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Abstract. Human immunodeficiency virus (HIV)‑1 has been 
detected in ocular tissues; however, the mechanism of entry 
has not been established. It has been hypothesized that the 
blood‑retinal barrier (BRB), a critical guardian against micro-
bial invasion of the eye, may be compromised in the presence 
of HIV‑1 in the eye. In  vivo and in  vitro model systems 
have shown that the breach of tight junctions induced by 
HIV‑1‑associated factors contributes to the breakdown of the 
BRB. The present study reviews the mechanism of tight junc-
tion disruption, focusing on signaling pathways, the expression 
of enzymes, including metalloproteinases, and cytokines that 
affect inflammation. The studied pathways may be potential 
targets for the prevention of ocular HIV complications. 
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1. Introduction 

Han et al performed a cross‑sectional study on a group of 
human immunodeficiency virus (HIV)‑1‑infected patients 
who underwent long‑term highly active antiretroviral therapy. 
The results indicated that various fragments of the HIV‑1 
genome were detectable in tears, in the absence of a detect-
able plasma viral load (1). Earlier in the 1980s, studies isolated 
HIV viruses from tears, cornea, aqueous humor, conjunctiva, 
retinal vascular endothelium and even contact lenses (2‑4). 
Pathanapitoon et al analyzed the aqueous and vitreous humor 
samples from HIV‑1‑infected patients and observed that 
several patients had intraocular HIV‑1 RNA levels that were 
higher than the corresponding HIV‑1 RNA plasma levels, 
which indicated a largely elevated ocular‑to‑plasma HIV 
ratio (5). Thus, the mechanisms by which HIV invades the eye 
and exists in the tissues in the absence of a detectable plasma 
virus level were questioned. To date, there has been no expla-
nation of these circumstances. A growing number of studies 
have shown that the central nervous system (CNS) is a sanc-
tuary for HIV, which crosses the blood‑brain barrier (BBB) 
early in the course of systemic infection and resides in brain 
macrophages and microglia (6,7). One hypothesis is that HIV 
persists in these sanctuaries during antiretroviral treatment 
and may cause the generation and dissemination of drug‑resis-
tant viruses (8). Another hypothesis is that the breakdown of 
the blood‑retinal barrier (BRB), which is associated with the 
changes in the tight junctions, contributes to the trafficking of 
HIV into the eye (9,10). Therefore, the present review focused 
on the key breakdown mechanisms of tight junctions. 

2. Components of the blood‑retinal barrier

The BBB provides significant protection against microbial 
invasion of the brain (11). The BRB and BBB are derived from 
the same embryonic primordium. Brain endothelial cells form 
extremely tight cell‑cell junctions that are distinct from the 
tight junctions of endothelia and epithelia elsewhere in the 
body. Brain endothelial cells lack fenestrations and have a 
high number of mitochondria, which are characteristics asso-
ciated with their specialized functions. For example, a high 
mitochondrial content is likely to be important for providing 
the energy required to maintain the structure and function of 
the BBB (12). For BBB capillaries, the transendothelial elec-
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trical resistance, an indicator of permeability, ranges between 
1,000 and 2,000 Ω/cm2. However, for systemic capillaries 
this value is only 5‑10 Ω/cm2. The BRB, which maintains eye 
homeostasis, has a similar nature to the BBB (13). The BRB 
is composed of retinal capillary endothelial cells (inner BRB) 
and retinal pigment epithelium (RPE) cells (outer BRB) (14). 
These two cell types develop tight junctions that confer a high 
degree of control of solute and fluid permeability between the 
circulating blood and the neural retina (Fig. 1).

3. Tight junctions in the eye 

The transmembrane proteins of tight junctions include 
occludin, junction adhesion molecules and claudins. These 
proteins extend into the paracellular space, acting in concert 
to affect barrier properties (15). Occludin and claudins have 
external loops that mediate intercellular adhesion by interac-
tion with occludin and claudins of neighboring cells (16). In 
addition, claudins and occludin interact with zonula occludens 
(ZOs) ‑1, ‑2 and ‑3, which in turn associate with the actin 
cytoskeleton (Fig. 2). The 220‑kDa phosphoprotein ZO‑1, in 
particular, is able to bind to a wide variety of protein partners 
and allow for the control of tight junction assembly (17). During 
viral infections and other pathological conditions, altering 
the localization or cleavage of the tight junction proteins is 
the main pathological change, which results in the increasing 
permeability of the barrier (18).

4. Claudins

Claudin‑5 is expressed predominantly in endothelial cells (19). 
A study using claudin‑5‑deficient mice demonstrated that it is 
necessary to preserve the vascular barrier to small (<0.8 kDa) 
molecules in the brain (20). As claudin‑5 is expressed in the 
retinal vasculature (21), it is likely to contribute to the function 
of the BRB. The expression of claudin‑3, ‑10 and ‑19 has been 
detected in the human fetal RPE (22).

5. Occludin

Increased expression of occludin has been observed to corre-
late with increased barrier function and decreased paracellular 
permeability  (23,24). In addition, changes in the content 
and localization of occludin in diabetic retinas have been 
demonstrated to be associated with alterations in barrier func-
tion (25). A study of bovine retinal endothelial cells treated 
with vascular endothelial growth factor (VEGF) revealed 
a decreased occludin content and immunostaining at cell 
borders concomitant with increased BRB permeability (26). 
Similarly, diabetes reduces occludin content in the brain 
vasculature; this reduction correlates with the incidence of 
vascular diseases (27).

6. Zonula occludens‑1

ZO proteins are intracellular proteins that associate with the 
cytoplasmic surface of tight junctions and organize the tight 
junction complex. The presence of ZO‑1 is readily observed in 
retinal vascular endothelial and RPE cells. In these cell types, 
agents that induce permeability, including VEGF or hepato-

cyte growth factor, induce the redistribution of ZO‑1 from the 
cell border to the cell interior (28,29).

7. Mechanism for the disruption of tight junctions

Increased permeability of the BRB may occur through two 
pathways, the paracellular or the transcellular pathway. 
The paracellular route is governed by tight junctions and is 
usually the main route of increased endothelial barrier perme-
ability (30).

8. Tat‑induced caveolae‑associated signaling

Tat is the only protein actively secreted by HIV‑1 infected 
cells. It circulates in the blood at high levels during HIV infec-
tion and crosses the BBB with large quantities entering the 
CNS (31). The VEGF receptor has been hypothesized to serve 
as a high‑affinity receptor for Tat in endothelial cells (32). Tat 
specifically interacts with VEGF and surface molecules that 
belong to the large family of G‑protein‑coupled receptors local-
ized to caveolae, to activate several protein kinases, including 
certain kinases involved in Ras signaling (33). Ras proteins 
are small GTPases that cycle between inactive GDP‑bound 
and active GTP‑bound conformations. Several elements of the 
Ras signaling cascades are localized in caveolae, the dominant 
type of lipid rafts in endothelial cells (34). Zhong et al focused 
on the breakdown mechanism of the BBB and found that Tat 
diminished the expression of several tight junction proteins, 
including occludin, ZO‑1 and ZO‑2, in the caveolar fraction of 
human brain microvascular endothelial cells (HBMECs) (35). 
These effects were effectively protected against by the phar-
macological inhibition of Ras signaling and by the silencing 
of caveolin‑1. Lin et al demonstrated that HIV infection in 
primary human monocyte‑derived macrophages results in a 
marked upregulation of caveolin‑1 expression mediated by 
the HIV Tat protein (36). Nag et al assessed the sequential 
expression of caveolae and occludin over a period of 12 h to 
6 days post‑lesion in a rat cortical cold injury model. The study 
demonstrated a significant increase in endothelial caveolin‑1 
expression in arterioles and large veins, particularly those with 
BBB breakdown to proteins (37). In addition, the HIV‑1 Tat 
protein causes the paracellular permeability of RPE cells to 
increase in vitro, concomitant with changes in the expression 
of tight junctions. Therefore, the effects of Tat on the outer 
BRB may be mediated by Ras/ERK1/2 pathways (9).

9. Disruption of tight junctions and the basal lamina by 
secreted matrix metalloproteinases

The basal lamina of the BBB contains extracellular matrix 
molecules, including laminin, type IV collagen and fibro-
nectin. The majority of these molecules are substrates for a 
family of neutral proteases called matrix metalloproteinases 
(MMPs), in particular MMP‑2 and ‑9 (38). MMPs contribute 
to interactions between cells and the matrix, allowing move-
ment and shape changes in CNS development and neuronal 
plasticity. MMPs are key mediators of tight junction protein 
alterations, which lead to BBB dysfunction  (39,40). These 
zinc‑dependent enzymes have proteolytic activity that acts 
on the extracellular matrix, including the basal laminae. 
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MMPs are associated with tight junction disruption not only 
by basement membrane degradation, but also by cleavage of 
tight junction proteins (41,42). Elevated levels of MMP‑9 have 
been reported in the cerebrospinal fluid of HIV‑1‑infected 
children  (43) and adult patients  (44). The overexpression 

of MMP‑2 and MMP‑9 was also reported in the brain of a 
severe combined immunodeficiency mouse model of HIV‑1 
encephalitis (45). In a study in rats, within 30 min of HIV-1 
glycoprotein 120 (gp120) injection into the caudate‑putamen 
(CP), MMP‑2 co‑localized with laminin and by 6 h there was 

Figure 1. Retinal‑vascular unit and tight junctions between endothelial cells, forming the inner and outer blood‑retinal barrier.

Figure 2. Major molecules of the tight and adherens junctions are shown. Tight junction proteins include ZO, occludin, claudins and JAMs, while adherens 
junction proteins include catenins and vinculins. JAMs, junctional adhesion molecules; ZO, zonula occludens.
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a significant reduction in the number of laminin‑positive struc-
tures in the injected CP. Similarly, the levels of vascular tight 
junction proteins, claudin‑5 and occludin, were significantly 
decreased in the experimental group compared with those in 
the controls (46). In one study, primary HBMECs were exposed 
to HIV‑1 Tat proteins. Tat induced MMP‑9 expression, and 
RNA interference targeting MMP‑9 reduced the paracellular 
permeability of Tat‑treated HBMECs and the concentration 
of soluble occludin in the cell supernatant (47). In a diabetic 
rat model, the transepithelial electrical resistance (TER) was 
measured in the retinal endothelium and RPE following treat-
ment with MMPs. The two cell types showed decreased TER 
and degradation of the tight junction proteins, indicating that 
elevated expression levels of MMPs in the retina may facilitate 
the change in BRB permeability (48).

10. Disruption of tight junctions by alterations in the actin 
cytoskeleton

Tight junctions may also be disrupted from within cells. 
Changes in the actin cytoskeleton are likely to occur upon 
alteration of the tight junction proteins, resulting in paracel-
lular permeability changes  (49). Reactive oxygen species 
play a role in disrupting tight junctions from within cells via 
the induction of the RhoA small GTPase, phosphoinositide 
3‑kinase and protein kinase B signaling pathways, concomi-
tant with the rearrangement of the actin cytoskeleton and 
altered localization of occludin and claudin‑5 (50). In addition, 
the alteration of the actin cytoskeleton induced by hypoxic 
stress correlates with changes in BBB permeability and ZO‑1 
localization (51). Bruban et al showed that disorganization 
of cytoskeletal actin filament models was accompanied 
by decreased expression of tight junction proteins by the 
RPE (52).

11. Inflammatory cytokines induce the destruction of tight 
junctions

A number of cytokines have been reported to be upregu-
lated in the plasma of HIV‑infected individuals or in plasma 
treated ex vivo. In vitro, the interaction of HIV or the HIV 
gp120 envelope with CD4 molecules induces the secretion of 
tumor necrosis factor (TNF)‑α, interleukin (IL)‑1 and other 
cytokines (53). Several studies have noted a marked increase 
in membrane permeability following exposure to vasoactive 
cytokines, including TNF‑α, IL‑1β, interferon‑γ, histamine 65 
and growth factors (54). When activated, inflammatory cells 
initiate the cellular release of free radicals, cytokines and 
growth factors (55). HIV‑1 Tat is a strong proinflammatory 
agent that recruits and induces the transendothelial migration 
of monocytes (56). When Tat was injected into the hippocampi 
of mice, reductions in the levels of ZO‑1 and its continuity were 
observed, in addition to inflammatory cell accumulation in the 
choroid plexus (57). It has also been shown that the expression 
of the occludin promoter is affected by TNF‑α or interferon 
treatment (58). These studies indicate that the expression of 
HIV genes or proteins may alter the capacity of the cells to 
secrete important cytokines. Therefore, cytokines are likely to 
play a vital role in the pathology of HIV‑associated complica-
tions.

12. Concluding remarks

The interplay between HIV‑1 and hosts at the BRB is complex. 
The present review has shown that specific viral genes affect 
signaling pathways, the expression of enzymes, including 
MMPs, and cytokines that affect inflammation, which leads 
to the disruption of tight junctions. These effects are directly 
caused by HIV‑1‑associated proteins or HIV‑1‑induced 
inflammatory factors. This accumulating damage results in 
BRB breakdown. Advances in the understanding of HIV‑host 
interactions are likely to be forthcoming as researchers apply 
effective approaches to their studies of this challenging 
topic. The present study reveals insights into the molecular 
mechanisms underlying BRB regulation and may provide 
opportunities for the treatment of ocular complications. 
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