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ABSTRACT

Recent developments of single cell RNA-sequencing
technologies lead to the exponential growth of single
cell sequencing datasets across different conditions.
Combining these datasets helps to better understand
cellular identity and function. However, it is challeng-
ing to integrate different datasets from different lab-
oratories or technologies due to batch effect, which
are interspersed with biological variances. To over-
come this problem, we have proposed Single Cell In-
tegration by Disentangled Representation Learning
(SCIDRL), a domain adaption-based method, to learn
low-dimensional representations invariant to batch
effect. This method can efficiently remove batch ef-
fect while retaining cell type purity. We applied it to
thirteen diverse simulated and real datasets. Bench-
mark results show that SCIDRL outperforms other
methods in most cases and exhibits excellent per-
formances in two common situations: (i) effective in-
tegration of batch-shared rare cell types and preser-
vation of batch-specific rare cell types; (ii) reliable
integration of datasets with different cell composi-
tions. This demonstrates SCIDRL will offer a valuable
tool for researchers to decode the enigma of cell het-
erogeneity.

INTRODUCTION

Single cell RNA-sequencing (scRNA-seq) techniques can
reveal valuable insights of cellular heterogeneity and pave
the way for a deep understanding of the cellular mecha-
nisms of development and disease. The recent advances of
single cell transcriptome techniques have enabled large scale

projects such as Human cell atlas (HCA) (1) and Human
Tumor Atlas Network (HTAN) (2), which aim to system-
atically chart the types and properties of all human cells
and create a reference map of the healthy cells and tumor
cells. A comprehensive atlas of healthy and diseased cells re-
quires the integration of many datasets across different con-
ditions and different experiments. However, datasets from
different techniques, different laboratories may bring in ex-
tra variances, called as batch effect, which may confound
the biological variation of interest as well as the downstream
analysis. Therefore, it is necessary to develop computational
methods to remove batch effect.

Several methods have been developed to remove batch ef-
fect. In general, these methods can be categorized accord-
ing to different perspectives: (i) traditional (Harmony (3),
fastMNN (4), Seurat v3 (5), Liger (6), scanorama (7)) versus
deep-learning based methods (Bermuda (8), iMAP (9), scVI
(10) and DESC (11)); (ii) mutual nearest neighbors (MNN)-
based (fastMNN, Seurat v3, Liger, scanorama, Bermuda,
iMAP) versus clustering-based methods (Harmony, Liger,
Bermuda, DESC).

Harmony is based on soft K-means clustering to iter-
atively remove batch effect. It corrects similar cell types
across different batches towards a shared centroid in the
reduced dimensional space. This process is repeated un-
til convergence. The clustering step of Harmony makes it
powerless to uncover rare cell types. In addition, Harmony
provides little information to select parameters to control
the degree of integration (3), which may mix up different
cell types for datasets with different cell compositions, es-
pecially datasets with a small number of shared cell types.
DESC is a deep-learning based method, which learns a non-
linear function to transform the original space to a sub-
space followed by iteratively optimizing a clustering ob-
jective function in the subspace. However, the clustering
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operation also makes it powerless to integrate batch-shared
rare cell types and separate batch-specific rare cell types.
FastMNN, Seurat v3, Liger, scanorama, Bermuda, iMAP
are all based on the detection of paired cells that are mutu-
ally nearest to each other across batches, called as mutual
nearest neighbors (MNN). Based on the assumption that
biological differences are larger than variances of batch ef-
fects, cells from one MNN pairs are regarded from the same
cell types, and their differences of expressions are consid-
ered as batch effects. However, MNN-based methods have
a high chance to mistakenly mix up cells from different cell
types or obscure batch-specific cell types (12). FastMNN is
an improved version of mnnCorrect (4), where MNN pairs
are identified in the PCA subspace. Seurat v3 uses canoni-
cal correlation analysis (CCA) to project cells across differ-
ent datasets into a common subspace. Then the MNN pairs
are calculated in the subspace and act as ‘anchors’ to re-
move the batch effects. Scanorama automatically identifies
MNN pairs in SVD subspace and use them in a similarity
weighted way to merge different batches. iMAP combines
autoencoder and generative adversarial network (GAN) to
match the distributions of different batches. It also searches
for MNN pairs to guide the batch integration. Liger adopts
integrative non-negative matrix factorization (iNMF) to
learn a low dimensional space in which cells are defined by
one shared factor and dataset-specific factors. Thereafter a
shared neighborhood graph is constructed in the resulting
factor space, where cells are connected to the nearest neigh-
bors. Then joint clustering and integration are performed.
Bermuda, a deep-learning based method, separates clus-
tering and dimension reduction to two independent proce-
dures, which leads to the accuracy of batch effect removal
heavily relies on the results of clustering. The combination
of finding MNN and clustering implemented in Liger and
Bermuda makes them powerless to reserve rare cell types
and batch-specific cell types. scVI removes batch effect of
the output of encoder by feeding batch indicator to de-
coder. However, it can’t always remove batch effect in some
datasets, since the batch effect can’t be fully captured only
by batch label (9). In summary, all of these widely used
methods have specific limitations, which limits their per-
formances on datasets with different cell compositions and
datasets with rare cell types. Furthermore, except for Seu-
rat v3, Liger and iMAP, other methods operate on a low
dimensional representation space of the original expression
data, so the output cannot be used for further downstream
analysis.

To address these challenges, we proposed a neural-
network based model, single cell integration by disentan-
gled representation learning (SCIDRL), to migrate batch
effect while maintaining biological variances in scRNA-
seq data. SCIDRL, which is inspired from domain adap-
tion (13), can learn low-dimensional representations of
the input data robust to technical noise (batch effect) by
minimizing the distribution distances of different batches.
SCIDRL adopts a classifier and a discriminator on la-
tent space learned by the autoencoder to disentangle the
biological representations from noisy representations. A
parameterized gradient reversal strategy (13) used in the
discriminator can ensure the mixture of shared cell types
and the independence of specific cell types. An extra aux-

iliary classifier in conjunction with parameterized gradi-
ent reversal (14) can to some extent mitigate false inte-
gration and promote effective integration of shared cell
types. We systematically conducted experiments on both
simulated and real scRNA-seq datasets to demonstrate
that SCIDRL can significantly outperform the state-of-
art methods. SCIDRL performs especially well on two sit-
uations: (i) effective integration of batch-shared rare cell
types and preservation of batch-specific rare cell types;
(ii) reliable integration of datasets with different cell type
compositions.

MATERIALS AND METHODS

Framework of SCIDRL

The basic idea of SCIDRL is to embed domain adaption
into the process of learning low-dimensional representa-
tions invariant to batch effect. The domain here represents
one batch or one scRNA-seq dataset. Through disentan-
gled process of SCIDRL, original coordinate can be trans-
formed to two independent coordinates representing biol-
ogy and batch signals respectively (Figure 1A). As shown
in Figure 1B, SCIDRL is consists of a shared feature ex-
tractor (antoencoder), a discriminator, a noise (batch effect)
classifier, and an auxiliary classifier. The encoder encodes
the scRNA-seq data into latent representations, and the de-
coder is used to recover the original scRNA-seq data. The
key structures to achieve disentanglement are one classifier
and one discriminator whose inputs are latent representa-
tions of autoencoder. The noise classifier, operating on one
part of shared representations, is to predict the batch ef-
fect. The discriminator, being trained adversarially along-
side of the encoder, is used to minimize the distribution
discrepancy of different batches, which is achieved by pa-
rameterized gradient reversal layer (15). The auxiliary clas-
sifier is added to derive the probability of a target-batch
cell belonging to the source batch, weighting each cell in
the batch-adversarial network (discriminator). Such an aux-
iliary classifier can resolve the ambiguity between shared
and batch-specific cell types and avoid over-integration (i.e.
different cell types are integrated together) to some extent,
which is inspired by partial domain adaptation (14). The
network of SCIDRL is therefore trained to jointly optimize
two tasks: the accuracy of batch effect prediction and the
indiscrimination of different batches (thus resulting in the
batch-invariant features). This process is achieved by learn-
ing the network weights that simultaneously minimizing re-
construction loss of autoencoder and classification loss of
noise classifier and auxiliary classifier, as well as maximizing
classification loss of the discriminator.

Model

Autoencoder. An autoencoder can be formularized as
xi = fdec( fenc(xi )), which includes two parts: an encoder
zi = fenc (xi ; Wenc, benc), which generates the latent repre-
sentations, and a decoder xi = fdec(zi ; Wdec, bdec), which
reconstructs original data from the latent representations.
Here, xi represents the normalized gene expression of
ith cell, zi is the low-dimensional embedding of xi and
xi represents the recovered gene expression of ith cell,
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Figure 1. Overview of SCIDRL algorithm. (A) Schematic illustration of SCIDRL. The left panel displays three batches of scRNA-seq data. Different
colors and shapes represent different batches and different cell types respectively. The middle panel shows the 2D UMAP visualization of all data, whose
x-axis and y-axis are umap1 and umap2, respectively. The right panel shows the visualization of the low-dimensional representations of the cells learned
from SCIDRL. It can disentangle biological meaningful (batch-invariant) representations from noise (batch-specific) representations. (B) Flow chart of
SCIDRL. It consists of four parts: autoencoder, discriminator, noise classifier and auxiliary classifier.

Wenc, benc and Wdec, bdec are learnable parameters of en-
coder and decoder respectively, which will be learned in op-
timization. zi is further divided to two parts, zbio

i and znoise
i ,

which represent biological and noisy low-dimensional rep-
resentations respectively. In the input layer, the expression
value of every gene in each cell is rescaled to the range of
[0,1] by subtracting minimum value and dividing the dif-
ference of maximum value and minimum value. The final
layer performs sigmoid transformation to make the output
within [0,1], whose output of ith cell is x̂i = sigmoid(xi ).
The loss function of autoencoder is binary cross-entropy
with the multiplication of the number of input genes N:

loss1 =
∑

i
(−xi log (x̂i ) − (1 − xi ) log (1 − x̂i )) ∗N (1)

Discriminator. The discriminator, is adversarially trained
against encoder to ensure the feature distributions over dif-
ferent batches are as indistinguishable as possible in terms
of batch labels, thus resulting in the batch-invariant repre-
sentations. The input of discriminator is zbio

i , the output
is the probability of each batch label, which can be ob-
tained by sigmoid transformation and softmax transforma-
tion for two batches and multiple batches respectively. Dis-
criminator is used to encourage batch indistinguishability
by an adversarial objective to minimize the distance (i.e. H-
divergence (15)) between different batches. The empirical
H-divergence for two-batches is,

d̂H (S, T) = 2

(
1 − min

ϕ∈H

[
1

Ms

Ms∑
i = 1

I
(
ϕ

(
zbio

i,S

)
= 0

)
+ 1

MT

MT∑
i = 1

I(ϕ
(

zbio
i,T

)
= 1)

])
(2)

Here, S and T represent two different batches, and
Ms and MT are the number of cells of batch SandT
respectively. zbio

i = {zbio
i,S , zbio

i,T}, zbio
i,S and zbio

i,T represent bi-
ological low-dimensional representations of batch S and
batch T respectively. H is a hypothesis class, ϕ(x) ∈ H is a

function with binary output and I(x) is an indicator func-
tion, whose output is 1 if condition is satisfied, otherwise is
0. H-divergence can be generalized to multiple batches if we
use multiclass classifier for ϕ(x). However, it is hard to ex-
actly compute d̂H(S, T), as it needs traversing all ϕ(x) ∈ H.
Hence, we adopted the strategy ‘Proxy A-distance’ (15) to
approximate d̂H(S, T). The ‘min’ part of equation (2) can be
approximated by the classification loss loss2 of a classifier
(discriminator) to discriminate different batches. Then the
empirical H-divergence can be rewritten as:

d̂H (S, T) = 2
(

1 − min
Wbio,bbio

loss2

)
(3)

where Wbio and bbio are parameters of the classifier (discrim-
inator). The classification loss loss2 adopts cross entropy as,

loss2 = −
M∑

i = 1
yi logq

(
zbio

i

)
= −

M∑
i = 1

yi log fdisc

(
zbio

i ; Wbio, bbio

)
(4)

where q (zbio
i ) is the output of the classifier fdisc: zbio

i →
[0, 1], yi is the batch label of ith cell, M is the total number
of cells and Wbio and bbio are parameters of fdisc.

To encourage batch confusion and create the adversar-
ial interactions between the feature extractor and discrim-
inator, we train the encoder to minimize the empirical H-
divergence between batches. Therefore, our goal is the fol-
lowing objective function:

min
Wenc,benc

d̂H (S, T) = min
Wenc,benc

2
(

1 − min
Wbio,bbio

loss2

)
(5)

where Wenc, benc are parameters of encoder. The object of
equation (5) can be simplified as

max
Wenc ,benc

min
Wbio ,bbio

loss2 = max
Wenc ,benc

min
Wbio ,bbio

−
M∑

i = 1
yi log fdisc

(
zbio

i ; Wbio, bbio

)
(6)



e8 Nucleic Acids Research, 2022, Vol. 50, No. 2 PAGE 4 OF 13

To achieve minimization for Wbio and bbio and maximiza-
tion for Wenc and benc, gradient reversal layer (GRL) is in-
troduced, whose output is the same as the input during for-
ward propagation, and multiples by -1 during back prop-
agation. That is to say, GRL basically performs the gra-
dient ascent on feature extractor with respect to the dis-
criminator loss. We replace zbio

i with G RL(zbio
i ) in fdisc as

fdisc(G RL(zbio
i ); Wbio, bbio ). The gradient reversal layer and

new loss function of the discriminator are represented as,

G RL
(
zbio

i

) = zbio
i ,

∂G RL
(
zbio

i

)
∂zbio

i

= − Iλ (7)

min
Wenc ,benc ,Wbio ,bbio

̂loss2 = min
Wenc ,benc ,Wbio ,bbio

−
M∑

i = 1

yi log fdisc

(
G RL

(
zbio

i

)
; Wbio, bbio

)

(8)

The gradient reversal layer converts maximizing loss2 to
minimizing ̂loss2 in terms of Wenc and benc. λ is introduced
to measure the degree of mixture of different batches. To
avoid overcorrection, we assign i th cell a weight wi , which
is calculated from auxiliary classifier. So, the equation (8)
can be further represented as

min
Wenc,benc,Wbio,bbio

̂loss2 = min
Wenc,benc,Wbio,bbio

−
M∑

i = 1
yi log fdisc

(
G RL

(
zbio

i

)
; Wbio, bbio

) ∗ wi

(9)

Auxiliary classifier. Auxiliary classifier is used to derive
probability of a target-batch cell belonging to the source
batch. This probability is used to weigh each cell in the
batch-discriminator, making shared cells play a more im-
portant role on maximizing the discriminator. The weight
is larger for cells from shared cell types. The input of aux-
iliary classifier is zbio

i , and the output is the probability of
batch labels. The loss function of auxiliary classifier is

loss3 = −γ

M∑
i = 1

yi log p
(
zbio

i

)
(10)

where γ measures the importance of loss3, and p(zbio
i ) is

the output of function faux: zbio
i → [0, 1], whose parame-

ters are Waux and baux. To prevent the impact of minimiz-
ing the objective loss3 on zbio

i , we introduce zero-gradient
layer G ZL(zbio

i ) to zbio
i , that is faux(zbio

i ) is replaced by
faux(G ZL(zbio

i )). The zero-gradient layer is formulized as,

G ZL
(
zbio

i

) = zbio
i ,

∂G ZL
(
zbio

i

)
∂zbio

i

= 0 (11)

According to the output of auxiliary classifier, we design
a weight function as,

wi =
{

1 − p
(
zbio

i

)
, yi = 1

p
(
zbio

i

)
, yi = 0

(12)

wi = −
∑
zbio

i

p
(
zbio

i

)
log

(
p

(
zbio

i

))
(13)

Where equation (12) for two batches and (13) for multiple
batches.

Noise classifier. Noise classifier is used to classify batch la-
bels to obtain the low-representations of batch effect. The
input of this classifier is znoise

i and the output is the proba-
bility of batch labels. The loss function of this classifier is
defined as

loss4 = −β

M∑
i = 1

yi log p
(
znoise

i

)
(14)

where p(znoise
i ) = fclass(znoise

i ; Wnoise, bnoise), fclass :
znoise

i → [0, 1] and Wnoise, bnoise is noise classifier’s param-
eters to be learned and β measures the importance of the
noise classifier.

With the aforementioned derivation, we can formulate
objectives of SCIDRL as follows:

loss = loss1 + ̂loss2 + loss3 + loss4 (15)

We seek the parameters of encoder that maximize the
loss of the discriminator (by making different batch distri-
butions as indiscriminate as possible), while simultaneously
seeking the parameters of the batch classifier that minimize
the loss of the noise classifier.

Recovered gene expression. To obtain gene expression

without batch effect, we set ˜znoise
i = 0 for all cells. Then

we concatenate ˜znoise
i and z̃bio

i to obtain latent representa-
tions z̃i , whose batch effect are removed, and the recov-
ered expressions without batch effect are obtained by x̃i =
fdec (z̃i ; Wdec, bdec).

Performance assessment

We compared the performance of our method SCIDRL
with nine other methods on both simulated and recent
scRNA-seq datasets with different types of batch effect
(Supplementary Table S1). Their batch labels and cell types
are known in advance, providing a golden standard. To eval-
uate the batch effect correction results of SCIDRL in com-
parison with other methods, we used Uniform Manifold
Approximation and Projection (UMAP) visualizations to-
gether with four quantitative measures, including Local In-
verse Simpson Index of batch (LISI-batch), Local Inverse
Simpson Index of cell type (LISI-cell) (3), Comprehensive
LISI (LISI-CoM) and Silhouette Score (SILS) (16).

Local Inverse Simpson Index (LISI). To measure the de-
gree of batch mixing and biological signal preservation, we
used LISI, which defines the effective number of datasets
or cell types in a local neighborhood. It calculates the ex-
pected number of cells need to be sampled before one batch
or one cell type is observed twice in a Gaussian kernel-based
neighborhood. The Inverse Simpson Index is calculated as:

ISI = 1/

(
B∑

b = 1

P(b)2

)
(16)



PAGE 5 OF 13 Nucleic Acids Research, 2022, Vol. 50, No. 2 e8

In which B represents the total number of batches or cell
types and P(b) represents the probability of batch or cell
type b in the local neighborhood. The local distribution is
calculated as Gaussian kernel-based distribution with per-
plexity = 30. Specifically, the metric is defined as LISI-batch
when using batch label, and LISI-cell when using cell type
label. A better integration means a higher LISI-batch and a
lower LISI-cell (or a higher 1/LISI-cell).

Comprehensive LISI (LISI-CoM). To measure the degree
of batch mixing and cell type purity simultaneously, we
combined LISI-batch and 1/LISI-cell to obtain a new met-
ric. Specifically, to eliminate the effect of different scales of
these two metrics, both values are scaled to 0–1 by minmax
scaling, which is

LI SInorm = LI SI − min (LI SI)
max (LSI I) − min (LI SI)

(17)

Then, the comprehensive LISI is defined as the harmonic
mean of scaled LISI-batch and1/LISI-cell, which is

(LI SICoM) = 2∗
1

(LI SIcell )norm
∗(LI SIbatch)norm

1
(LI SIcell )norm

+ (LI SIbatch)norm

(18)

Silhouette SCORE (SILS). To quantify the degree of
mixture of batches and separation of different cell types, we
adopted Silhouette Score (SILS), ranging from -1 to 1, as a
synthetic index to measure how similar a cell is to its own
cluster in comparison to other clusters.

s (i ) = b(i )−a(i )
max(b(i ),a(i ))

b (i ) = min
c∈C/c(i )

d (i, c) (19)

where s(i ) represents the silhouette score of i th cell, a(i ) is
the average distance of the i th cell with all other cells in the
cell type c(i ) to which the i th cell belongs. For all other cell
types c ∈ C/c(i ), d(i, c) represents the average dissimilarity
of the i th cell with all cells of cell type c. A large value repre-
sents a good integration of different batches and separation
of different cell types. For a fair comparison, we controlled
the dimensions to be same in all methods when calculating
SILS.

Datasets

We applied our method on thirteen types of datasets (Sup-
plementary Table S1). These datasets contain both simu-
lated datasets and recent public biological datasets. Each
type of dataset includes two or more batches from differ-
ent laboratories or tissues. Simulated datasets (simulated 1
and simulated 2): The simulated datasets are generated by
Splatter (17), which devotes to simulate scRNA-seq data
with drop out and batch effect using the zero-inflated neg-
ative binomial model. There are two types of simulated
datasets: one type of dataset (simulated 1) contains 9500
cells with 500 genes from two batches. It covers six cell types
and both batches have a rare cell type. The two batches
have the same cell type compositions. The other type of
dataset (simulated 2) also has two batches with the same
number of cells and genes as the first dataset, which will be

down-sampled to contain one shared cell type between two
batches. For dataset with Group2 as shared cell type, there
are one shared cell type (16.7%, which represents the per-
centage of the number of shared cell types against the total
number of cell types). Pancreatic islet dataset (Pancreas):
The pancreatic islet dataset contains 2,126 and 8,569 cells
from two laboratories sequenced by CEL-Seq2 (18) and
Drop-Seq technologies (referred to as ‘baron’ and ‘muraro’,
respectively) (19), we marked the two batches as. It includes
six rare cell types in both batches. There are eight shared cell
types (53.3%). Human blood Dendritic Cells (DC) dataset:
The DC dataset consists of 283 and 286 cells sequenced
by Smart-Seq2 in two batches (20). There are two shared
cell types between two batches (50%). Cell line dataset
(Cell Line): The cell line dataset is composed of three
batches, where batch 293T only contains 293T cells (2676
cells), batch Jurkat only contains Jurkat cells (3053 cells)
and batch Mix contains both cell types (3162 cells) (7,21).
The median of shared cell types between two batches is
50%. Mouse hematopoietic cells (Mouse Hemato) dataset:
The mouse hematopoietic dataset includes two batches se-
quenced by Smart-Seq2 (1920 cells) (22) and Mars-Seq pro-
tocols (2927 cells) (23). There are three shared cell types
(42.8%). Mouse retina dataset (Mouse Retina): The mouse
retina dataset includes 44 808 and 27 499 cells from two lab-
oratories using the Drop-seq technology (24,25). There are
five shared cell types (38.5%). Mouse brain dataset (Mouse
Brain): The mouse brain dataset contains 302 175 and 156
049 cells from two laboratories using Drop-seq (26) and
SPLiT-seq protocols (27). There are nine shared cell types
(64.2%). Mouse atlas dataset (Mouse Atlas): The mouse at-
las dataset includes 21 855 and 13 320 cells sequenced by
Microwell-Seq (28) and Smart-seq2 (29), respectively. These
two batches have the same cell type compositions. Periph-
eral Blood Mononuclear Cells (PBMC) dataset: The PBMC
dataset includes eighteen batches using nine scRNA-seq
protocols. They have similar cell type compositions whereas
varied cell amounts ranging from 526 to 6528 (30). The
median of shared cell types between two batches is seven
(82.6%). Mouse cortex dataset (Mouse Cortex): The mouse
cortex dataset includes eight batches generated by Smart-
seq2, DroNC-seq, 10× (v2) and sci-RNA-seq. All bathes
have similar cell type compositions, and the numbers of
cells are 644, 3130, 5571 and 5599 (30). The median of
shared cell types between two batches is 3.5 (25%). Human
cerebral organoids dataset (Human Cerebral Organoids):
The human cerebral organoids dataset is consisted of 20
two-month human cerebral organoids from seven different
ESC/iPSC lines in four batches, generated by 10× proto-
col. The number of cell types of four batches are 9, 10, 11
and 11 respectively. The cell amounts of four batches are
8581, 9433, 14 120 and 17 019, respectively (31). The median
of shared cell types between two batches is 10.5 (91.3%).
Eight-organ dataset (Eight Organ): the eight-organ dataset
contains eight batches across three distinct sequencing tech-
nologies (i.e. Drop-seq, inDrops, 10x) from eight different
organs, including the pancreatic islet, PBMC, kidney, liver,
lung, spleen, and esophagus. The kidney dataset (32) con-
tains 4487cells from allograft biopsy sequenced by InDrops,
it includes several tubular cells, collecting duct cells (CD),
immune cells, stromal cells and endothelial cells. The liver
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dataset contains 8476 cells from fresh hepatic tissues of five
human livers sequenced by 10x platform. It includes hepa-
tocytes, non-parenchymal cells and immune cells (33). The
datasets of lung, spleen and esophagus contain 57 020, 94
257 and 87 947 cells, respectively. They are from 12 donors
sequenced by 10× v3 (34). The lung dataset mainly contains
ciliated cells, alveolar cells and immune cells. The spleen
dataset has many immune cells and the esophagus dataset
includes many epithelial cells. The median of shared cell
types between two batches is four (20.6%).

The preprocessing of scRNA-seq datasets is performed
by using the standard Seurat v3 pipeline. The input gene ex-
pression levels of each cell are first normalized to the same
scale of 104, which are followed by log transformation. We
then use the ‘FindVariableFeatures’ of Seurat toolkit with
‘vst’ for parameter ‘method’ to select top 1000 highly vari-
able genes (HVG) for each batch. We pool these genes to
obtain the final HVG set for the following analysis.

RESULTS

We compared our method SCIDRL with nine other state-
of-the-art methods. Considering the batch effect caused by
different technologies, different laboratories and different
organs, we used diverse simulated and biological datasets to
testify the effectiveness of SCIDRL. In particular, we paid
close attention to the following two aspects: datasets with
rare cell types and datasets with different cell type compo-
sitions.

SCIDRL outperforms the state-of-art methods on simulated
data

To assess the ability of SCIDRL on identifying rare cell
types, we generated simulated dataset containing rare cell
types. It is composed of two batches with five major cell
types and one rare cell type (Group1). In this dataset, we
generated one pair of highly similar cell types, Group1 and
Group2 (Supplementary Figure S1A), which is used to tes-
tify the ability to avoid mixing similar cell types. We vi-
sualized the integration results of the two batches of one
time in two-dimensional space so that the structure of data
can be intuitively explored. Visualization of the originally
uncorrected dataset shows that cells are separated due to
batch effect and cell types (Figure 2A). The UMAP vi-
sualizations indicate only SCIDRL, Seurat v3, fastMNN,
scanorama and scVI are able to remove batch effect and
discern rare cell type Group1 (Figure 2A & Supplementary
Figure S1B). Whereas, Liger, DESC and Harmony mistak-
enly mix up rare cell type Group1 and similar large cell
type Group2. Moreover, iMAP fails to integrate Group1
from two batches. Bermuda not only mixes up Group1
and Group2 but fails to integrate the same cell types of
two batches thoroughly (Supplementary Figure S1B). The
quantitative results are indeed consistent with the intuitive
visualizations (Figure 2B). The values of LISI-batch and
1/LISI-cell of SCIDRL are the highest among ten meth-
ods. The comprehensive metric of LISI-CoM shows that
SCIDRL is the best method. In terms of comprehensive
metric SILS, fastMNN is the best method, though all the
other methods have good scores (SILS > 0.7), except for

DESC, Bermuda, Harmony and liger. Overall, these results
indicate that SCIDRL is tied as good method in integrating
batch-shared rare cell types.

To test the performance of SCIDRL in dataset with dif-
ferent cell type compositions, we generated another type of
simulated dataset with two batches. This type of dataset is
down-sampled to make sure there is only one shared cell
type between the two batches. The UMAP visualizations
of the down-sampled dataset, in which Group2 is the only
shared cell type between two batches, are shown in Figure
2C and Supplementary Figure S1C, corresponding quanti-
tative measurements of LISI-batch, 1/LISI-cell and SILS,
LISI-CoM are displayed in Figure 2D. The intuitive visu-
alizations indicate SCIDRL and fastMNN have the abil-
ity to achieve a better integration of Group2 and separa-
tion of different cell types, whereas other methods either
can’t remove batch effect of Group2 or mistakenly integrate
Group2 with other cell types (Supplementary Figure S1C).
Comparing the quantitative measurements LISI-batch and
1/LISI-cell, SCIDRL is still the top performing method in
terms of batch integration and cell type purity. Similarly,
SCIDRL is the top ranked method in comprehensive met-
ric LISI-CoM. The SILS metrics of DESC, Seurat v3 and
iMAP have high scores, however, they show a poor per-
formance of batch mixing from the visualization results. If
we down-sampled data to make the other cell type as the
unique shared cell type between the two batches, the similar
conclusion can be obtained (Supplementary Figure S1D–
F). These results further indicate the high sensitivity and
specificity of SCIDRL in datasets with rare cell types and
datasets with different cell type compositions.

SCIDRL has competitive performance in two or three batches

To assess whether SCIDRL can integrate batch-shared rare
cell types and preserve batch-specific rare cell types ef-
fectively, we applied it on human pancreatic islet dataset.
Firstly, to assess whether SCIDRL can integrate scRNA-
seq data with rare cell types, we used human pancreatic
islet dataset. This dataset contains two batches from two
laboratories, covering six rare cell types: 80 mesenchymal
cells (0.7% of all cells); 55 macrophage cells (0.5%); 25 mast
cells (0.2%); 19 epsilon cells (0.1%); 13 schwann cells (0.1%);
7 t cells (0.06%), which are labeled based on their marker
genes: COL1A1, SDS, CPA3, GHRL, SOX10 (Supplemen-
tary Figure S2A). The epsilon cells are from two batches
and the remaining rare cells are from one batch. The visual-
ization results in Figure 3A and Supplementary Figure S2B
show that only SCIDRL can effectively remove batch effect,
clearly separate the batch-specific rare cell types and well
mix batch-shared rare cell types. Seurat v3, scanorama and
iMAP can effectively mix the epsilon cells across batches,
but with the macrophage cells divided into different clus-
ters. fastMNN has a good mixing of epsilon cells, but fails
to separate schwann cells and mesenchymal cells, mast cells
and macrophage cells. Whereas Harmony, Liger and scVI
fail to mix the epsilon cells. Furthermore, Bermuda and
DESC not only fail to mix the epsilon cells from differ-
ent batches, but also mix different batch-specific rare cells.
Comparing the scores of SILS (Supplementary Figure S2C)
computed on rare cell types, SCIDRL has the top-five high-
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Figure 2. Removing batch effect in simulated dataset. (A) Integration performance of SCIDRL for UMAP visualization on simulated 1 dataset with rare
cell types. Each point represents a cell and the cell is colored according to its known cell type label and shaped according to batch label. (B) Performance
comparison of ten integrated methods for four metrics (LISI-batch and 1/LISI-cell on the left, LISI-CoM and SILS on the right) on simulated 1 dataset. The
x-axis represents LISI-batch or LISI-CoM and the y-axis represents 1/LISI-cell or SILS (larger value means better performance). Different colors represent
different methods. (C) Integration performance of SCIDRL for UMAP visualization on down-sampled dataset with Group2 as the only shared cell type.
Each point represents a cell and the cell is colored according to its known cell type label and shaped according to batch label. (D) Performance comparison
of the ten integrated methods for four metrics (LISI-batch and 1/LISI-cell on the left, LISI-CoM and SILS on the right) on dataset with Group2 as the
only shared cell type. The x-axis represents LISI-batch or LISI-CoM and the y-axis represents 1/LISI-cell or SILS. Different colors represent different
methods.

est SILS. Comparing four metrics computed on all cells
(Figure 3B), SCIDRL has the second highest LISI-batch
and fourth highest 1/LISI-cell, highest LISI-CoM and third
highest SILS, its average ranking of LISI-CoM and SILS is
at the first place, which is congruent with UMAP visual-
izations. All these results proved the ability of SCIDRL in
uncovering rare cell types.

To assess the integration ability on datasets with differ-
ent cell type compositions, we applied it on DC, cell line
and mouse hematopoietic datasets. The DC dataset con-
tains four cell types, including CD1C, CD141, plasmacy-
toid DC (pDC) and double negative (DoubleNeg) cell types,
with two batches contain two shared cell types (DoubleNeg
and pDC). The cell line dataset consists of two cell types,
with batch ‘293t’ is made up of 293t cells, batch ‘Jurkat’
contains Jurkat cells, batch ‘Mix’ contains both 293t cells
and Jurkat cells. The mouse hematopoietic dataset cov-
ers six cell types, with two batches contain three shared
cell types (CMP, GMP and MEP). For DC dataset, the
UMAP visualizations (Supplementary Figure S2F) show
that SCIDRL, Liger, Bermuda and Harmony successfully
mixed the shared cell types (DoubleNeg and pDC), while
separating CD1C and CD141 cells. Seurat v3, fastMNN,
iMAP, scVI can achieve good separation of single CD141
and CD1C cells, but they bring CD1C and CD141 cells
close, which would be hard to classify them as two cell types
when the data is unlabeled. Scanorama incorrectly mixes

up CD1C and CD141 cells. Bermuda and DESC not only
mix up CD1C and CD141 cells but cannot integrate Dou-
bleNeg or pDC. LISI-batch, 1/LISI-cell and LISI-CoM
(Figure 3C) of SCIDRL are ranked third, second and first
respectively, which further indicate the good performance of
SCIDRL in DC dataset. For cell line dataset, from UMAP
visualizations (Supplementary Figure S2G), we find that
SCIDRL, Harmony, iMAP and DESC effectively integrate
three batches while maintaining the cell type separation. Al-
though Liger can achieve a good separation driven by cell
types, some 293t cells and Jurkat cells are mistakenly mixed.
Scanorama can mix 293t cells from different batches very
well, but has poor batch mixing of the Jurkat cells. Seurat v3
has poor batch mixing of the 293T cells. BERMUDA fails
to mix both 293t cells and Jurkat cells. FastMNN mixes up
different cell types. From the LISI-batch metric, SCIDRL
ranks the best one for batch integration. For the LISI-cell
metric, SCIDRL, iMAP, Harmony and scanorama are the
top methods in terms of cell type purity. For comprehensive
metrics, SCIDRL has the highest LISI-CoM and relatively
high SILS, which further indicate the good performance
of SCIDRL in cell line dataset (Figure 3C). For mouse
hematopoietic dataset, the UMAP visualizations (Supple-
mentary Figure S2H) show that only SCIDRL, fastMNN
and scanorama can not only remove batch effect but re-
tain the independence of different cell types. Whereas Seu-
rat v3, Liger, iMAP, scVI and DESC mix up different cell
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Figure 3. Removing batch effect in two or three batches. (A) Integration performance of SCIDRL for UMAP visualization on human pancreatic islet
data. Each point represents a cell, in which rare cells are colored by different colors and other cells are colored by grey, the shape of each point represents
batch label. (B) Performance comparison of the ten integrated methods for four metrics (LISI-batch and 1/LISI-cell on the left, LISI-CoM and SILS on
the right) on pancreas dataset with all cells. The x-axis represents LISI-batch or LISI-CoM and the y-axis represents 1/LISI-cell or SILS. Different colors
represent different methods. (C) Performance comparison of the ten integrated methods for four metrics (LISI-batch and 1/LISI-cell on the left, LISI-CoM
and SILS on the right) on Cell Line (left), DC (middle) and Mouse Hematopoietic (right) datasets. The x-axis represents LISI-batch or LISI-CoM and the
y-axis represents 1/LISI-cell or SILS. Different colors represent different methods. (D) Performance comparison of four methods (SCIDRL, Seurat v3,
Liger and iMAP) on integrated and original gene expression pattern of epsilon’s marker gene GHRL. Each point represents a cell and the cell is colored
according to its expression value of GHRL.

types such as GMP, CMP with LTHSC, LMPP. Bermuda
and Harmony have poor batch mixing of three shared cell
types (CMP, GMP and MEP). Comparing the quantitative
results, SCIDRL is ranked first in two metrics (LISI-CoM,
SILS) and second for LISI-batch and 1/LISI-cell (Fig-
ure 3C). We also tested SCIDRL on mouse brain, mouse
retina and mouse atlas datasets. SCIDRL takes the first,
third and sixth place for LISI-CoM respectively (Supple-
mentary Figure S2I). On the whole, these results together
suggest that SCIDRL is able to integrate datasets with dif-
ferent cell type compositions, especially datasets having a
small number of shared cell types.

To assess the integration ability on datasets with differ-
ent levels of similarity of cell type compositions, we down-
sampled the original data to a varied number of shared cell
types, ranging from one to eight shared cell types among
two batches. For each level of similarity, we sampled dif-
ferent categories of cell types as the shared cell types to

generate 57 groups. The comprehensive metrics LISI-CoM
and SILS (Supplementary Figure S2D) show that SCIDRL
achieves top-five performances for LISI-CoM and top-
three performances for SILS. The average rankings of LISI-
CoM and SILS of SCIDRL are at the first places for
datasets having more than one shared cell types and the
second place for dataset having one shared cell type. These
results together suggest that SCIDRL is able to integrate
datasets with different cell type compositions.

To investigate the impact of batch effect’s removal on
downstream analysis, we compared the pattern of marker
genes identified from original data with from corrected
data by SCIDRL, Seurat v3, Liger and iMAP. Other meth-
ods are not included because they operate on the low-
dimensional representations instead of the corrected gene
expression matrix. Here, we take the rare cell type as an
example. Firstly, we checked the expression patterns of re-
ported marker gene GHRL for epsilon cells (Figure 3D).
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Feature plot of GHRL in the original dataset reveals an
obvious specific signal in epsilon cells, however, batch ef-
fect exists. SCIDRL and Seurat v3 inherits the informa-
tion of marker gene from the original data with striking
contrast and achieves batch effect removal. Whereas iMAP
and Liger have high expression values of GHRL in many
other cells, they do not preserve the same strong contrast
in the marker gene. In the additional visualization results
of rare cell types including mesenchymal, mast, schwann
and rare beta cells which exhibit active endoplasmic reticu-
lum (ER), the same performance of SCIDRL can be consis-
tently observed (Supplementary Figure S2J). We also com-
pared marker genes identified by original expression and
corrected expression for all cells and epsilon cells (Sup-
plementary Figure S2K). We compared the total overlaps
among top N (N ranges from 1 to 100) marker genes iden-
tified in all cell types, SCIDRL, Liger and iMAP have sim-
ilar overlaps and a bit less than Seurat v3. For the overlaps
among the top N marker genes identified in epsilon cells,
Seurat v3 has the highest degree of consistency, followed
by SCIDRL and iMAP. These results together suggest that
SCIDRL has a satisfactory performance on the recovery of
marker genes after batch effect removal.

SCIDRL achieves effective integration of multiple batches

Next, we tested whether SCIDRL can integrate multi-
ple batches. Firstly, we integrated dataset of human cere-
bral organoids from four batches with varied cell type
compositions. The intuitive UMAP visualization results
in Figure 4A and Supplementary Figure S3A show that
SCIDRL, fastMNN, scanorama and scVI can remove
batch effect and separate different cell states. Whereas Seu-
rat v3, Harmony, Liger, iMAP and DESC mix up differ-
ent cell types––cortical neural progenitor cells (NPCs), gan-
glion eminence (GE) NPCs and non-telencephalon NPCs.
Bermuda has poor batch mixing of some cell types such as
cortical NPCs. Among all methods, SCIDRL is top ranked
in three metrics (LISI-batch, LISI-CoM, SILS) and second
for 1/LISI-cell (Figure 4B). The quantitative measurements
indicate the superior integration performance of SCIDRL
in dataset with different cell type compositions.

Then, we tested methods on nine publicly available
datasets of human PBMC generated by 10x(v2), 10x(v3),
CEL-Seq2, Smart-seq2, Seq-Well, inDrops and Drop-seq.
The original nine datasets have similar cell compositions
but varied cell quantities ranging from 526 to 6584. UMAP
visualizations of all PBMC data in Figure 4C & Sup-
plementary Figure S3B suggest SCIDRL, Harmony, Seu-
rat v3, fastMNN and scanorama have ability to remove
batch effect thoroughly while correctly merging cells from
the same cell types. Liger also removes batch effect ef-
fectively but tends to split large cluster to smaller parts,
for example megakaryocytes and CD4+ T cells are sepa-
rated into two sub-clusters. The similar situation happens
in scVI, which splits data into more fragments. Bermuda
fails to integrate some CD4+ T cells, cytotoxic T cells or
CD14+ monocytes. iMAP suffers from an over-correction
problem, where T cells and monocytes are mistakenly
mixed together. DESC is a poorer performer in integrat-
ing different batches. In terms of metric LISI-cell, harmony

is the best method, though Seurat v3, scVI, scanorama,
SCIDRL and fastMNN have similar good scores (1/LISI-
cell > 0.75). SCIDRL is ranked second in two metrics
(SILS and LISI-CoM) and third for LISI-batch (Figure
4D). Overall, SCIDRL ranks second considering the com-
bination of LISI-CoM and SILS, which falls behind Seu-
rat v3. In addition, we down sampled each dataset to have
a smaller shared cell type number, zero or one among
nine batches. The UMAP visualizations of dataset without
shared cell types (Supplementary Figure S3C) show that
SCIDRL, Harmony and scanorama are able to merge the
same cell types and separate different cell types. Whereas,
Seurat v3, Liger, Bermuda, and fastMNN mix up differ-
ent cell types. Meanwhile, iMAP, scVI and DESC can’t re-
move batch effect of some shared cells. The quantitative
measurements of LISI-CoM and SILS show that SCIDRL
always ranks in the top two in dataset with none over-
laps (Supplementary Figure S3E). For datasets contain-
ing CD14+ monocytes as shared cell type, UMAP visual-
izations (Supplementary Figure S3D) show that Bermuda,
scanorama, scVI and DESC cannot remove batch effect for
some techniques, whereas Seurat v3, Liger, iMAP and Har-
mony mix up CD14+ monocytes with other cell types. Only
SCIDRL and fastMNN can integrate the shared cell type
very well and reserve good cell type separation. The quan-
titative measurements show that SCIDRL is ranked second
and third for SILS and LISI-CoM respectively, tied as the
best method on the whole (Supplementary Figure S3E). We
compared the marker genes detected before and after inte-
gration by SCIDRL, Seurat v3, Liger and iMAP on human
cerebral organoids and PBMC datasets. Results show that
all the methods have similar good performances (Supple-
mentary Figure S3G).

To further demonstrate the effectiveness of SCIDRL, we
additionally used a dataset, which contains four mouse cor-
tex datasets sequenced by four scRNA-seq techniques. The
quantitative measurements of original and down-sampled
datasets, which contain astrocyte or endothelial cells as the
only shared cell type, indicate SCIDRL still has consistent
superior performance, ranking first or second combining
SILS and LISI-CoM (Supplementary Figure S3F).

Joint analysis on cells across different organs is required
in building human cell atlas. In such a scenario, biologi-
cal variation is inevitably confounded by the differences be-
tween organs and experimental batches. Different organs
share some common cell types such as immune cells, which
may reveal segregation due to batch effect. We further eval-
uated whether SCIDRL can remove batch effect for cells
that originate from various organs. We combined eight pub-
licly available datasets from seven organs, including pan-
creas, PBMC, kidney, liver, lung, spleen, and esophagus.
Normalized gene expression matrix of each dataset is ob-
tained by dividing total reads to multiply 1, 000, 000 fol-
lowed by taking logarithm. 500 Highly variable genes are
selected for each dataset, then 1319 union of HVGs of each
dataset are obtained for the following analysis. By the rea-
son of exhausted computing resources when performing
on Bermuda and calculating quantitative measures facing
more than 200, 000 cells, we only compared nine methods
by UMAP visualization and LISI metric. UMAP visualiza-
tions and quantitative measurements of original and inte-
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Figure 4. Removing batch effect in multiple batches. (A) Integration performance of SCIDRL for UMAP visualization on human cerebral organoid
dataset. Each point represents a cell and the cell is colored according to its known cell type label and shaped according to its batch label. (B) Performance
comparison of the ten integrated methods for four metrics (LISI-batch and 1/LISI-cell on the left, LISI-CoM and SILS on the right) on human cerebral
organoid dataset. The x-axis represents LISI-batch or LISI-CoM and the y-axis represents 1/LISI-cell or SILS. Different colors represent different methods.
(C) Integration performance of SCIDRL for UMAP visualization on PBMC dataset. Each point represents a cell and the cell is colored according to its
known cell type label and shaped according to its batch label. (D) Performance comparison of the ten integrated methods for four metrics (LISI-batch
and 1/LISI-cell on the left, LISI-CoM and SILS on the right) on PBMC dataset. The x-axis represents LISI-batch or LISI-CoM and the y-axis represents
1/LISI-cell or SILS. Different colors represent different methods. (E) Integration performance of SCIDRL for UMAP visualization on eight-organ dataset.
Each point represents a cell and the cell is colored according to its known cell type label (left) and its batch label (right).

grated data obtained from SCIDRL and other eight meth-
ods are shown in Figure 4E, Supplementary Figure S3H
& S3I. Except for pancreas and kidney, the rest of organs
have abundant immune cells such as T cells, B cells, NK
cells etc. We highlighted immune cells in UMAP spaces
of original and integrated data colored by cell type labels
and organ/batch labels (Supplementary Figure S3J). Com-
pared with original data, except for DESC, these methods
achieved efficient integrations of immune cells, which is also
testified by higher LISI-batch of these methods than ori-
gin (Supplementary Figure S3I). Except for shared immune
cell types, there are many organ-specific cell types. We dis-
played collecting duct (CD), loop of henle (LOH), proxi-
mal tubule (PT), distal tubule (DT) and pericyte of kid-
ney, endothelial, hepatocyte and erythroid of liver, glands
and epithelial of esophagus, alveolar, ciliated of lung, al-

pha, delta, epsilon etc. of pancreas (Supplementary Fig-
ure S3H). From the UMAP visualizations, only SCIDRL,
scVI, fastMNN and scanorama can integrate the shared im-
mune cells and reserve organ-specific cells, other methods
mix up some kidney and pancreas cells with other organs,
which are further indicated by the highest, relatively high
and lower 1/LISI-cell of SCIDRL, scanorama and other
methods.

Overall Performance of SCIDRL versus existing methods

To provide a convenient and intuitive summary of our re-
sults, we summarized the evaluation performance across
four metrics on thirteen datasets and seven down-sampled
datasets in Figure 5A–5D. Specifically, for each metric,
each method was classified as ‘excellent’ (top 25%), ‘good’
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Figure 5. Overall Performance of SCIDRL versus existing methods. Performance categories of LISI-batch (A), 1/LISI-cell (B), LISI-CoM (C) and SILS
(D) are displayed. The horizontal-axis represents different methods and the vertical-axis represents different datasets. Colored boxes represent method
categories. Bermuda, Seurat V3 and scVI did not return values due to the memory limitation on large datasets. (E, F) The mean (E) and median (F) of the
average rankings of LISI-CoM and SILS in four categories (‘LL’ represents little shared cells and little shared cell types, ‘LM’ represents little shared cells
and many shared cell types, ‘ML’ represents many shared cells and little shared cell types, ‘MM’ represents many shared cells and many shared cell types).
The x-axis represents different categories of dataset, the y-axis represents the mean or median of average rankings of LISI-CoM and SILS (smaller value
means better performance). Different colors represent different methods.

(25–50%), ‘intermediate’ (50–75%) or ‘poor’ (75–100%).
Methods were firstly ranked by their performances across
the evaluation metrics. Then for each dataset, we catego-
rized the methods into quantile buckets. For example, given
ten methods, if one method lies below the first quantile (the
top 25% of numbers, i.e. top three), this method should be
encoded as ‘excellent’ (top 25%). With the LISI-batch met-
ric, SCIDRL has ‘excellent’ performances on 10 datasets
and ‘good’ performances on 4 datasets, ranking second
(Figure 5A). Liger is slightly better than SCIDRL. Based on

the LISI-cell metric, SCIDRL has ‘excellent’ performances
on 12 datasets and ‘good’ performances on 6 datasets, rank-
ing first (Figure 5B). For comprehensive metrics, SCIDRL
has ‘excellent’ performances on 15 datasets for LISI-CoM
(Figure 5C) and ‘excellent’ performances on 70% of 17
datasets for SILS (Figure 5D), whose comprehensive per-
formance is best among ten methods. Though SCIDRL
only has ‘intermediate’ performances on several datasets, it
is a consistent performer. In general, SCIDRL performs the
best based on these metrics.
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To discuss the influence of the percentages of shared
cells and shared cell types between two batches, we classified
these datasets to four categories: little shared cells and lit-
tle shared cell types (LL), little shared cells and many shared
cell types (LM), many shared cells and little shared cell types
(ML) and many shared cells and many shared cell types
(MM). We take 50% as the threshold to classify dataset
as ‘Little’ (L) when the percentage is lower than 50% and
‘Many’ (M) when the percentage is higher than 50%. We
classified these datasets to four categories (Supplementary
Table S2). We displayed the mean and median of average
rankings of LISI-CoM and SILS among four categories for
ten methods in Figure 5E and 5F, respectively. For LL, ML
and MM, SCIDRL takes the first place, for LM, SCIDRL
takes the third place, which further indicates the superior-
ity of SCIDRL in datasets with different number of shared
cells and shared cell types.

DISCUSSION

Removing batch effect is fundamental to the downstream
analysis of scRNA-seq data. Recently, several methods have
been developed to integrate scRNA-seq datasets from dif-
ferent sources. However, the major limitation is that most
methods rely on identifying MNN pairs or clustering which
may result in a loss of power and accuracy, especially for the
datasets that have a small number of shared cell types or rare
cell types.

To address these challenges, we introduce SCIDRL,
which can disentangle biological meaningful (batch-
invariant) representations from niose (batch-specific)
representations without mannually finding MNN pairs or
a preprocessed step of clustering. SCIDRL is achieved by
jointly optimizing the low-dimensional representations in
conjuction with training two competing classifiers operat-
ing on latent representations. It is an end-to-end method
that can produce a corrected gene expression matrix for
further downstream analysis such as the identification of
marker genes or differential expression genes. Through
extensive benchmark comparisons with nine common-used
methods, the results demonstrate that SCIDRL is superior
in most cases and achieves excellent performances for
datasets with different cell type compositions and datasets
with rare cell types. Although parameter tuning is an
important issue for deep learning methods, we found in our
experiment the default parameter λ is usually sufficient for
achieving reasonable results for most analyses. To identify
the best parameter for better integration, we proposed a
quantitative heuristic strategy (Supplementary Figure S4).
In addition, when integrating multiple batches, SCIDRL
directly incorporate batch information in analysis, rather
than based on pairwise integration, which Seurat v3, Liger,
scanorama, fastMNN and iMAP usually do. In the process
of pairwise integration, the order of batch corrected will
affect the final results.

SCIDRL also has limitations. Since the design of
SCIDRL to achieve disentanglement is based on classifier
and discriminator, it can remove batch effect effectively for
most cases. However, the classifier may not always perform
well for highly unbalanced data (dataset with unbalanced
number of cells of different batches), which can be solved by

up-samplings or down-samplings. Another limitation is the
running time for large datasets using a single GPU machine,
which is a common issue for deep learning models. For-
tunately, there have been many works including data par-
allelism (35), automatic selection of algorithm framework
(36) and lightweight network design (37), etc., which can be
applied in the future to accelerate the speed of SCIDRL.

As more scRNA-seq data become available, we believe
SCIDRL will be a valuable tool for the comprehensive sin-
gle cell heterogeneity analysis. This framework may be ex-
tended to integrate multimodal datasets such as scATAC-
seq, spatial transcriptome etc., which is specially promising
in future single cell multi-omics data analysis.

DATA AVAILABILITY

The code of SCIDRL is freely accessible online via https:
//github.com/guott15/SCIDRL.git.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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