
nancy-associated neuroplasticity. We performed pairwise
differential accessibility analysis between conditions (vir-
gin, E18, postpartum) within cell types, and these data are
provided in Extended Data Figure 8-1. Broadly, using the
peaks with significant changes in accessibility during
pregnancy (virgin vs E18), we used GO analysis to identify
functional pathways that exhibit dynamic cell type-specific
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changes (DG granule cells, CA1 pyramidal neurons, and
astrocytes; Fig. 8a-c; Extended Data Fig. 8-2). The Wnt/
[ -catenin signaling, which is critical in regulating neurogen-
esis (Arredondo et al., 2020), synapse strength (Okuda et
al., 2007), and dendritic structure (Heppt et al., 2020), was a
common pathway identified across several cell types and is
known to be enhanced by estrogen (Varea et al., 2009).
Next, we focused on three themes, similar to the snRNA-
seq analysis: neurogenesis, neurotransmission, and struc-
tural remodeling.

Neurogenesis

Cell type-specific chromatin accessibility analysis cor-
roborated our transcriptional findings associated with im-
paired neurogenesis during pregnancy. Specifically, the
accessibility of the Sox4 locus in DG granule cells is de-
creased during pregnancy (E18) compared with virgin
(Fig. 8d). Sox4 is a member of the SoxC group within the
SOX TF family and facilitates neurogenesis both in vitro
and in vivo (Mu et al., 2012). We further found the accessi-
bility of Erb-B2 receptor tyrosine kinase 4 (Erbb4) locus to
be lower during pregnancy (E18) compared with virgin
(Fig. 8d). In the subventricular zone, another neurogenic
niche, Erbb4 is necessary for the survival, migration and or-
ganisation of NPCs (Anton et al., 2004; H Zhang et al., 2018).

We inferred TF activity through analysis of differential
motif accessibility and found evidence to support a de-
cline in neurogenesis during pregnancy. In DG granule
cells, we found the decreased accessibility of several
FOS and JUN motifs in pregnant mice (E18) relative to
virgin controls (Fig. 8f). These proteins are members of
the Activator protein-1 (AP1) TF family, broadly regulat-
ing cell proliferation and differentiation (Shaulian and
Karin, 2002). Specific to neurogenesis, the AP1 com-
plex likely regulates NPC proliferation, and Fos is suffi-
cient to rescue NPC self-renewal in SOX2 knock-out
(KO) mice (Pagin et al., 2021). Moreover, there is in-
creased accessibility of the Etvl motif in DG granule
cells of pregnant mice (E18) when compared with virgin
controls (Fig. 8f). In vitro, ETV1 represses cell prolifera-
tion genes in murine cerebellar granule cells and pro-
motes mature neural circuit formation (Okazawa et al.,
2016).

Structural remodeling

We identified changes in cell type-specific chromatin
accessibility to support the structural remodeling of the
neural circuit associated with pregnancy. In particular, in
CA3 pyramidal neurons, we discovered increased acces-
sibility of the Nectin Cell Adhesion Molecule 3 (Nectin3)
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Figure 8. Differential accessibility analysis of snATAC-seq of the murine hippocampus before, during, and after pregnancy. a, GO
analysis of differentially accessible peaks (FDR < 5%) between virgin and E18 in DG granule cells. Extended Data Figure 8-1 pro-
vides complete results of differential chromatin accessibility analysis, and Extended Data Figure 8-2 provides complete results of
GO analysis from snATAC-seq. b, GO analysis of differentially accessible peaks (FDR < 5%) between virgin and E18 in CA1 pyrami-
dal cells. ¢, GO analysis of differentially accessible peaks (FDR < 5%) between virgin and E18 in astrocytes. d, MA plot (log2 fold
change vs log2 mean expression) of differentially accessible peaks in DG comparing virgin versus E18, with select candidates
(Erbb4, Sox4, and Grin2a) highlighted. e, MA plot (log2 fold change vs log2 mean expression) of differentially accessible peaks in
CA1 comparing virgin versus E18, with select candidates (Grid1, Grid2, Shank2, Grin2a) highlighted. f, Position weight matrices
(PWM) for TF motifs with significant changes at E18 compared with virgin. FDR values reflect comparisons in the DG for FOS, JUN,
ETV1, ETV4, SP4, and ESR1. FDR values reflect comparisons in CA3 for CTCF and CA1 for ELK1.

locus during pregnancy (E18) relative to virgin conditions.  during pregnancy (E18) compared with virgin. Interestingly,
This synaptic cell adhesion molecule is located at the postsy-  we also noted that the accessibility of the Shank2 locus is
naptic terminal and coordinates the actin cytoskeleton and  greater in CA1 pyramidal neurons during pregnancy (E18)
cadherin-catenin complex during synaptogenesis and synap-  compared with virgin (Fig. 7b). Akin to PSD-95, Shank? is a
tic remodeling (R Liu et al., 2019). Likewise, Shank2 is a post-  postsynaptic scaffold protein localized to excitatory synapses
synaptic terminal component and binding partner of PSD-95  and, along with several other components, organizes the
(Brandstatter et al., 2004). By snRNA-seq, we found the in-  location of metabotropic and ionotropic glutamate re-
creased expression of PSD-95 in CA1 pyramidal neurons  ceptors (Monteiro and Feng, 2017).
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With regard to TF motifs, we identified increased acces-
sibility of the ETV4 motif in DG granule cells, as well as
CA1 and CA3 pyramidal neurons, during pregnancy (E18)
relative to virgin conditions (Fig. 8f). This TF likely medi-
ates BDNF signaling and is highly expressed during hip-
pocampal dendrite development, with ETV4 deletion
resulting in decreased dendritic complexity and size (D
Liu et al., 2016; Fontanet et al., 2018). We further identi-
fied increased accessibility of the SP4 TF motif in CA1
and CAS3 pyramidal neurons during pregnancy (E18) com-
pared with virgin (Fig. 7¢). In rodents, SP4 has been found
to modulate dendritic arborization and pruning as well as
NMDAR trafficking (Ramos et al., 2007; Sun et al., 2015).
Notably, the accessibility of the Estrogen receptor «
(ESR1) motif is increased during pregnancy (E18) in DG
granule cells and CA1 and CA3 pyramidal neurons com-
pared with virgin (Fig. 8f). In the hippocampus, this nu-
clear receptor modulates a broad spectrum of plasticity,
including dendritic spine density and the abundance of
NMDARs (Mukai et al., 2010). This finding is consistent
with a hormone-mediated model of pregnancy-associ-
ated neuroplasticity.

Neurotransmission

Changes in the chromatin accessibility landscape dur-
ing pregnancy also corroborate pregnancy-associated
adaptations in neurotransmission. In CA1 pyramidal neu-
rons, there is increased accessibility of the loci for gluta-
mate receptor -1 and 6-2 subunits (Grid7 and Grid2)
during pregnancy (E18) compared with virgin (Fig. 8e).
Both genes play a role in synaptic plasticity, albeit in
different neuronal populations (Fossati et al., 2019) and
Grid1, in particular, mediates hippocampal mGlu5 signal-
ing (Suryavanshi et al., 2016). Furthermore, in CA1 pyram-
idal neurons and DG granule cells, we identified increased
accessibility of the NMDAR subunit ¢e—1 (Grin2a) locus
(Fig. 7b) in E18 compared with control. In CA3 pyramidal
neurons, we identified the NMDAR subunit £—2 (Grin2b)
locus as more accessible at E18 compared with virgin.
These subunits are integral to synaptic plasticity, with
Grin2a mutant mice experiencing reduced LTP in CA1
(Sakimura et al., 1995), and in Grin2b mutants, NMDAR-
mediated LTD is eliminated (Brigman et al., 2010).

Analysis of differential TF motifs between pregnancy
conditions revealed further evidence of pregnancy-asso-
ciated modifications in neurotransmission. The motif for
CCCTC-binding factor (CTCF) is more accessible in CA3
pyramidal neurons of the pregnant hippocampus (E18)
when compared with virgin mice (Fig. 8f). CTCF-induced
gene expression is thought to underlie adult hippocampal
memory via chromatin reorganization, and CTCF KO mice
show disrupted LTP (Sams et al., 2016). We also noted
the enhanced accessibility of the ETS TF ELK1 in CA3
and CA1 pyramidal neurons during pregnancy (E18) when
compared with virgin (Fig. 8f). In the hippocampus, ELK1
phosphorylation via the MAPK/ERK pathway has been
associated with induction of LTD and is also thought to
mediate LTP-dependent gene regulation (Davis et al.,
2000; Besnard et al., 2011).

In summary, our multiomics characterization provides a
detailed landscape of complementary layers of regulatory
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control governing peripartum plasticity and identify candi-
date regulators of hormone-mediated adaptation.

Discussion

Despite long-standing recognition of the extraordi-
nary plasticity of the female brain during and after preg-
nancy, there is a shortage of molecular insights into this
physiological adaptation. Hormone-driven plasticity during
pregnancy has likely evolved to prepare females for child-
rearing and improve offspring survival (Brunton and Russell,
2008). Human neuroimaging studies have demonstrated
pregnancy-associated decreases in gray matter volume that
persists for at least two years postpartum (Hoekzema et al.,
2017). These volume reductions are particularly prominent
in regions implicated in maternal caregiving (Barha and
Galea, 2017; Michaelian et al., 2019). Although the existing
literature on humans is limited, pregnancy-associated cog-
nitive changes are supported by self-reported symptoms of
working memory deficits and general “mental fogginess”
(Brown and Schaffir, 2019). Globally, >200 million women
are pregnant each year, and it is therefore critical that we
understand the mechanisms by which pregnancy shapes
the female brain.

In this study, we leverage snRNA-seq and snATAC-seq
to identify candidate transcriptional and epigenetic regu-
lators of pregnancy-associated neuroplasticity. We focus
on the hippocampus, as this region demonstrates sub-
stantial plasticity across the mammalian lifespan, and the
DG is one of only two known areas in which neurogenesis
occurs in adult mammals (Cameron and Mckay, 2001;
Gould, 2007). We identify numerous potential candidate
regulators of neurogenesis, neurotransmission and struc-
tural remodeling during and after pregnancy, with the
most dramatic changes occurring between virgin (pre-
pregnancy) and E18. These results are broadly consistent
with previous in vitro and in vivo experiments demonstrat-
ing a marked impact of sex hormones on neural plasticity.
Specifically, in mice, late pregnancy is associated with re-
duced neurogenesis in the DG that continues into the
early postpartum period (Rolls et al., 2008; Kim et al.,
2010). Pregnancy also correlates with increased dendritic
spine density in the CA1 neurons of female rats (Kinsley et
al., 2006; Pawluski and Galea, 2006), as well as changes
in GABAergic neurotransmission in mice during preg-
nancy (Maguire et al., 2009).

Periods of intense neuroplasticity are often associated
with vulnerability for mental iliness, as perturbations dur-
ing so-called “critical periods” can have profound long-
term consequences for cognition, memory, and behavior.
Therefore, it is not surprising that the peripartum period is
also marked by increased incidence of psychiatric iliness,
including depression, anxiety, and psychosis (Galea et al.,
2014; Barba-Mdller et al., 2019). Future work should char-
acterize how stress or other perturbations during preg-
nancy modulate peripartum neuroplasticity, as well as cell
type-specific regulators of maternal behavior. For exam-
ple, in pregnant rats, stress during gestation results in in-
creased neurogenesis and also impacts hippocampal
glucocorticoid receptor density (Pawluski et al., 2015).
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There are likely other drivers of neuroplasticity during
pregnancy that require deeper investigation beyond this
study. In particular, immune adaptation across gestation
is critical to safeguard the mother from infection and pre-
vent an immune reaction directed at the fetus (Peterson et
al., 2020). While classically implicated in maternal-fetal
tolerance, T cells also play a role in adult murine neurogene-
sis, and pregnant mice lacking a T cell population only dis-
play a marginal decline in neurogenesis during pregnancy
(Ziv et al., 2006; Rolls et al., 2008). Interestingly, the preg-
nancy-associated decrease in neurogenesis is reversed fol-
lowing T cell restoration in nude mice (Rolls et al., 2008).

The findings of the present study should be interpreted
in the context of several technical and analytical limita-
tions. Importantly, changes in the maternal brain are
highly species-dependent, and therefore, the results of
this study must be interpreted in the context of the murine
brain. snRNA-seq suffers from low capture efficiency and
gene dropout, which may bias the analysis toward more
highly expressed genes. Similarly, chromatin accessibility
from snATAC-seq is sparse, and it is challenging to infer
precise biological function from changes in accessible re-
gions and putative gene regulatory networks. The compari-
sons between conditions are pairwise, which limits any
conclusion about the precise trajectory across all three peri-
partum timepoints. While we identified changes between
groups that were statistically significant (FDR <5%), the
fold changes are often modest, at best, which may reflect a
limitation of the single-cell sequencing approach. Despite
these limitations, this dataset is an important resource for
mapping cell type-specific adaptation to the unique context
of pregnancy.
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