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Abstract

Background

Preterm birth is a significant contributor of under-five and newborn deaths globally. Recent

estimates indicated that, Tanzania ranks the tenth country with the highest preterm birth

rates in the world, and shares 2.2% of the global proportion of all preterm births. Previous

studies applied binary regression models to determine predictors of preterm birth by collaps-

ing gestational age at birth to <37 weeks. For targeted interventions, this study aimed to

determine predictors of preterm birth using multinomial regression models accounting for

missing data.

Methods

We carried out a secondary analysis of cohort data from the KCMC zonal referral hospital

Medical Birth Registry for 44,117 women who gave birth to singletons between 2000-2015.

KCMC is located in the Moshi Municipality, Kilimanjaro region, northern Tanzania. Data

analysis was performed using Stata version 15.1. Assuming a nonmonotone pattern of

missingness, data were imputed using a fully conditional specification (FCS) technique

under the missing at random (MAR) assumption. Multinomial regression models with robust

standard errors were used to determine predictors of moderately to late ([32,37) weeks of

gestation) and very/extreme (<32 weeks of gestation) preterm birth.

Results

The overall proportion of preterm births among singleton births was 11.7%. The trends of

preterm birth were significantly rising between the years 2000-2015 by 22.2% (95%CI

12.2%, 32.1%, p<0.001) for moderately to late preterm and 4.6% (95%CI 2.2%, 7.0%, p =

0.001) for very/extremely preterm birth category. After imputation of missing values, higher

odds of moderately to late preterm delivery were among adolescent mothers (OR = 1.23,
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95%CI 1.09, 1.39), with primary education level (OR = 1.28, 95%CI 1.18, 1.39), referred for

delivery (OR = 1.19, 95%CI 1.09, 1.29), with pre-eclampsia/eclampsia (OR = 1.77, 95%CI

1.54, 2.02), inadequate (<4) antenatal care (ANC) visits (OR = 2.55, 95%CI 2.37, 2.74),

PROM (OR = 1.80, 95%CI 1.50, 2.17), abruption placenta (OR = 2.05, 95%CI 1.32, 3.18),

placenta previa (OR = 4.35, 95%CI 2.58, 7.33), delivery through CS (OR = 1.16, 95%CI

1.08, 1.25), delivered LBW baby (OR = 8.08, 95%CI 7.46, 8.76), experienced perinatal

death (OR = 2.09, 95%CI 1.83, 2.40), and delivered male children (OR = 1.11, 95%CI 1.04,

1.20). Maternal age, education level, abruption placenta, and CS delivery showed no statis-

tically significant association with very/extremely preterm birth. The effect of (<4) ANC visits,

placenta previa, LBW, and perinatal death were more pronounced on the very/extremely

preterm compared to the moderately to late preterm birth. Notably, extremely higher odds of

very/extreme preterm birth were among the LBW babies (OR = 38.34, 95%CI 31.87, 46.11).

Conclusions

The trends of preterm birth have increased over time in northern Tanzania. Policy decisions

should intensify efforts to improve maternal and child care throughout the course of preg-

nancy and childbirth towards preterm birth prevention. For a positive pregnancy outcome,

interventions to increase uptake and quality of ANC services should also be strengthened in

Tanzania at all levels of care, where several interventions can easily be delivered to preg-

nant women, especially those at high-risk of experiencing adverse pregnancy outcomes.

Introduction

Every year, an estimated 15 million babies (11%) are born preterm (before 37 completed

weeks of gestation) globally [1, 2], majority (81.1%) of these occurs in Asia and sub-Saharan

Africa (SSA) [1]. The rates of preterm birth in SSA are notably high in Nigeria (6.9%), Ethiopia

(12.0%), and Tanzania (16.6%) [1]. Tanzania ranks the tenth country with the highest preterm

birth rates in the world, and shares a 2.2% of the global proportion of all preterm births [1].

The country specific estimates shows that the proportion of preterm birth ranged between 12-

13% in Mwanza region [3–6] to as high as 24% among HIV infected women in Dar es Salaam

[7].

Preterm birth is a syndrome with a variety of causes, which can be classified into two broad

clinical sub-types: spontaneous preterm birth (spontaneous onset of labour or following prela-

bour premature rupture of membranes) and provider-initiated preterm birth (induction of

labor or elective caesarean birth before 37 completed weeks of gestation for maternal or fetal

indications, both “urgent” or “discretionary”, or other non-medical reasons) [2, 8–11].

A higher risk of preterm birth is reported among women with a history of preterm delivery,

those with low (�24) or high maternal age (�40), short inter-pregnancy intervals (<24

months), low maternal body mass index (BMI), multiple pregnancies, maternal infections

such as urinary tract infections, malaria, bacterial vaginosis, HIV and syphilis and those with

inadequate (<4) ANC visits [5, 9, 12–15]. Stress and excessive physical work or long times

spent standing, drug abuse such as smoking and excessive alcohol consumption, sex of the

child (more among males compared to females), hypertensive disorders of pregnancy such as

pre-eclampsia or eclampsia, placental abruption, cholestasis, fetal distress, fetal growth restric-

tion, small for gestational age (a birth weight below the 10th percentile for the gestational age),
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and early induction of labor or cesarean birth (before 39 completed weeks of gestation)

whether for medical or non-medical reasons also increases the risk of preterm birth [2, 5, 9,

16–18].

Globally, preterm birth is a leading cause of deaths among children under five years of age

[1, 2, 10, 19]. SSA is one of the regions with the highest under five deaths in the world [19, 20].

In 2018, preterm birth complications accounted for 18% of death of children under the age of

five and 35% of all newborn deaths globally [20]. Preterm birth also increases the risk of babies

dying from other causes, especially neonatal infections [9]. Despite modern advances in obstet-

ric and neonatal management, the rate of preterm birth are on the rise in both low-, middle-

and high-income countries [1, 2, 21, 22], while in many low- and middle-income countries,

preterm newborns are reported to die because of a lack of adequate newborn care [1].

Despite a substantial progress in improving child survival since 1990 [1, 23], preterm birth

remains a crucial issue in child mortality and improving quality of maternal and newborn care

[1]. To increase child survival and reduce preterm birth complications, the World Health

Organization (WHO) recommends essential care during childbirth and postnatal period for

every mother and baby (i.e. routine practice for the safe childbirth before, during and after

birth), provision of antenatal steroid injections, magnesium sulfate for prevention of cerebral

palsy in the infant and child, kangaroo mother care, and antibiotics to treat newborn infections

[2, 24]. Tanzania has also adopted these strategies [25, 26] and is one of the five countries

where WHO implements a clinical trial on the immediate kangaroo mother care (KMC) for

preterm and babies weighing <2000 grams [2, 26].

Epidemiologists are often interested in estimating the risk of adverse events originally mea-

sured on an interval scale (such as gestational age in weeks), but they often choose to divide

the outcome into two or more categories in order to compute an estimate of effect (risk or

odds ratio) [27]. In this study, we applied the multinomial logistic regression models, to show

the effect of covariates on several preterm birth categories [2, 22] to avoid the bias that might

be introduced by performing a binary analysis. A number of previous studies to assess predic-

tors of preterm birth collapsed all preterm birth categories and performed a binary regression

analysis [6, 7, 12, 18, 28–33]. This may introduce potential bias in estimating the effect of

covariates on the risk of preterm birth due to a loss of information resulting from collapsing

these categories. For a more focused care in the high-risk pregnancies, it is essential to estimate

the risk factors for preterm birth, which may differ by the gestational age at birth.

Furthermore, missing data are common in epidemiological and clinical research [34].

Ignoring missing values in the analysis of such data potentially produces biased parameter esti-

mates [34–37]. Stern et. al., [34] further indicated that “missing data in several variables often

leads to exclusion of a substantial proportion of the original sample, which in turn causes a

substantial loss of precision and power”. Therefore, data analysis in this study accounted for

missing data, for more precise parameter estimates. The rest of the paper is organized as

follows.

Materials and methods

Study design, setting and participants

We utilized secondary birth registry data from a prospective cohort of women who delivered

singletons in the Kilimanjaro Christian Medical Center (KCMC) between the years 2000-2015.

A detailed description of the KCMC Medical birth registry is also available elsewhere [38–43].

Briefly, KCMC is one of the four zonal referral hospitals in the country and is located in the

Moshi municipality, Kilimanjaro region, northern Tanzania. The centre primarily receives

deliveries of women from the nearby communities, but also referral cases from within and
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outside the region. On average, the hospital has approximately 4000 deliveries per year [41,

42, 44].

The study population in this study was singleton deliveries for women of reproductive age

(15-49 years) recorded in the KCMC birth registry between 2000-2015, a total of 55,003 deliv-

eries from 43,084 mothers. We excluded 3,316 multiple deliveries, 49 records missing hospital

numbers (i.e. unique identification number used to link mothers and their subsequent births),

791 observations with a mismatch between dates of births of children from the same mother

or were of unknown sequence (i.e. whether a singleton or multiple births), and 6,730 deliveries

with gestational age<20 weeks and>42 weeks. Data was, therefore, analyzed for 44,117 deliv-

eries born from 35,871 mothers (Fig 1).

Data collection methods

As we have also described the data collection methods elsewhere [43], birth data at KCMC

have been recorded using a standardized questionnaire and is collected by specially trained

project midwives. The KCMC Medical birth registry collects prospective data for all mothers

and their subsequent deliveries in the hospital’s department of obstetrics and gynecology.

Following informed consent, mothers were interviewed within the first 24 hours after birth

given a normal delivery or as soon as a mother has recovered from a complicated delivery.

The questionnaire used for data collection is available elsewhere [45]. Although the printed

Fig 1. Flow chart showing the number of deliveries analyzed in this study. Data from the KCMC Medical Birth

registry, 2000-2015.

https://doi.org/10.1371/journal.pone.0249411.g001
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questionnaires were in the English language, the Project Midwives performing the interviews

were well versed in English, Swahili, and one other tribal language. Furthermore, additional

information during data collection were extracted from patient files and antenatal cards for

more clarification of prenatal information. Data are then transferred, entered and stored in a

computerized data base system at the birth registry located at the reproductive health unit of

the hospital. A unique identification number was assigned to each woman at first admission

and used to trace her medical records at later admissions. Access to data analyzed in this study

followed ethical approval granted on June 26, 2019.

Study variables and variable definitions

The response variable was preterm birth, defined as any birth before 37 completed weeks of

gestation and further categorized based on gestational age as<28 weeks (extremely preterm),

[28, 32) weeks (very preterm), [32, 37) weeks (moderate to late preterm), and�37 weeks

(term) for a full-term pregnancy [2]. Gestational age was estimated from the date of last men-

strual period of the mother and recorded in completed weeks [4].

Independent variables included maternal background characteristics, particularly age cate-

gories (15-19, 20-24, 25-34, 35-39 and 40+) in years, area of residence (rural vs urban), educa-

tion level (none, primary, secondary and higher), marital status (single, married and widow/

divorced), occupation (unemployed, employed and others), parity (primipara vs multipara

(para 2-6)), referral status (referred for delivery or not), number of antenatal care visits (<4

and�4 visits), and body mass index (underweight [<18.5 Kg/m2], normal weight [18.5–24.9

Kg/m2], overweight [25–29.9 Kg/m2], and obese [�30 Kg/m2]). Maternal health before and

during pregnancy included, alcohol consumption during pregnancy, maternal anemia,

malaria, systemic infections/sepsis and pre-eclampsia/eclampsia (all categorized as binary, yes/

no). Maternal HIV status was categorized as positive or negative. Complications during preg-

nancy and delivery included premature rapture of the membranes (PROM), postpartum hem-

orrhage (PPH), placenta previa and placenta abruption also categorized as binary, yes/no, with

“yes” indicating the occurrence of these outcomes. Newborn characteristics included sex (male

vs female), perinatal status (dead if experienced stillbirth/early neonatal death vs alive) [43],

and low birth weight (LBW) defined as an absolute infant birth weight of<2500g regardless of

gestational age at birth [46, 47].

Statistical and computational analysis

Data were analyzed using STATA version 15.1 (StataCorp LLC, College Station, Texas, USA).

The primary unity of analysis was singleton deliveries for women recorded in the KCMC Med-

ical Birth Registry between the years 2000 and 2015. We summarized numeric variables using

means and standard deviations, and categorical variables using frequencies and percentages.

The Chi-square test was used to compare the proportion of preterm birth by participants char-

acteristics. We used multinomial logistic regression models to determine the predictors of pre-

term birth as opposed to previous studies [4, 6, 7, 12, 18, 28–30, 32, 33, 48] that performed a

binary regression analysis.

The multinomial/polytomous regression model is an extension of the logistic model for

binary responses to accommodate multinomial responses which does not have any restrictions

on the ordinality of the response [27]. Let Yi denote a nominal response variable for the ith
subject, and Yi = c (the response variable occuring in category c), while Pr(Yi) defines the
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probability that Yi = c. The multinomial logit model can be written as

Pic ¼ PrðYi ¼ cjXijÞ ¼
exp ðZicÞ

1þ
PC

c¼2
exp ðZicÞ

for c ¼ 2; 3; . . . ;C ð1Þ

Pi1 ¼ PrðYi ¼ 1jXiÞ ¼
1

1þ
PC

c¼2
exp ðZicÞ

ð2Þ

A nominal model to allow for any possible set of c − 1 response categories is written as

Pic ¼
exp ðZicÞ

PC
c¼1

exp ðZicÞ
for c ¼ 1; 2; . . . ;C ð3Þ

where the multinomial logit Zic ¼ X0icbc. In this model, all of the effects βc vary across categories

(c = 1, 2, . . ., C) and makes comparisons to a reference category compared to the ordinal

regression model that uses cumulative comparisons of the categories [49]. We used robust

standard errors adjusted for clusters to account for nested observations/ deliveries within

mothers.

We would like to indicate here that we performed preliminary analysis using the binary and

ordinal logistic regression models. There were a couple of variables that did not satisfy the pro-

portional odds (PO) assumption, hence the ordinal logistic regression model could not be

used. The close alternative model that relaxes the PO assumption are the generalized ordered

logistic regression models. However, we encountered a non-convergence problem, especially

with four preterm birth categories and appropriate interpretation of results. For instance, the

order of gestational age categories is <28 weeks (extremely preterm), [28, 32) weeks (very pre-

term), [32, 37) weeks (moderate to late preterm), and 37+ weeks (term/normal). Assuming the

variable is coded as 0 to 3 (with 0 being term birth), the first panel of coefficients will be inter-

preted as; 0 vs. 1+2+3, then 0+1 vs 2+3 etc [50]. This will imply modeling the probability of

delivering at a normal gestational age (category 0) compared to preterm (categories 1-3), prob-

ability of delivering term and very preterm vs other preterm categories, etc. Similar interpreta-

tions will apply even if preterm birth is coded from extremely preterm (0) to term (3). Such

interpretation could be somehow misleading given the nature of this outcome and may not be

appealing to clinicians or public health practitioners. Nevertheless, the choice of regression

models often depends on the research question one would like to address. In this study, the

choice of multinomial regression model was relevant to determine preterm birth predictors

across different preterm birth categories, other than performing a binary or an ordinal regres-

sion analysis.

As previously indicated, data analysis in this study considered missing values in the covari-

ates. A description of how missing data were imputed is also reported in [43]. Data were

imputed using a multiple imputation technique, which is a commonly used method to deal

with missing data, which accounts for the uncertainty associated with missing data [34, 37,

51]. We assumed the missing data were missing at random (MAR) where the probability of

data being missing does not depend on the unobserved data, conditional on the observed data

[34–37]; hence the variables in the dataset were used to predict missingness [43]. We also

assumed a nonmonotone pattern of missingness in which some subject values were observed

again after a missing value occurs [35, 43, 51]. Under a nonmonotone pattern of missingness,

it is recommended to use chained equations, which goes with several names such as the Mar-

kov chain Monte Carlo (MCMC), and the fully conditional specification (FCS), to impute

missing values [37, 51–55]. Furthermore, the FCS method allows imputation of all types of var-

iables simultaneously, namely some continuous and other categorical.
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For the illustration of FCS algorithm, we let Y denote the fully observed outcome in this

study i.e., preterm birth, X denote the partially observed covariates X = X1, . . ., Xp, and W
denote the fully observed covariates W = W1, . . ., Wq. Let Xo and Xm denote the vectors of

observed and missing values of X for n subjects. For each partially observed covariate Xj, we

posit an imputation model f(Xj|X−j, W, Y, θj) with parameter θj where X−j = (X1, . . ., Xj−1, Xj+1,

. . ., Xp) [56]. This according to [56] is typically a generalized linear model chosen according to

the type of Xj (e.g. continuous, binary, multinomial, and ordinal). Furthermore, a noninforma-

tive prior distribution f(θj) for θj is specified. We further let xoj and xmj denote the vectors of

observed and missing values in Xj for the n subjects and y and w denote the vector and matrix

of fully observed values of Y and W across n subjects.

Let xm(t) denote imputations of the missing values xmj at iteration t and

xðtÞj ¼ ðxoj ; x
mðtÞ
j Þ denote vectors of observed and imputed values at iteration t. Let

xðtÞ� j ¼ ðx
ðtÞ
1 ; . . . ; xðtÞj� 1; x

ðt� 1Þ

jþ1 ; . . . ; xðt� 1Þ
p Þ. The tth iteration of the algorithm consists of drawing

from the following distributions (up to constants of proportionality) [56];

y
ðtÞ
1
� f ðy1Þf ðxo1jx

ðtÞ
� 1;w; y; y1Þ

xmðtÞ1 � f ðxm
1
jxðtÞ� 1;w; y; y

ðtÞ
1
Þ

y
ðtÞ
2
� f ðy2Þf ðxo2jx

ðtÞ
� 2;w; y; y2Þ

xmðtÞ2 � f ðxm
2
jxðtÞ� 2;w; y; y

ðtÞ
2
Þ

..

.

y
ðtÞ
p � f ðypÞf ðxopjx

ðtÞ
� p;w; y; ypÞ

xmðtÞp � f ðxmp jx
ðtÞ
� p;w; y; y

ðtÞ
p Þ

9
>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>;

ð4Þ

The FCS starts by calculating the posterior distribution p(θ|xo) of θ given the observed data.

This is followed by drawing a value of θ� from p(θ|x0) given ðxo; xðtÞ� j ;w; yÞ, which is the product

of the prior f(θj) and the likelihood corresponding to fitting the imputation model for Xj to

subjects for whom Xj is observed, using the observed and most recently imputed values of X−j

[56]. Missing values in Xj are then imputed from the imputation model using the parameter

value drawn in the preceding step [56]. Finally, a value x� is drawn from the conditional poste-

rior distribution of xm given θ = θ�. The process is then repeated depending on the desired

number of imputations [36, 53, 55, 56]. Within each imputation, there is an iterative estima-

tion process until the distribution of the parameters governing the imputations have con-

verged in the sense of becoming stable, although more cycles may be required depending on

certain conditions such as the amount of missing observations in the data [55, 56]. Rubin’s

rule is then used to provide the final inference for ŷ by averaging the estimates across M impu-

tations given by [56];

ŷM ¼

PM
m¼1

ŷm

M
ð5Þ

while the estimate of the variance of ŷM is given by;

dVarðŷMÞ ¼
1

M

XM

m¼1

dVarðŷmÞ

" #

þ ð1þ 1=MÞ
1

M � 1

XM

m¼1

ðŷm � ŷMÞ
2

" #

ð6Þ

which is a combination of within and between imputation variances. Detailed descriptions on
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implementation of the FCS/MICE algorithm in STATA is well-presented elsewhere [54, 57].

Maternal age and education level were imputed as ordinal variables, while maternal occupa-

tion, marital status, and BMI (because normal weight (18.5–24.9 Kg/m2) was a reference cate-

gory) as multinomial variable [43]. The rest of the variables were binary, and so imputed using

the binomial distribution. Preterm birth (the outcome in this study), parity, pre-eclampsia/

eclampsia, anemia, malaria, systemic infections/sepsis, PROM, PPH, abruption placenta, pla-

centa previa, and year of birth did not contain any missing values, hence used as auxiliary vari-

ables in the imputation model. The imputation model generated 20 imputed datasets after 500

iterations (imputation cycles). A random seed of 5000 was specified for replication of imputa-

tion results each time a multiple imputation analysis is performed [51].

We developed a multivariable analysis model by including all covariates in the multinomial

logit analysis model [54]), with standard errors adjusted for clusters (i.e., deliveries nested

within mothers). We then performed stepwise regression, in which variables with p< 0.1 or

p< 10% were retained in the model. The next steps entailed performing a series of adjusted

analysis to test the effect of retaining and dropping variables in the multivariable model. Vari-

ables in the final model were evaluated at p-value<0.05 level of statistical significance. We

used AIC to compare model performance and non-nested models [58], and Likelihood ratio

test to compare nested models. After the imputation of missing values, we estimated parameter

estimates adjusting for the variability between imputations [54, 57]. Before the analysis of

imputed data, we firstly performed complete case analysis using multivariable multinomial

regression model. The final model from this analysis was then compared to those from the

multiply imputed dataset. We followed the recommendations suggested by Sterne et al., [34]

for reporting and analysis of missing data.

Ethical consideration

As described in [43], this study was approved by the Kilimanjaro Christian Medical University

College Research Ethics and Review Committee (KCMU-CRERC) with approval number

2424. For practical reasons, since the interview was administered just after the woman had

given birth, consent was given orally. The midwife-nurse gave every woman oral information

about the birth registry, the data needed to be collected from them, and the use of the data for

research purposes. Women were also informed about the intention to gather new knowledge,

which will, in turn, benefit mothers and children in the future. Participation was voluntary

and had no implications on the care women would receive. Following consent, mothers were

free to refuse to reply to single questions. For privacy and confidentiality, unique identification

numbers were used to both identity and then link mothers with child records. There was no

any person-identifiable information in any electronic database, and instead, unique identifica-

tion numbers were used. Necessary measures were taken by midwives to ensure privacy during

the interview process.

Results

Maternal background characteristics by gestational age categories

The overall proportion of preterm birth in this study was 12.8%, of which 9.8% children were

born at [32, 37) weeks (moderate to late preterm), 1.6% at [28, 32) weeks (very preterm), and

0.4% at<28 weeks (extremely preterm) of gestation. The proportions of preterm birth differed

significantly by maternal background and obstetric care characteristics (Tables 1 and 2, respec-

tively). Among adolescent mothers (15-19 years), 12.3% delivered at [32, 37) weeks and 1.8%

at [28, 32) weeks of gestation, which is almost similar to that among older mothers (40+ years).

The proportion of women who delivered at [32, 37) weeks of gestation was 10.8% among rural
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residents, 11.0% among those with primary education level, 9.6% among those employed, and

9.6% among mothers who were married (Table 1).

Diseases and complications during pregnancy and delivery by gestational

age categories

The diseases and complications during pregnancy and delivery by gestational age categories

are shown in (Table 2). There were statistically significant differences in the proportion of pre-

term birth categories by diseases and complications during pregnancy and delivery except for

anaemia, infections/ sepsis and child’s sex. Significantly higher proportion of deliveries born at

[32, 37) weeks of gestation was among mothers who experienced placenta previa (39.6%),

abruption placenta (37.3%), delivered LBW baby (37.1%), perinatal death (28.1%), pre-

eclampsia/eclampsia mothers (24.3%), PROM (18.9%) with<4 ANC visits (17.0%), and post-

partum hemorrhage (14.8%). Also, the proportion of deliveries born at [28, 32) weeks of gesta-

tion was significantly higher among mothers with pre-eclampsia/eclampsia (6.2%), abruption

Table 1. Maternal background characteristics by gestational age categories (N = 44,117).

Characteristics Total (%)
Gestational age at birth

p-value
�37 32-<37 28-<32 <28

Mother’s age groups (years) � <0.001

15-19 3637 (8.3) 3101 (85.3) 447 (12.3) 67 (1.8) 22 (0.6)

20-24 11113 (25.2) 9797 (88.2) 1108 (10.0) 171 (1.5) 37 (0.3)

25-34 22767 (51.7) 20321 (89.3) 2031 (8.9) 342 (1.5) 73 (0.3)

35-39 5262 (12.0) 4576 (87.0) 556 (10.6) 110 (2.1) 20 (0.4)

40+ 1267 (2.9) 1080 (85.2) 158 (12.5) 21 (1.7) 8 (0.6)

Current area of residence � <0.001

Rural 18083 (41.1) 15690 (86.8) 1951 (10.8) 360 (2.0) 82 (0.5)

Urban 25935 (58.9) 23155 (89.3) 2349 (9.1) 352 (1.4) 79 (0.3)

Mother’s highest education level � <0.001

None 640 (1.5) 544 (85.0) 74 (11.6) 19 (3.0) 3 (0.5)

Primary 24038 (54.6) 20857 (86.8) 2654 (11.0) 426 (1.8) 101 (0.4)

Secondary 5406 (12.3) 4752 (87.9) 540 (10.0) 102 (1.9) 12 (0.2)

Higher 13967 (31.7) 12730 (91.1) 1028 (7.4) 164 (1.2) 45 (0.3)

Occupation � 0.04

Unemployed 9617 (21.9) 8397 (87.3) 1020 (10.6) 161 (1.7) 39 (0.4)

Employed 31233 (71.2) 27618 (88.4) 2999 (9.6) 502 (1.6) 114 (0.4)

Others 3023 (6.9) 2701 (89.3) 269 (8.9) 45 (1.5) 8 (0.3)

Marital Status � <0.001

Single 5202 (11.8) 4490 (86.3) 572 (11.0) 112 (2.2) 28 (0.5)

Married 38697 (88.0) 34279 (88.6) 3698 (9.6) 589 (1.5) 131 (0.3)

Widowed/Divorced 87 (0.2) 62 (71.3) 18 (20.7) 5 (5.7) 2 (2.3)

Body mass index categories � <0.001

Underweight (<18.5) 1582 (5.2) 1382 (87.4) 167 (10.6) 30 (1.9) 3 (0.2)

Normal weight (18.5-24.9) 16417 (53.9) 14735 (89.8) 1439 (8.8) 201 (1.2) 42 (0.3)

Overweight (25-29.9) 8510 (27.9) 7763 (91.2) 633 (7.4) 94 (1.1) 20 (0.2)

Obese (�30) 3947 (13.0) 3581 (90.7) 307 (7.8) 48 (1.2) 11 (0.3)

Total (row %) 38933 (88.2%) 4309 (9.8%) 714 (1.6%) 161 (0.4%)

� Variables with missing values.

https://doi.org/10.1371/journal.pone.0249411.t001
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Table 2. Diseases and complications during pregnancy and delivery by gestational age categories (N = 44,117).

Characteristics Total (%)
Gestational age at birth

p-value
�37 32-<37 28-<32 <28

Pre-eclampsia/eclampsia <0.001

No 42282 (95.8) 37674 (89.1) 3864 (9.1) 600 (1.4) 144 (0.3)

Yes 1835 (4.2) 1259 (68.6) 445 (24.3) 114 (6.2) 17 (0.9)

Anaemia 0.63

No 43427 (98.4) 38331 (88.3) 4238 (9.8) 699 (1.6) 159 (0.4)

Yes 690 (1.6) 602 (87.2) 71 (10.3) 15 (2.2) 2 (0.3)

Malaria 0.002

No 38145 (86.5) 33579 (88.0) 3785 (9.9) 637 (1.7) 144 (0.4)

Yes 5972 (13.5) 5354 (89.7) 524 (8.8) 77 (1.3) 17 (0.3)

Infections 0.37

No 43352 (98.3) 38244 (88.2) 4243 (9.8) 706 (1.6) 159 (0.4)

Yes 765 (1.7) 689 (90.1) 66 (8.6) 8 (1.0) 2 (0.3)

HIV Status � 0.003

Negative 32000 (94.8) 28367 (88.6) 3047 (9.5) 472 (1.5) 114 (0.4)

Positive 1769 (5.2) 1521 (86.0) 213 (12.0) 31 (1.8) 4 (0.2)

Consumed alcohol during pregnancy � <0.001

No 31287 (71.8) 27472 (87.8) 3150 (10.1) 543 (1.7) 122 (0.4)

Yes 12292 (28.2) 10998 (89.5) 1099 (8.9) 158 (1.3) 37 (0.3)

Number of ANC visits � <0.001

�4 29490 (68.0) 27489 (93.2) 1830 (6.2) 125 (0.4) 46 (0.2)

<4 13884 (32.0) 10879 (78.4) 2366 (17.0) 540 (3.9) 99 (0.7)

Parity 0.001

Primipara 35871 (81.3) 31599 (88.1) 3519 (9.8) 606 (1.7) 147 (0.4)

Multipara 8246 (18.7) 7334 (88.9) 790 (9.6) 108 (1.3) 14 (0.2)

PROM <0.001

No 43157 (97.8) 38187 (88.5) 4128 (9.6) 681 (1.6) 161 (0.4)

Yes 960 (2.2) 746 (77.7) 181 (18.9) 33 (3.4) 0 (0.0)

PPH <0.001

No 43874 (99.4) 38739 (88.3) 4273 (9.7) 702 (1.6) 160 (0.4)

Yes 243 (0.6) 194 (79.8) 36 (14.8) 12 (4.9) 1 (0.4)

Abruption placenta <0.001

No 43967 (99.7) 38857 (88.4) 4253 (9.7) 699 (1.6) 158 (0.4)

Yes 150 (0.3) 76 (50.7) 56 (37.3) 15 (10.0) 3 (2.0)

Placenta previa <0.001

No 44021 (99.8) 38891 (88.3) 4271 (9.7) 698 (1.6) 161 (0.4)

Yes 96 (0.2) 42 (43.8) 38 (39.6) 16 (16.7) 0 (0.0)

Perinatal status � <0.001

Alive 42230 (96.0) 37868 (89.7) 3796 (9.0) 462 (1.1) 104 (0.2)

Died 1780 (4.0) 975 (54.8) 500 (28.1) 250 (14.0) 55 (3.1)

Birth weight � <0.001

NBW 39202 (89.1) 36543 (93.2) 2500 (6.4) 107 (0.3) 52 (0.1)

LBW 4801 (10.9) 2334 (48.6) 1779 (37.1) 585 (12.2) 103 (2.1)

Sex of the baby � 0.48

Male 22684 (51.6) 20032 (88.3) 2216 (9.8) 349 (1.5) 87 (0.4)

Female 21242 (48.4) 18743 (88.2) 2070 (9.7) 359 (1.7) 70 (0.3)

Refereed for delivery � <0.001

(Continued)
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placenta (10.0%), placenta previa (16.7%), experienced perinatal death (14.0%), and those who

delivered a LBW baby (12.2%).

Distribution of missing values

Percentage distribution of missing values in this study are summarized in Table 3. Maternal

BMI (31.0%) and HIV status (23.5%) accounted for more than half (54.5%) of all missing val-

ues. The proportion of missing values was 3.7%, 1.7% and 1.2% for referral status, number of

ANC visits and alcohol consumption during pregnancy, respectively. The rest of the variables

had less than 1% of missing values.

Trends of preterm birth from 2000–2015

The proportion of moderate to late preterm (32 to<37) and very preterm (28 to<32)

increased significantly over the years between 2000-2015 (Fig 2). The annual increase of PTB

at [32,37) weeks of gestation was 22.2% (95%CI 12.2%, 32.1%, p<0.001) while for [28,32)

weeks of gestation was 4.2% (95%CI 1.9%, 6.6%, p = 0.002). Despite a slight increasing trend of

extremely preterm birth (<28 weeks) deliveries, this increase was not statistically significant

(p = 0.37).

However, further analysis of the trends in the very/ extremely preterm birth (i.e., all deliver-

ies at<32 weeks of gestation) revealed a significant annual increase of 4.6% (95%CI 2.2%,

7.0%, p = 0.001). Regression analysis both before and after imputation of missing values, con-

sidered two preterm birth categories, i.e., <32 weeks (combined <28 and [28,32) weeks and

Table 2. (Continued)

Characteristics Total (%)
Gestational age at birth

p-value
�37 32-<37 28-<32 <28

Yes 9610 (22.6) 7883 (82.0) 1382 (14.4) 278 (2.9) 67 (0.7)

No 32878 (77.4) 29575 (90.0) 2807 (8.5) 409 (1.2) 87 (0.3)

Total 38933 (88.2%) 4309 (9.8%) 714 (1.6%) 161 (0.4%)

� Variables with missing values.

https://doi.org/10.1371/journal.pone.0249411.t002

Table 3. Distribution of missing values, KCMC medical birth registry, 2000–2015 (N = 44,117).

Variable Frequency Percent Missing

Body Mass Index (BMI) 13,661 31.0

HIV status 10,348 23.5

Referral status 1,629 3.7

Number of antenatal care visits 743 1.7

Consumed alcohol during pregnancy 538 1.2

Occupation 244 0.6

Sex of the child 191 0.4

Marital status 131 0.3

Birth weight of the child 114 0.3

Area of residence 107 0.2

Perinatal status 99 0.2

Maternal education level 71 0.2

Maternal age categories 66 0.2

https://doi.org/10.1371/journal.pone.0249411.t003
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[32,37] weeks) compared to�37 weeks, due to small sample size in the<28 category and

increased statistical power to detect the observed effect.

Predictors of preterm birth

Due to a small number of deliveries 161 (0.4%) at<28 weeks of gestation recorded at the

KCMC Medical birth registry between 2000 and 2015, we combined this category with deliver-

ies at [28,32) weeks of gestation, 714 (1.6%). This gives a total of 875 (2.0%) in the new<32

(very/extremely preterm) category. The collapsed categories increased statistical power and

improved model performance, given a non-convergence problem of models with all three pre-

term birth categories.

Results before imputation of missing values. Findings from the adjusted analysis of the

multinomial regression model before imputation of missing values are shown in Table 4. The

standard errors are robust (adjusted) to clustering of deliveries within mothers. Higher odds of

delivering at [32,37) weeks of gestation (moderate to late preterm) were among adolescent

(15-19) mothers (OR = 1.29, 95% 1.13, 1.48) and those aged 20-24 years (OR = 1.17, 95%CI

1.07, 1.28) compared to those aged 25-34 years and those with primary education level

(OR = 1.28, 95%CI 1.17, 1.39) compared to higher education level. Also, mothers referred for

delivery (OR = 1.20, 95%CI 1.10, 1.31), with pre-eclampsia/eclampsia (OR = 1.88, 95%CI 1.63,

Fig 2. Trends of preterm birth from 2000–2015 in the KCMC medical birth registry (N = 44,117).

https://doi.org/10.1371/journal.pone.0249411.g002

PLOS ONE Predictors of singleton preterm birth using multinomial regression models accounting for missing data

PLOS ONE | https://doi.org/10.1371/journal.pone.0249411 April 1, 2021 12 / 23

https://doi.org/10.1371/journal.pone.0249411.g002
https://doi.org/10.1371/journal.pone.0249411


2.15), with inadequate (<4) ANC visits (OR = 2.56, 95%CI 2.38, 2.75), experienced PROM

(OR = 1.83, 95%CI 1.51, 2.22), abruption placenta (OR = 2.01, 95%CI 1.24 3.24), placenta pre-

via (OR = 4.90, 95%CI 2.73, 8.77), delivered through cesarean section (OR = 1.16, 95%CI 1.07,

1.25), delivered a LBW baby (OR = 8.05, 95%CI 7.41, 8.75), experienced perinatal death

(OR = 2.06, 95%CI 1.78, 2.37), and delivered a male child (OR = 1.11, 95%CI 1.03, 1.19),

compared to their respective reference levels had higher odds of delivering moderate to late

preterm birth. Primiparous women were less likely to deliver moderate to late preterm

(OR = 0.89, 95%CI 0.80, 0.98). For every year increase, the odds of delivering at 32-<37 weeks

of gestation increased significantly by 2% (OR = 1.02, 95%CI 1.01, 1.03).

Moreover, in the adjusted analysis, maternal age, referral status, pre-eclampsia/eclampsia,

number of ANC visits, placenta previa, LBW, perinatal status, child’s sex, and year of birth

remained significantly associated with delivering at<32 weeks of gestation (very/extremely

preterm). Notably, the odds of delivering at<32 of gestation were nearly forty times

(OR = 36.23, 95%CI 29.91, 43.89) among deliveries born with LBW compared to normal

weight at birth. This is more than four times higher odds compared to the effect in the

Table 4. Adjusted analysis for predictors of preterm birth using multinomial regression model before imputation of missing values (N = 41,271).

Characteristics
32-<37 vs.�37 weeks <32 vs.�37 weeks

AOR† (SE‡) 95%CI AOR† (SE‡) 95%CI

Mother’s age groups (years)

15-19 1.29 (0.09) 1.13,1.48��� 1.37 (0.20) 1.03,1.81�

20-24 1.17 (0.05) 1.07,1.28��� 1.11 (0.12) 0.91,1.37

25-34 1 1

35-39 1.03 (0.06) 0.92,1.15 1.04 (0.13) 0.82,1.33

40+ 1.13 (0.11) 0.93,1.38 0.84 (0.20) 0.53,1.33

Maternal highest education level

None 1.15 (0.17) 0.85,1.54 1.43 (0.37) 0.86,2.38

Primary 1.28 (0.06) 1.17,1.39��� 1.11 (0.11) 0.91,1.35

Secondary 1.11 (0.07) 0.98,1.26 0.97 (0.14) 0.74,1.28

Higher 1 1

Referred for delivery (Yes) 1.20 (0.05) 1.10,1.31��� 1.30 (0.12) 1.08,1.55��

Pre-eclampsia/eclampsia (Yes) 1.88 (0.13) 1.63,2.15��� 1.51 (0.19) 1.18,1.92���

Number of ANC visits (<4) 2.56 (0.10) 2.38,2.75��� 5.55 (0.53) 4.61,6.69���

Parity (Primipara) 0.89 (0.04) 0.80,0.98� 0.96 (0.11) 0.76,1.21

PROM (Yes) 1.83 (0.18) 1.51,2.22��� 1.51 (0.35) 0.96,2.39

Abruption placenta (Yes) 2.01 (0.49) 1.24,3.24�� 1.60 (0.57) 0.80,3.20

Placenta previa (Yes) 4.90 (1.46) 2.73,8.77��� 8.68 (3.72) 3.75,20.10���

Delivery mode (CS) 1.16 (0.04) 1.07,1.25��� 0.93 (0.08) 0.78,1.11

Birth weight (LBW) 8.05 (0.34) 7.41,8.75��� 36.23 (3.55) 29.91,43.89���

Sex of the baby (Male) 1.11 (0.04) 1.03,1.19�� 1.22 (0.10) 1.04,1.43�

Perinatal death (Yes) 2.06 (0.15) 1.78,2.37��� 5.38 (0.55) 4.41,6.56���

Year 1.02 (0.00) 1.01,1.03��� 1.06 (0.01) 1.04,1.09���

� p<0.05,

�� p<0.01,

��� p<0.001.
†AOR: Adjusted Odds Ratio, adjusted for maternal age groups (years), highest level of education, referral status, pre-eclampsia/eclampsia, number of ANC visits, parity,

PROM, abruption placenta, placenta previa, delivery mode, child’s birth weight, perinatal status and year of birth.
‡SE: Standard errors adjusted for clustering of deliveries within mothers.

https://doi.org/10.1371/journal.pone.0249411.t004
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gestational age of [32,37) weeks. Mothers aged 15-19 years (OR = 1.37, 95%CI 1.03, 1.81),

referred for delivery (OR = 1.30, 95%CI 1.08, 1.55), with pre-eclampsia/eclampsia (OR = 1.51,

95%CI 1.18, 1.92), with inadequate (<4) ANC visits (OR = 5.55, 95%CI 4.61, 6.69), experi-

enced placenta previa (OR = 8.68, 95%CI 3.75, 20.10), experienced perinatal death (OR = 5.38,

95%CI 4.41, 6.56), and delivered male children (OR = 1.22, 95%CI 1.04, 1.43) had higher odds

of delivering very/extremely preterm birth (<32 weeks of gestation) as compared to their

counterparts. Furthermore, for every year increase, the odds of delivering at<32 weeks of ges-

tation increased significantly by 6% (OR = 1.06, 95%CI 1.04, 1.09), which is three-times higher

than the effect in the [32,37) weeks of gestation. These results demonstrate the advantage of

the multinomial regression as opposed to the simple binary regression models. We see that the

effect of some covariates (LBW, inadequate ANC visits, placenta previa, and perinatal death)

are more pronounced for the extreme preterm birth category than the moderately to late pre-

term birth category (Table 4).

Results after imputation of missing values. After imputation of missing values (in the

covariates), the standard errors were relatively lower while the coefficients (odds ratios)

(Table 5) were either lower or higher compared to those in the complete case analysis

Table 5. Adjusted analysis for predictors of preterm birth using multinomial regression model after imputation of missing values (N = 42,089).

Characteristics
32-<37 vs.�37 weeks <32 vs.�37 weeks

AOR† (SE‡) 95%CI AOR† (SE‡) 95%CI

Mother’s age groups (years)

15-19 1.29 (0.09) 1.13,1.47��� 1.30 (0.18) 0.99,1.71

20-24 1.15 (0.05) 1.06,1.26�� 1.13 (0.11) 0.93,1.38

25-34 1 1

35-39 1.03 (0.06) 0.92,1.15 1.06 (0.13) 0.84,1.34

40+ 1.11 (0.11) 0.91,1.34 0.92 (0.20) 0.60,1.40

Maternal highest education level

None 1.11 (0.17) 0.82,1.49 1.44 (0.36) 0.88,2.34

Primary 1.27 (0.06) 1.17,1.39��� 1.09 (0.10) 0.91,1.32

Secondary 1.10 (0.07) 0.98,1.25 1.00 (0.14) 0.77,1.32

Higher 1 1

Referred for delivery (Yes) 1.20 (0.05) 1.10,1.30��� 1.28 (0.11) 1.08,1.52��

Pre-eclampsia/eclampsia (Yes) 1.86 (0.13) 1.62,2.13��� 1.61 (0.19) 1.27,2.03���

Number of ANC visits (<4) 2.56 (0.10) 2.38,2.75��� 5.64 (0.54) 4.67,6.80���

Parity (Primipara) 0.90 (0.04) 0.82,0.99� 0.98 (0.11) 0.78,1.23

PROM (Yes) 1.87 (0.18) 1.55,2.26��� 1.63 (0.36) 1.06,2.50�

Abruption placenta (Yes) 1.98 (0.48) 1.23,3.19�� 1.46 (0.52) 0.73,2.93

Placenta previa (Yes) 4.76 (1.35) 2.73,8.28��� 8.07 (3.32) 3.61,18.07���

Delivery mode (CS) 1.16 (0.04) 1.08,1.25��� 0.91 (0.08) 0.77,1.08

Birth weight (LBW) 8.09 (0.34) 7.45,8.78��� 38.21 (3.67) 31.65,46.14���

Perinatal death (Yes) 2.10 (0.15) 1.83,2.42��� 5.29 (0.52) 4.37,6.40���

Sex of the baby (Male) 1.11 (0.04) 1.04,1.20�� 1.22 (0.10) 1.05,1.43�

Year 1.02 (0.00) 1.01,1.03��� 1.04 (0.01) 1.02,1.06���

� p<0.05,

�� p<0.01,

��� p<0.001.
†AOR: Adjusted Odds Ratio, adjusted for maternal age groups (years), highest level of education, referral status, pre-eclampsia/eclampsia, number of ANC visits,

PROM, abruption placenta, placenta previa, delivery mode, child’s birth weight, perinatal status and year of birth.
‡SE: Standard errors adjusted for clustering of deliveries within mothers.

https://doi.org/10.1371/journal.pone.0249411.t005
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(Table 4). Results from the imputed data indicated significantly higher odds of moderately to

late preterm delivery (32 to<37 weeks) were among adolescent mothers aged 15-19 years

(OR = 1.29, 95%CI 1.13, 1.3479), aged 20-24 years (OR = 1.15, 95%CI1.06, 1.26), with primary

education level (OR = 1.27, 95%CI 1.17, 1.39), and referred for delivery (OR = 1.20, 95%CI

1.10, 1.30). Also, significantly higher odds of moderately to late preterm delivery were among

mothers with pre-eclampsia/eclampsia (OR = 1.86, 95%CI 1.62, 2.13), inadequate (<4) ANC

visits (OR = 2.56, 95%CI 2.38, 2.75), experienced PROM (OR = 1.87, 95%CI 1.55, 2.26), abrup-

tion placenta (OR = 1.98, 95%CI 1.23, 3.19), and placenta previa (OR = 4.76, 95%CI 2.73,

8.28). Likewise, delivery through CS (OR = 1.16, 95%CI 1.08, 1.25), delivering LBW baby

(OR = 8.09, 95%CI 7.45, 8.78), experiencing perinatal death (OR = 2.10, 95%CI 1.83, 2.42),

and delivering male children (OR = 1.11, 95%CI 1.04, 1.20) were associated with higher odds

of delivering moderately to late preterm. Primiparous women were less likely to deliver mod-

erately to late preterm (OR = 0.90, 95%CI 0.82, 0.99) compared to multiparous. For every one

year increase, the odds of delivering moderately to late preterm increased significantly by 2%

(OR = 1.02, 95%CI 1.01, 1.03), Table 5.

Furthermore, after imputation of missing values the positive effect of PROM on very/

extremely preterm birth (<32 weeks of gestation) is observed to be statistically significant

(OR = 1.63, 95%CI 1.06, 2.50) compared to results before imputation of missing values

(Table 4). Significantly higher odds of very/extreme preterm birth was among mothers

referred for delivery (OR = 1.28, 95%CI 1.08, 1.52), with pre-eclampsia/eclampsia (OR = 1.61,

95%CI 1.27, 1.03), inadequate (<4) ANC visits (OR = 5.64, 95%CI 4.67, 6.80), experienced pla-

centa previa (OR = 8.07, 95%CI 3.61, 18.07), delivered LBW baby (OR = 38.21, 95%CI 31.65,

46.14), experienced perinatal death (OR = 5.29, 95%CI 4.37, 6.40), and delivered male children

(OR = 1.22, 95%CI 1.05, 1.43). Also, the odds of delivering very/ extreme preterm birth

increased significantly by 4% (OR = 1.04, 95%CI 1.02, 1.06) for every calendar year.

Discussion

Globally, the trends of preterm birth rate has been increasing over time [1, 2, 9, 48]. Findings

in the current study also revealed the rising trends of both moderate to late preterm (32 to<37

weeks of gestation) and very/extremely preterm birth (<32 weeks of gestation) between the

years 2000-2015. A recent systematic review and modelling analysis revealed that Tanzania is

among the top 10 countries (10th position) with the highest preterm birth rate (16�6%) and

contributed to 2.2% of the global preterm birth estimates [1]. Based on the estimates released

seven years ago (2013) by Blencowe et. al., [9], Tanzania was not in the top 10 countries with

the highest (>15%) preterm birth rates globally. By then, Malawi had the highest preterm

birth rate (18%) in SSA and South East Asia [9, 12].

Previous studies at the KCMC zonal referral hospital [4, 5] and Bugando Medical Center in

Mwanza region [6] reported the preterm birth rate of 14%; where [4] utilized cohort data

between the years 2000-2008 while [5] and [6] conducted case-control studies. The rising

trends and relatively high preterm birth rates in Tanzania are alarming, given the documented

short- and long-term consequences, particularly an increased risk of recurrence in subsequent

pregnancies, stillbirths, and neonatal mortality [4, 11, 12, 19, 32, 59, 60]. In fact, mothers who

experienced perinatal death in this study were more likely to deliver preterm. The effect of

perinatal death almost doubled in the very/ extremely preterm category.

Multiple imputation was performed to increase precision of parameter estimates, as it

accounts for the uncertainty associated with missing data [34, 35, 37, 51]. After the imputation

of missing values, the standard errors are relatively lower and coefficients (odds ratios) were

either lower or higher than those in the complete case analysis. Although the direction of
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associations remained the same, precision of parameters estimates is increased after imputa-

tion of missing data. It has been reported that “multiple imputation provides unbiased and

valid estimates of associations based on information from the available data—ie, yielding esti-

mates similar to those calculated from full data” [37]. Data analysts should consider accounting

for missing data in their analysis using proper techniques to reduce the bias associated with

simple analysis (such as analyzing available or complete cases) that ignore missing values [37,

51, 52].

Results from the imputed data revealed that adolescent (15-19 years) mothers and mothers

aged 20-24 years had higher odds of delivering moderately to late preterm births (32 to<37

weeks) as well as very/extremely preterm (<32 weeks though this association was not statisti-

cally significant) compared to mothers aged 25-34 years. Our findings are consistent with pre-

vious studies [7, 12, 15, 29, 48]. Authors in these studies revealed that younger (<24 years)

mothers are at increased risk of delivering preterm. A previous study in Canada indicated that

women aged 20-24 years were more at risk of delivering spontaneous preterm birth [15]. How-

ever, authors in this study did not include adolescent mothers. Data from the Tanzania Demo-

graphic and Health Survey 2015/16 revealed the rising trends of teenage childbearing (15-19

years) from 23% in 2010 to 27% in 2015/16 [61]. Younger age at first pregnancy is a public

health concern due to an increased risk of complications during pregnancy and child birth as

well as maternal and neonatal mortality [15, 61]. A systematic review and meta-analysis in SSA

documented an association between adolescent child-bearing and an increased risk of low

birth weight, pre-eclampsia/eclampsia, preterm birth and maternal and perinatal mortality

[62]. Our findings suggests that interventions in Tanzania should emphasize on delayed age at

first pregnancy and provision of adolescent and youth friendly sexual and reproductive health

services [26, 63, 64], for positive pregnancy experiences.

Mothers referred for delivery at the KCMC zonal referral hospital were more likely to

deliver preterm compared to those who had self-referred (normal clinic attendance). Similar

findings has been reported elsewhere [43, 62], where women referred for delivery are more

likely to have more pregnancy-related complications such as pre-eclampsia, which increases

the risk of preterm birth. Close clinical follow-up is recommended to this group of women

during prenatal care to minimize pregnancy-related complications, such as preterm birth and

associated consequences. Mothers with primary education compared to higher (college/uni-

versity) education level had significantly higher odds of delivering moderately to late, but not

very/extremely preterm. These findings were consistent to a meta-analysis of 12 European

Cohorts, where poor health at birth was higher among babies born from mothers with low

education levels [65]. Low socio-economic status, including low education level is reported to

affect pregnancy outcomes and complications [60, 66]. Policies and programs to improve

maternal and child care in Tanzania should address health inequalities and prioritize the mar-

ginalized groups taking a multi-sectoral approach.

Furthermore, male children were more likely to be delivered preterm compared to females.

This might be associated with shorter gestational duration for male compared to female fetuses

[67]. A study in the UK found no significant relationship between fetal gender and the risk of

preterm birth among women at high risk of delivering preterm (ie, with a history of miscar-

riage, preterm birth or cervical surgery) [18]. We also found that primiparous women were

less likely to deliver preterm compared to multiparous. Findings from a meta-analysis using

data from cohort studies in LMIC indicated that nulliparous, aged<18 years and parity�3

aged�35 years women were more likely to experience adverse neonatal outcomes, including

preterm birth [63]. Other studies found no significant association between parity and the risk

of preterm birth [5, 12, 32, 68]. Despite that, interventions to improve maternal and child care

should be delivered through out the course of woman’s reproductive period.
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Among the factors associated with the rise in trends of preterm birth is the iatrogenic early

delivery (i.e. following labour induction and/or caesarean delivery) carried out for fetal or

maternal indications [69]. In this study, women who delivered moderately to late preterm

were more likely to deliver through caesarean section (CS). It is possible that these women had

other obstetric complications such as a previous CS, severe pre-eclampsia/eclampsia, placenta

praevia, preterm premature rupture of membranes, and high birthweight that contributed

highly to CS delivery and hence preterm birth [70, 71]. The odds of delivering both moderately

to late and very/extremely preterm was high among mothers with pre-eclampsia/eclampsia,

experienced placenta previa, and abruption placenta, as also reported elsewhere [5, 21, 60].

The effect of placenta previa on delivering very/extremely preterm were almost twice com-

pared to the moderately to late preterm birth category. These conditions are both the risk fac-

tors as well as common indications for preterm birth [48, 60]. PROM increases the risk of

preterm birth [9, 21, 48, 72], which is consistent to the findings in this study. Previous studies

have shown that PROM is among the common indications of spontaneous preterm birth [21,

22, 72].

LBW was associated with eight-fold higher odds of moderately to late preterm ([32,37)

weeks of gestation) and nearly 40 times higher odds of very/extremely preterm (<32 weeks of

gestation). In fact, the proportions of moderately to late and very/extremely preterm birth

were significantly higher among deliveries born with LBW than in the normal birth weight

deliveries (37.1% and 14.3%, vs 6.4% and 0.4%, respectively) (results before imputation). Our

findings agree with a previous case-control study in northern Tanzania, where LBW was asso-

ciated with over 34-folds risk of preterm delivery [5]. The observed increase in preterm birth

due to LBW could be attributed to two factors; the fact that preterm birth is also a risk factor

for LBW (low birth weight but appropriate for gestation age) and intrauterine growth retarda-

tion or small for gestational age. Literature shows that extremely preterm babies are more

likely to be born with LBW, while newborns small for gestational age are at a higher risk of

experiencing morbidity and mortality [73, 74]. In this study, 81.2% (688/847) of very/extreme

preterm newborns were born with both LBW and preterm compared to 41.6% (1779/4279)

among moderately to late preterm (results before imputation). On the other hand, babies born

preterm are at an increased risk of being born with LBW [44] and experiencing perinatal and

neonatal morbidity and mortality [20, 43]. Care for the LBW and preterm babies is a critical

intervention for improving child survival. Special attention should be given to babies born

with LBW at<32 weeks of gestation.

According to the WHO recommendations, antenatal care visit remains to be a critical entry

point where high-risk pregnancies can be identified and managed [24, 72, 75]. We found that

women with inadequate (<4) ANC visits are more likely to deliver moderately to late and

very/extremely preterm. Similar findings were also reported in other studies [5, 6, 48, 76].

However, these studies estimated the association between the number of ANC visits in the

overall preterm birth categories (<37 weeks of gestation) compared to our study that showed

different risk patters in two sub-categories of preterm birth (<32 and [32,37) weeks of gesta-

tion). In Tanzania, over half (51%) of pregnant women had at least four ANC visits during

their last pregnancy [61]. Considering the current WHO recommendations of eight or more

visits [75], different strategies are needed to promote health care seeking behaviors for preg-

nant women, and provision of quality ANC services at all levels of care. The timing and num-

ber of ANC visits is as important as the content and quality of care [77].

In this study, we applied the multinomial regression models with two categories of preterm

birth (<32 and [32,37) weeks of gestation) due to rarity of cases in the <28 gestational weeks

category. Eventually, the collapsed categories increased statistical power. Nevertheless, it is also

possible that there may be under-reporting of extreme premature deliveries in the KCMC
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Medical birth registry. Despite the low accuracy of gestational age estimation based on the date

of last menstrual period [9, 10, 60], it remains the widely used method in resource-limited set-

tings like Tanzania. Even where ultrasound is available, this method “requires skilled techni-

cians, equipment and for maximum accuracy, first-trimester antenatal clinic attendance” [9],

which is still a challenge in Tanzania [61]. There are alternative gestational age estimation

methods, such as a combination of ultrasound and LMP [9, 10, 60], but the question remains

on the feasibility and applicability of these options in resource-limited settings.

Another limitation of this study is that it was hospital-based, utilizing the KCMC Medical

Birth Registry data from the KCMC zonal referral hospital in northern Tanzania, hence suffers

from referral bias. Nearly a quarter of all women were referred for delivery during the study

period. This may affect the generalization of the results. Nevertheless, this is the only birth-reg-

istry in the country (and potentially one of the few in SSA) providing critical information for

pregnancy monitoring, administrative, and research purposes. Such registries allows for rou-

tine and inter-generational linkage and analysis of mother-child records. The KCMC hospital

and its partners should promote routine data quality checks, resolve data quality and reporting

challenges to ensure a sustainable operation of the birth registry, for current and future use.

Conclusion

The findings from this study support other studies showing improved precision of parameter

estimates after imputation of missing values and the rising trends of preterm birth rates. The

multinomial regression models allowed for the simultaneous assessment of predictors of dif-

ferent preterm birth categories as opposed to binary regression analysis. Policy decisions

should intensify efforts on improved maternal and child care throughout the course of preg-

nancy and childbirth, towards prevention of preterm birth. Interventions to increase the

uptake and quality of ANC services should also be strengthened in Tanzania at all levels of

care, where several interventions can easily be delivered to pregnant women [75], especially

those at high-risk of experiencing adverse pregnancy outcomes. The number of ANC visits is

as important as the content of care [77].
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