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Abstract: In three-dimensional (3D) medical ultrasound imaging with two-dimensional (2D) arrays,
sparse 2D arrays have been studied to reduce the number of active channels. Among them, sparse 2D
arrays with regular or uniform arrangements of elements have advantages of low side lobe energy
and uniform field responses over the entire field of view. This paper presents two uniform sparse
array models: sparse rectangular arrays (SRAs) on a rectangular grid and sparse spiral arrays (SSAs)
on a sunflower grid. Both arrays can be easily implemented on the commercially available or the
custom-made arrays. To suppress the overall grating lobe levels, the transmit (Tx) and receive (Rx)
array pairs of both the array models are designed not to have grating lobes at the same locations in the
Tx/Rx beam patterns, for which the theoretical design rules are also proposed. Computer simulation
results indicate that the proposed array pairs for both the SRAs and the SSAs achieve peak grating
lobe levels below –40 dB using about a quarter of the number of elements in the dense rectangular
array while maintaining similar beam widths to that of the dense array pair.

Keywords: sparse 2D array; 3D ultrasound imaging; rectangular array; spiral array; sunflower array;
grating lobe suppression; array signal processing

1. Introduction

Ultrasound two-dimensional (2D) array transducers provide a powerful means of fast and
high-resolution three-dimensional (3D) ultrasound imaging. Theoretically, to avoid grating lobes, the
interelement distance of a 2D array should be limited to half the acoustic wavelength. Consequently,
dense 2D arrays usually have a large number of elements, causing a tremendous increase in the
computational or the hardware complexity for ultrasound beamforming. Such huge computational
costs can also hinder dense 2D arrays from realizing 3D imaging with desired volume rates and
spatial resolutions. Thus, reducing the active elements used for real-time 3D imaging has been a very
important research topic in 2D array imaging.

Sparse 2D arrays are one of the strategies to reduce the number of active elements by undersampling
dense arrays. However, because sparse arrays with regularly spaced active elements cause the elevation
of grating lobes, various methods to design transmit and receive (Tx/Rx) sparse array pairs with
reduced grating lobe levels have been suggested. Placing elements irregularly is a reasonable approach
to spread the concentrated grating lobe energy of a regular sparse array over the entire acoustic field [1].
This approach has been improved by using optimization theories [2–4]. In search of more reliable and
computationally efficient sparse arrays, an analytical method utilizing the so-called almost difference
sets (ADS) was also proposed [5].

However, due to the non-uniform distribution of the elements, all the methods mentioned above
have several problems: the difficulty of guaranteeing the uniformity among the scan lines; restriction of
the element size, and the increase in the overall side lobe energy. To overcome these problems, sparse
periodic array layout schemes, such as Vernier arrays, have been proposed [6–9]. Vernier arrays have
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non-overlapping grating lobe patterns which result in overall two-way beam patterns with suppressed
grating lobes. Recently, our group presented an analytical model for generalized sparse periodic linear
arrays [10]. Based on the analytical model, a design rule to avoid common grating lobes of Tx/Rx 1D
array pairs was developed.

Several sparse array layouts for non-rectangular 2D arrays have also been proposed, such as
concentric circular arrays [1,11,12] and spiral arrays [13–15]. The sunflower array, which is a special
case of Fermat’s spiral array, is known to have advantages over the other sparse array designs in terms
of beamforming performance and array uniformity. However, the design criteria and methods for
optimal Tx/Rx spiral arrays are not yet established. In a previous study [14], for example, the rotation
angle between Tx/Rx Fermat’s spiral arrays was optimized, but the possibility of the overlapping Tx/Rx
elements in one probe was not considered. Practically, this will bring manufacturing problems.

This paper expands the previous sparse linear array (SLA) design method [10] for designing
sparse rectangular arrays (SRAs) with elements placed on a rectangular grid and sparse spiral arrays
(SSAs) having elements on a sunflower grid. First, specific configurations for each of the generalized
SRA and SSA are suggested. Then, the theoretical models for the field responses of the SRAs and
the SSAs are presented to assess the important beamforming performances, such as main lobe beam
width and grating lobe patterns. Based on the analysis results, simple design rules for the Tx/Rx pairs
of both the SRAs and the SSAs are proposed. The design rules pair the Tx/Rx arrays in a way that
the arrays do not produce grating lobes at the same locations. Finally, the array pairs are evaluated
and compared through computer simulations, showing that the proposed design rules for both array
schemes are valid.

2. Sparse Rectangular Array

2.1. Array Model

In our previous study, a design rule for eliminating common grating lobes of a pair of Tx/Rx
arrays, each array having the form of the SLA model shown in Figure 1, was presented [10]. In this
model, L consecutive elements are active in each P-element block, where P is greater than L. The L
active elements are defined to be a subarray, and each block containing the subarray is repeated NP
times to form the SLA model. Thus, in an SLA, only NP·L elements are active among NP·P elements.

Here we generalize the SLA model to the SRA model, as shown in Figure 2. Generally, an SRA
comprises NPx·NPy blocks. Each block is composed of Px·Py elements, and in each block, only the
subarray consisting of Lx·Ly elements is active. Such SRA will be denoted as SRA-LxLy for convenience.
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Figure 1. Sparse linear array layout. The array comprises NP blocks. In each block having P elements,
only the subarray consisting of L consecutive elements (blue colored squares) in each block is active.

Using the parameters in Figure 2 and the coordinates in Figure 3, the far-field, continuous wave
(CW) response of an SRA, ΨSRA-LxLy(x,y,z), can be approximately expressed in the spatial domain as

ΨSRA−LxLy(x, y, z) = sinc
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where (xf,yf,zf) is the far-depth focus, λ is the wavelength, wx and wy are the element widths, dx and dy

are the element pitches, R0 is the distance between the observation point and the array center, and Rf is
the distance between the focal point and the array center [10,16].Sensors 2020, 20, x FOR PEER REVIEW 3 of 20 
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Figure 2. Sparse rectangular array layout. The array comprises NPx·NPy blocks. In each block having
Px·Py elements, only the two-dimensional (2D) subarray consisting of Lx·Ly elements (blue colored
squares) is active.
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By using the spherical coordinates ux = ux0 − uxf = x/R0 − xf/Rf and uy = uy0 − uyf = y/R0 − yf/Rf,
Equation (1) can be rewritten as
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ΨSRA−LxLy

(
ux, uy

)
= sinc

(
wx

ux0
λ

)
·

NPx−1∑
mx=0

Lx−1∑
nx=0

exp
{
− j 2π

λ (uxPxmx + nx)dx
}

· sinc
(
wy

uy0
λ

)
·

NPy−1∑
my=0

Ly−1∑
ny=0

exp
{
− j 2π

λ

(
uyPymy + ny

)
dy

}
.

(2)

Because x and y terms of ΨSRA-LxLy(ux,uy) are separable, Equation (2) can be expressed as

ΨSRA−LxLy

(
ux, uy

)
= ΨSLA−Lx(ux) · ΨSLA−Ly

(
uy

)
, (3)

where, in fact, ΨSLA-Lx(ux) and ΨSLA-Ly(uy) are the far-field, CW responses of the SLAs in the x- and y-
axes, respectively.

Furthermore, by solving the double summation of the exponentials in Equation (2), ΨSLA-Lx(ux) in
Equation (3) can be further factorized into the element factor Φe(ux0), the basic SLA factor ΨSLA-1(ux)
(i.e., the array factor of an SLA with L = 1) and the subarray factor ΨSA-L(ux) [10]. That is,

ΨSLA−Lx(ux) ∝ Φe(ux0) · ΨSLA−1(ux) · ΨSA−Lx(ux), (4)

where
Φe(ux0) = sinc

(
w

ux0

λ

)
, (5)

and

ΨSLA−1(ux) =
sin(πNPPdux/λ)

sin(πPdux/λ)
, (6)

and

ΨSA−Lx(ux) =
sin(πdLux/λ)
sin(πdux/λ)

. (7)

The y term of Equation (3), ΨSLA-Ly(uy), can also be factorized in the same way as ΨSLA-Lx(ux) (4).
Therefore, by incorporating all the factors (4)–(7) into Equation (3), the far-field, CW response of an
SRA can be represented as

ΨSRA−LxLy

(
ux, uy

)
∝ Φe

(
ux0, uy0

)
· ΨSLA−1(ux) · ΨSA−Lx(ux) · ΨSLA−1

(
uy

)
· ΨSA−Ly

(
uy

)
, (8)

where Φe(ux0,uy0) = Φe(ux0) · Φe(uy0) represents the 2D element factor.
To understand the characteristics of the beam pattern of ΨSRA-LxLy(ux,uy), it is instructive to

evaluate the main lobe width and the grating lobe locations of the basic SRA factor ΨSRA-1(ux,uy) =

ΨSLA-1(ux) · ΨSLA-1(uy) that represents ΨSRA-LxLy(ux,uy) when Lx = Ly = 1. The grating lobe locations of
ΨSRA-1(ux,uy) are calculated from Equation (6) as

(
ux, uy

)
=

(
ux, uy

)
GL

=

(
λ

Pxd
·m,

λ
Pyd
·n

)
, (m, n)

{
Z2
− (0, 0)

}
. (9)

In addition, the null-to-null main lobe width of ΨSRA-1(ux,uy) is 2λ/(NPPd), which is equivalent to
that of a dense array with NPx·Px·NPy·Py elements. Now, except for the element factor, two remaining
factors of ΨSRA-LxLy(ux,uy) (8) can be treated as a 2D subarray factor (a small dense 2D array),
ΨSA-LxLy(ux,uy) = ΨSA-Lx(ux) · ΨSA-Ly(uy). From Equation (7), it is easy to show that the factor
ΨSA-LxLy(ux,uy) has a null grid of

ux = ux,null =
λ

Lxd
·m, uy = uy,null =

λ
Lyd
·n, (m, n)

{
Z2
− (0, 0)

}
. (10)
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A null grid is made up of vertical (ux = ux,null) and horizontal (uy = uy,null) lines, and ideally,
the field response is zero on the lines. Thus, the grating lobe positions (9) that are located on the null
grid (10) will vanish. In fact, by choosing the values of Lx and Ly properly, one can eliminate unwanted
grating lobes in specific locations. For an extreme case, if Px = Lx and Py = Ly, which is the dense
array case, every grating lobe position is on the null grid, and hence, such an array does not have any
grating lobes.

2.2. Design Rule

The Tx/Rx rectangular array pair (TRA/RRA) will be represented by their values of P and L as
TRA(Px,T·Py,T, Lx,T·Ly,T)/RRA(Px,R·Py,R, Lx,R·Ly,R). Surely, the rectangular array is dense if Px·Py = Lx·Ly

and sparse if Px·Py > Lx·Ly. In the previous subsection, it has been shown that the grating lobe positions
of the SRAs are governed by the grating lobe position (9) and the null grid (10). Now the common
grating lobes (CGLs) of the TRA/RRA pairs are investigated. The CGLs represent the grating lobes that
appear at the same locations in both the Tx/Rx beam patterns. Because a TRA/RRA pair with CGLs
will produce strong grating lobes in its round-trip response, it must be designed not to have CGLs.

In the SLA case [10], the CGL positions of an SLA pair were given by

u =
m

GCD(P T, PR)
·
λ
d

, m {Z− (0)}, (11)

where GCD(·) is the greatest common divider of the two arguments. Since the SRA is the 2D
generalization of the SLA, the CGL positions of an SRA pair are calculated as

(
ux, uy

)
=

(
ux, uy

)
CGL

=

 m

GCD
(
Px,T, Px,R

) ·λ
d

,
n

GCD
(
Py,T, Py,R

) ·λ
d

, (m, n)
{
Z2
− (0, 0)

}
. (12)

The essential rule for designing optimal TRA/RRA pairs is to suppress the CGLs, if they exist, by
choosing Lx,R and Ly,R as

Lx,R = kx·GCD
(
Px,T, Px,R

)
, (13)

and
Ly,R = ky·GCD

(
Py,T, Py,R

)
, (14)

where kx and ky are natural numbers that do not make Lx,R and Ly,R exceed Px,R and Py,R, respectively.
Note that the CGL positions (12) locate perfectly on the null grid (10) with the use of the design rule (13)
and (14), which will result in canceling all the CGLs of the array pair. For the transmit array, Lx,T and
Ly,T can be any natural numbers not greater than Px,T and Py,T, respectively, as long as the CGL-free
conditions (13) and (14) are met. One can also make Lx,T and Ly,T meet the CGL-free conditions and
choose Lx,R and Ly,R freely.

3. Sparse Spiral Array

3.1. Array Model

Fermat’s spiral pattern is defined in polar coordinates as

en =
(
l0
√

nα, nα
)
, n = 1, . . . , Ne, (15)

where α is the divergence angle, Ne is the number of element points, and l0 is defined to achieve the
desired aperture diameter D of the array as

l0 =
D

2
√
(Ne − 1)α

. (16)
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In this paper, the sunflower pattern, which is a special case of the Fermat’s spiral pattern (15)
where α = α0 = 137.51◦, is chosen as the dense spiral array grid. Sunflower arrays are known for
their good element packing property and having beam patterns with low side lobe energy [14,15].
In addition, it is advantageous to choose the active elements out of the sunflower array since the
sunflower pattern is the densest among the spiral patterns.

The element centers of an SSA with Ns elements (Ns = NPα·Lα ≤ Ne) are suggested to be defined
in the sunflower grid as

sn =
(
ln = l0

√
αn, αn

)
, n = 1, . . . , Ns, (17)

where
αn = nα0 =

{
(p − 1)Pα + q

}
α0, 1 ≤ p ≤ NPα, 1 ≤ q ≤ Lα. (18)

Note that the angular positions {αn} in Equation (18) can be illustrated with the active elements of
the SLA shown in Figure 1 with d, P, L, and NP replaced by α0, Pα, Lα, and NPα, respectively. Figure 4
shows some examples of the SSAs denoted by SSA(Pα, Lα): (a) the sunflower array, (b) SSA(2,1),
(c) SSA(4,1), (d) SSA(4,2), (e) SSA(3,1), and (f) SSA(3,2). Indeed, as shown in Figure 4, each of the
SSAs defined by the polar coordinates (17) is the spiral version of the corresponding SLA defined by
Equation (18). Given the exact locations (17) of the elements, the far-field, CW response of an SSA can
be approximately expressed as

ΨSSA

(
ux, uy

)
∝ Φe

(
ux0, uy0

)
·

Ns−1∑
n=0

exp
[
− j

2π
λ

{
uxln cos(αn) + uyln sin(αn)

}]
, (19)

which, unlike that of the SRA, cannot be factorized further. Nonetheless, the grating globe positions of
the SSAs can be investigated.
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are colored in blue.

It has been previously shown that the sunflower arrays are expected to produce circular symmetric
grating lobe patterns, namely grating lobe rings [17]. In addition, the radii of the grating lobe rings
are approximately given by integer multiples of λ/d̂, where d̂, the most likely interelement distance,
can be calculated from the histogram of the lengths of the Delaunay-triangulation line segments of the



Sensors 2020, 20, 173 7 of 19

sunflower array [17,18]. Therefore, because the SSAs are designed from the same model of the SLAs,
the grating lobe rings of the SSAs when Lα = 1 are expected to be at

r = rgl =
λ

Pαd̂
·m, m ∈

{
Z− (0)

}
, (20)

where r2 = ux
2 + uy

2. Note that, by setting Pα = 1, the grating lobe rings of the sunflower arrays can
also be explained by Equation (20).

In addition, when Lα > 1 for a given value of Pα, the grating lobes at the following locations are
expected to be suppressed.

r = rnull =
λ

Pαd̂
·m, m ∈

{
Z− (0)

}
. (21)

Analogous to the null grid for SRAs, we shall assume that there exist low amplitude rings with
the radii calculated by Equation (21), which will be called the nulling rings for convenience.

3.2. Design Rule

As the element centers of an SSA are sparsely selected from a sunflower grid according to
Equations (17) and (18) depending on the values of Pα and Lα, the Tx/Rx SSA (TSA/RSA) pair will
be represented by TSA(Pα,T,Lα,T)/RSA(Pα,R,Lα,R). Because the radii of the grating lobe (20) and the
nulling rings (21) of an SSA are theoretically given, one can easily find that the CGL positions of an
SSA pair are derived as

r =
m

GCD(Pα,T, Pα,R
) ·λ

d
, m {Z− (0)}, (22)

which resembles the SLA case (11). Thus, the SSA pairs will not have CGLs when the same design rule
for the CGL-free SLA pairs is adopted as

Lα,R = k·GCD
(
Pα,T, Pα,R

)
. (23)

The value of Lα,T can be any natural number not greater than Pα,T just as in the SRA case.
The validation of this design rule is demonstrated in the following section.

4. Simulations Results

4.1. Simulation Environment

Both the far-field, CW field response and the near-field, pulsed wave (PW) response were calculated
on a constant-ρ hemispherical surface shown in Figure 3. The coordinate of a point lying on the
hemispherical surface is represented by (ux0, uy0) = (sinθcosϕ, sinθsinϕ) in the range of −90◦ ≤ θ ≤ 90◦

and −90◦ ≤ ϕ ≤ 90◦. The field responses were investigated for two cases: (uxf, uyf) = (0, 0) and
(0.5,0) (i.e., θf = π/6 and ϕf = 0), where (uxf, uyf) denotes the focal point on the same hemispherical
surface. We remind that the coordinates in ΨSRA-LxLy(ux,uy) and ΨSSA(ux,uy) in the previous sections
are expressed as (ux, uy) = (ux0 − uxf, uy0 − uyf).

The CW responses were calculated from the theoretical models (8,19) presented in Sections 2
and 3, and Field II program [19,20] was used to obtain the PW responses. The following parameters
were used in the simulations for both SRAs and SSAs: sound speed of c = 1540 m/s; central frequency
of f0 = 3 MHz; sampling frequency of fs = 100 MHz; focal depth of F = 40 mm; transducer impulse
response equal to a two-cycle sine pulse with a Hanning window; and a two-cycle sine excitation.
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4.2. Evaluation Metrics

The peak grating lobe level (PGL) and the main lobe-to-side lobe energy ratio (MSR) are known to
be good performance measures for the beamforming arrays [1,7], which are calculated as

PGL =

max
u2

x+u2
y≥0.22

∣∣∣∣PSF
(
ux, uy

)∣∣∣∣2∣∣∣PSF(0, 0)
∣∣∣2 , (24)

and

MSR =

∑ ∑ ∣∣∣∣PSF
(
ux, uy

)∣∣∣∣2ML
(
ux, uy

)
∑ ∑ ∣∣∣∣PSF

(
ux, uy

)∣∣∣∣2{1−ML
(
ux, uy

)} , (25)

where PSF(ux,uy) is the point spread function of an array. In Equation (25), ML(ux,uy) is a windowing
function which value is one in the main lobe region restricted by −50 dB beam width (BW) and 0
outside the main lobe region. The decision boundaries of the PGL and the main lobe region were
adopted from [5,8]. In addition to the PGL and MSR values, the BWs of the main lobe at −6 dB (BW6)
and −50 dB (BW50) were measured.

4.3. Sparse Rectangular Array

The Tx/Rx array pairs for the beam simulations are shown in Figure 5. A circular window with a
diameter of 16λ was used to reduce the weak-contributing elements in the edges of the array model in
Figure 2 [21]. Square-shaped elements with the element width of 0.5λ and the element pitch of 0.6λ
(both in x and y directions) were used. Ideally, if the element pitch was not greater than 0.5λ, then the
grating lobes were not produced even when the focal point was steered. In this simulation, however,
the element pitch (0.6λ) was chosen to be the same as that of a commercially available 2D array [4],
which will be used in a future experimental study.

Sensors 2020, 20, x FOR PEER REVIEW 8 of 20 

 

adopted from [5,8]. In addition to the PGL and MSR values, the BWs of the main lobe at −6 dB (BW6) 

and −50 dB (BW50) were measured. 

4.3. Sparse Rectangular Array 

The Tx/Rx array pairs for the beam simulations are shown in Figure 5. A circular window with 

a diameter of 16λ was used to reduce the weak-contributing elements in the edges of the array model 

in Figure 2 [21]. Square-shaped elements with the element width of 0.5λ and the element pitch of 0.6λ 

(both in x and y directions) were used. Ideally, if the element pitch was not greater than 0.5λ, then 

the grating lobes were not produced even when the focal point was steered. In this simulation, 

however, the element pitch (0.6λ) was chosen to be the same as that of a commercially available 2D 

array [4], which will be used in a future experimental study. 

 

Figure 5. Transmit (blue) and receive (red) rectangular array pairs: (a) the dense array pair and (b–f) 

the sparse rectangular array (SRA) pairs. The overlapping elements are colored in purple. 

Figure 5a shows the dense array pair on a 27 × 27 grid whose beam pattern will serve as the 

reference for the evaluation of beamforming performance of sparse arrays. For the sparse array pairs 

in Figure 5b–f, the same TRA with the parameters of Px,T∙Py,T = 2∙2 = 22 and Lx,T∙Ly,T = 1∙1 = 12, denoted 

by TRA(22,12), was used, but the RRAs were chosen differently. The ones that follow the proposed 

design rule (Figure 5b,c) used the Rx arrays of RRA(22,12) and RRA(42,12), and the others that did not 

follow the rule (Figure 5d–f)) used the Rx arrays of RRA(42,22), RRA(32,12), and RRA(32,22). 

Figure 6 shows the one-way CW responses of the Rx arrays in Figure 5 when (uxf, uyf) = (0, 0). 

Thus, in this case, (ux, uy) = (ux0, uy0). The beam pattern of a dense array (Figure 6a) had no grating 

lobe artifacts and only the main lobe was observed. In the case of SRAs with Lx,R = Ly,R = 1 (Figure 

6b,c,e), grating lobes were observed exactly at the locations predicted by Equation (9); the spacing 

between adjacent grating lobes in each of x and y directions decreased with increasing Px,R. When Lx,R 

= Ly,R = 2, Figure 6d,f show that the grating lobe artifacts are reduced. Especially for RRA(42,22) (Figure 

6d), because of the 2D subarray factor ΨSA-2(ux) ∙ ΨSA-2(uy), the outer grating lobes of RRA(42,12) (Figure 

6c) located on the null grid of ux = λ/2d and uy = λ/2d defined by Equation (10) were eliminated. 

On the other hand, one can see by comparing Figure 6e,f that the grating lobes of RRA(32,12) 

were not completely eliminated in the response of RRA(32,22) since none of them fall onto the null 

Figure 5. Transmit (blue) and receive (red) rectangular array pairs: (a) the dense array pair and (b–f)
the sparse rectangular array (SRA) pairs. The overlapping elements are colored in purple.



Sensors 2020, 20, 173 9 of 19

Figure 5a shows the dense array pair on a 27 × 27 grid whose beam pattern will serve as the
reference for the evaluation of beamforming performance of sparse arrays. For the sparse array pairs in
Figure 5b–f, the same TRA with the parameters of Px,T·Py,T = 2·2 = 22 and Lx,T·Ly,T = 1·1 = 12, denoted
by TRA(22,12), was used, but the RRAs were chosen differently. The ones that follow the proposed
design rule (Figure 5b,c) used the Rx arrays of RRA(22,12) and RRA(42,12), and the others that did not
follow the rule (Figure 5d–f)) used the Rx arrays of RRA(42,22), RRA(32,12), and RRA(32,22).

Figure 6 shows the one-way CW responses of the Rx arrays in Figure 5 when (uxf, uyf) = (0, 0).
Thus, in this case, (ux, uy) = (ux0, uy0). The beam pattern of a dense array (Figure 6a) had no grating lobe
artifacts and only the main lobe was observed. In the case of SRAs with Lx,R = Ly,R = 1 (Figure 6b,c,e),
grating lobes were observed exactly at the locations predicted by Equation (9); the spacing between
adjacent grating lobes in each of x and y directions decreased with increasing Px,R. When Lx,R = Ly,R = 2,
Figure 6d,f show that the grating lobe artifacts are reduced. Especially for RRA(42,22) (Figure 6d),
because of the 2D subarray factor ΨSA-2(ux) · ΨSA-2(uy), the outer grating lobes of RRA(42,12) (Figure 6c)
located on the null grid of ux = ±λ/2d and uy = ±λ/2d defined by Equation (10) were eliminated.

On the other hand, one can see by comparing Figure 6e,f that the grating lobes of RRA(32,12)
were not completely eliminated in the response of RRA(32,22) since none of them fall onto the null
grid of ΨSA-2(ux) · ΨSA-2(uy). Although, because the CW response of RRA(32,22) was that of RRA(32,12)
multiplied by the subarray factor ΨSA-2(ux) · ΨSA-2(uy), its grating lobes in Figure 6f were smaller than
those of RRA(32,12) shown in Figure 6e.

Sensors 2020, 20, x FOR PEER REVIEW 9 of 20 

 

grid of ΨSA-2(ux) ∙ ΨSA-2(uy). Although, because the CW response of RRA(32,22) was that of RRA(32,12) 

multiplied by the subarray factor ΨSA-2(ux) ∙ ΨSA-2(uy), its grating lobes in Figure 6f were smaller than 

those of RRA(32,12) shown in Figure 6e. 

 

Figure 6. One-way, continuous wave (CW) responses of (a) the dense array and (b–f) the SRAs. 

The two-way CW PSFs of the array pairs were calculated by multiplying the Tx/Rx beam 

patterns. The results are shown in Figure 7. Note that TRA(22,12) was used on the transmission for all 

the SRA pairs, and its beam pattern was identical to that of RRA(22,12) in Figure 6b. According to 

Equation (12), all grating lobes of RRA(22,12) were CGLs when paired with TRA(22,12), as shown in 

the PSF of TRA(22,12)/RRA(22,12) in Figure 7b. Because GCD(4,2) = 2, the TRA(22,12)/RRA(42,12) pair 

also had CGLs at (ux, uy) = (λ/2d, 0) and (ux, uy) = (0, λ/2d), as can be observed in Figure 7c. On the 

other hand, TRA(22,12)/RRA(42,22), TRA(22,12)/RRA(32,12), and TRA(22,12)/RRA(32,22) were CGL-free 

pairs satisfying the design rule (13,14), and thus high grating lobes are not found in Figure 7d–f. 

  

Figure 7. Two-way, CW point spread functions (PSFs) of (a) the dense array pair and (b–f) the SRA 

pairs. 

Figure 6. One-way, continuous wave (CW) responses of (a) the dense array and (b–f) the SRAs.

The two-way CW PSFs of the array pairs were calculated by multiplying the Tx/Rx beam patterns.
The results are shown in Figure 7. Note that TRA(22,12) was used on the transmission for all the SRA
pairs, and its beam pattern was identical to that of RRA(22,12) in Figure 6b. According to Equation
(12), all grating lobes of RRA(22,12) were CGLs when paired with TRA(22,12), as shown in the PSF of
TRA(22,12)/RRA(22,12) in Figure 7b. Because GCD(4,2) = 2, the TRA(22,12)/RRA(42,12) pair also had
CGLs at (ux, uy) = (±λ/2d, 0) and (ux, uy) = (0, ±λ/2d), as can be observed in Figure 7c. On the other
hand, TRA(22,12)/RRA(42,22), TRA(22,12)/RRA(32,12), and TRA(22,12)/RRA(32,22) were CGL-free pairs
satisfying the design rule (13) and (14), and thus high grating lobes are not found in Figure 7d–f.
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Figure 7 clearly shows that the CGL-free SRA pairs outperformed the SRA pairs that did not
follow the design rule. Notably, the CGL-free TRA(22,12)/RRA(42,22) produced much smaller grating
lobes than TRA(22,12)/RRA(22,12) using the same number of active elements. The same result was
also observed in the PW PSFs in Figure 8, which have much broader and lower grating lobes than the
corresponding CW PSFs due to the well-known property of wide band beamforming [22].

Figure 9 shows the steered PW PSFs of the SRA pairs. Note that all the PSFs of the dense array
(Figure 9a) and the CGL-free SRA pairs (Figure 9d–f)) exhibited grating lobes in the vicinity of ux0 = −1
(i.e., θ = −π/2), which was not seen in the corresponding unsteered PSFs in Figure 8. It should be noted
that the grating lobes near ux0 = −1 will not be generated if the element pitch is not greater than 0.5λ.
Other grating lobes closer to the main lobe were surely suppressed as in the unsteered PSFs of the
CGL-free SRA pairs in Figure 8.
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Figure 9. PW PSFs of (a) the dense array pair and (b–f) the SRA pairs for a steered focal point at
(uxf,uyf) = (0.5,0) (i.e., θf = π/6, and ϕf = 0).

To compare the non-steered, and the steered PW PSFs of the array pairs, their 1D profiles on the
ux0 axis (uy0 = 0) are plotted in Figure 10. The low-performance array pair TRA(22,12)/RRA(42,12) was
excluded for comparison. Figure 10 shows that all SRA pairs had almost the same BW6. However,
TRA(22,12)/RRA(22,12) had significantly higher grating lobes than the other CGL-free SRA pairs.
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For quantitative comparison, the main lobe BWs, MSR, and PGL of all the SRA pairs in Figure 10
(except for TRA(22,12)/RRA(42,12)) were measured and are listed in Table 1 in the ascending order of
the number of the active elements. One can see that the TRA(22,12)/RRA(22,12) pair has the lowest
MSR and the highest PGL. In the cases of CGL-free pairs, both the PGL and the BW50 decreased
(i.e., improve) and the MSR increased (i.e., improves) as more elements were used; all the PGL values
were lower than −40 dB except for the most sparse SRA pair TRA(22,12)/RRA(32,12).

Table 1. Properties of near-field, pulsed-wave responses of rectangular array pairs.

Figure Tx Rx BW [deg] MSR
[dB]

PGL
[dB]Design # of Elements Design # of Elements BW6 BW50

Figure 5e TRA(22,12) 140 RRA(32,12) 61 3.84 24.60 20.1 −35.5
Figure 5d TRA(22,12) 140 RRA(42,22) 135 3.84 22.96 26.1 −43.6
Figure 5b TRA(22,12) 140 RRA(22,12) 140 3.78 24.77 1.6 −14.3
Figure 5f TRA(22,12) 140 RRA(32,22) 245 3.84 22.49 27.0 −44.2
Figure 5a Dense 553 Dense 553 3.84 20.80 36.6 −50.8

Specifically, compared to the dense array pair, the second most sparse array pair,
TRA(22,12)/RRA(42,22), used only one in four elements of a dense array on both transmission (140)
and reception (135) but provided almost the same BWs as that of the dense array pair with a PGL of
−43.6 dB. This was comparable to the PGL value (−46.4 dB) of the ADS-based array pair [5] using more
elements for both transmission (211) and reception (210). It should also be noticed that the steered
responses in Figure 10b showed the same characteristics as those of the non-steered ones.

4.4. Sparse Spiral Array

Figure 11 shows a sunflower array pair and six different SSA pairs. Each array had a diameter of
16λ, the same as that of the SRAs in the previous subsection. The arrays were composed of circular
elements, and each element had a diameter of

(
1/
√
π
)
λ so that the element area was equal to that

of the square element used for the SRAs. The dense array for the spiral arrays was the sunflower
array shown in Figure 11a. The sunflower array is deliberately designed to have 280 elements so that
the number of elements of SSA(2,1) is equal to that of SRA(22,12), which is the Tx array for each pair.
Consequently, the sunflower array was designed to be much sparser than the dense rectangular array
of 553 elements in the previous subsection. As in the SRA case, all SSA pairs in Figure 11b–f used the
same TSA, TSA(2,1), and different RSAs. Among them, only the SSA pairs in Figure 11d–f followed
the design rule presented in Section 3.
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The one-way CW responses of the sunflower array and the SSAs in Figure 11 are shown in Figure 12.
Since the most likely interelement distance d̂ of the sunflower array was calculated approximately
as 0.81λ, according to Equation (20), the radius of its first grating lobe ring was expected to be
λ/(1·0.81λ) = 1.23. However, because this value exceeds unity, there will be no grating lobes in the field
where u2

x0 + u2
y0 < 1. This agrees with the simulated result shown in Figure 12a. For the SSAs, the radii

of the grating lobe and the nulling rings were calculated by Equations (20) and (21), respectively, and
their calculated values are listed in Table 2. The expected radii are represented by circular dots (white
for grating lobe rings and green for nulling rings) in Figure 12.
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Figure 12. One-way, CW responses of (a) the sunflower array and (b–f) the SSAs. The radii of the
grating lobe rings are indicated by white dots, and the radii of the nulling rings are indicated by green
dots. A green dot in (d) is overlapped with the second white dot in the same plot.

Table 2. Expected radii of the grating lobe rings and the nulling rings for the SSAs.

SSA Radii of the Grating Lobe Rings (rgl) Radii of the Nulling Rings (rnull)

SSA(2,1) 0.62 1.23 (>1)
SSA(4,1) 0.31, 0.62, 0.93 1.23 (>1)
SSA(4,2) 0.31, 0.62, 0.93 0.62, 1.23 (>1)
SSA(3,1) 0.41, 0.82 1.23 (>1)
SSA(3,2) 0.41, 0.82 0.62, 1.23 (>1)

For SSA(2,1) and SSA(3,1) (Figure 12b,e), the white dots represent the individual grating lobe rings
well. For SSA(3,2) (Figure 12f), a single nulling ring is assumed to be present at the expected radial
distance marked with a green dot. As the nulling ring served as a weighting function for the entire
field, the first grating lobe ring of SSA(3,1) became much thinner and smaller in the beam pattern of
SSA(3,2). Furthermore, the second grating lobe ring of SSA(3,2) and the grating lobes near the nulling
ring is hardly observed in Figure 12f because of the nulling ring.

On the other hand, the grating lobe rings of SSA(4,1) in Figure 12c do not appear as distinctively
as those of SSA(2,1) and SSA(3,1). Nonetheless, one can see that high amplitude grating lobes were
present around the rings with the radii marked by the white dots in Figure 12c. As with the SSA(3,2),
it is shown in Figure 12d that the second grating lobe ring of SSA(4,1) in Figure 12c was drastically
suppressed in Figure 12d. The first and third grating lobe rings were also much suppressed. This is
again due to the presence of the nulling ring marked with a green dot, which in this case, overlapped
the second white dot in Figure 12d.
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The two-way CW PSFs of the SSA pairs are shown in Figure 13. Because TSA(2,1)/RSA(4,2),
TSA(2,1)/RSA(3,1), and TSA(2,1)/RSA(3,2) followed the design rule to avoid strong CGLs, their two-way
PSFs had very low grating lobes, as shown in Figure 13d–f. As expected, the TSA(2,1)/RSA(3,2) pair
had the smallest grating lobes among them. However, as shown in Figure 13b,c, TSA(2,1)/RSA(2,1) and
TSA(2,1)/RSA(4,1) produced high grating lobes because of the presence of high CGLs around r = 0.62.
Note that even though the TSA(2,1)/RSA(4,2) pair used the same number of elements as that of the
TSA(2,1)/RSA(2,1) pair, its PSF had much lower grating lobes.
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Figure 13. Two-way, CW PSFs of (a) the sunflower array pair and (b–f) the SSA pairs.

As in the cases of SRA pairs, the PW PSFs of the SSA pairs in Figure 14 agree well with the CW
simulation results in Figure 13 except that they had lower but broader grating lobes, and the steered
responses of the SSA pairs in Figure 15 also exhibited grating lobes near ux0 = −1. Note, however, that
the grating lobe level near ux0 = −1 was smaller than that of the SRA pairs in Figure 9. This is because
the elements of the spiral arrays were distributed irregularly, thereby spreading the grating lobe energy
along all directions, whereas the elements of the rectangular arrays were placed regularly in specific
directions (x and y).
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Figure 15. PW PSFs of (a) the sunflower array pair and (b–f) the SSA pairs for a steered focal point at
(uxf,uyf) = (0.5,0) (i.e., θf = π/6, and ϕf = 0).

Figure 16 shows the 1D peak profiles of the non-steered and the steered PSFs of the spiral
array pairs, where the horizontal axis represents the radius, r2 = (ux0 − uxf)

2 + (ux0 − uxf)
2, of a circle

centered at the focal point (uxf, uyf). For each r, the maximum value on the circle is plotted as the
grating lobes of the spiral arrays had irregular circular patterns. For a quantitative comparison, the
performance measures of the SSA pairs are listed in Table 3. The array pair TSA(2,1)/RSA(4,1) was
excluded for comparison.Sensors 2020, 20, x FOR PEER REVIEW 16 of 20 
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The steered focal point was set to (uxf,uyf) = (0.5,0) (i.e., θf = π/6, and ϕf = 0).
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Table 3. Properties of near-field, pulsed-wave responses of spiral array pairs.

Figure Tx Rx BW [deg] MSR
[dB]

PGL
[dB]Design # of Elements Design # of Elements BW6 BW50

Figure 11e TSA(2,1) 140 RSA(3,1) 93 3.78 20.91 17.6 −40.6
Figure 11d TSA(2,1) 140 RSA(4,2) 140 3.84 21.44 18.1 −42.4
Figure 11b TSA(2,1) 140 RSA(2,1) 140 3.78 21.09 14.5 −37.3
Figure 11f TSA(2,1) 140 RSA(3,2) 187 3.78 20.68 22.4 −43.9
Figure 11a Sunflower 280 Sunflower 280 3.78 20.22 29.1 −47.2

The sunflower array pair (Figure 11a) had the best performance with the highest MSR of 29.1 dB,
lowest PGL of –47.2 dB, and the narrowest BW50 of 20.22◦. All the SSA pairs that followed the design
rule had PGL values below −40 dB, whereas TSA(2,1)/RSA(2,1) had a PGL of −37.3 dB even though it
used the same number of elements as TSA(2,1)/RSA(4,2). Among the SSA pairs that follow the rule, the
TSA(2,1)/RSA(3,2) pair, which used the largest number of active elements, had the best MSR (22.4 dB),
PGL (−43.9 dB), and BW50 (20.68◦). Just like the SRA pairs, Table 3 shows that the SSA pairs that
followed the design rule had better MSR, PGL, and BW50 values when more active elements were used.

5. Discussion

In this paper, it was demonstrated that the proposed method to avoid common grating lobes in
the Tx/Rx sparse array pairs can be effectively used in designing two types of sparse 2D array pairs:
SRA and SSA pairs. As the rectangular arrays and the spiral arrays are the most widely used 2D
arrays in both real imaging and experimental studies, the two sparse array schemes can be readily
implemented on either commercially available arrays or the custom-made ones, which, in fact, was the
primary purpose of this work. Hence, comparative evaluation of the beamforming characteristics of
SRA and SSA pairs was not necessarily required. When newly fabricating a 2D array, however, one
should decide which type of sparse arrays better suits its purpose.

The performances of the SRA and SSA pairs can be compared with the results summarized in
Tables 1 and 3. However, the number of elements of the two schemes were different. This is because
the number of elements of each dense array (553 for rectangular array and 280 for sunflower array) was
determined so that the transmit sparse arrays, TRA(22,1) and TSA(2,1), should have the same number
of active elements (140 elements). Consequently, the Rx arrays for the rectangular and the spiral array
pairs had a different number of elements, as listed in Tables 1 and 3. Under this condition, one can
only expect to compare the relative characteristics of the two array types. Moreover, the element size
(area) of the spiral arrays was chosen to be the same as that of the rectangular arrays. Because the
sunflower array had fewer elements than the dense rectangular array, larger elements could be used
for the spiral arrays.

Here, for a fairer comparison, the element size of each array type was maximized independently, but
under the same criterion of using the same kerf of 0.05λ between the adjacent elements. Consequently,
the element diameter of the spiral arrays in Table 3 was increased to 0.67λ from 0.56λ, because the
minimum interelement distance of the sunflower array was 0.77λ. With the enlarged elements for the
spiral arrays, the performance of the array pairs improved by 1.0–2.3 dB in MSR, 0.4–3.3 dB in PGL,
and 5.8 dB in main lobe peak intensity. Little effect on the main lobe BW was observed. The MSR and
PGL values for the rectangular array pairs and the modified spiral array pairs are plotted in Figure 17,
where each group of the sparse rectangular (blue) and the spiral (red) array pairs with the same P and
L is represented by a unique shape.

The dense rectangular array (blue star) had the best performance in both the MSR (36.6 dB) and
PGL (−50.8 dB) values. Although the sunflower array (red star) used nearly half the elements of the
dense rectangular array (blue star), its PGL was −50.5 dB. The two array pairs perform almost the same
in terms of PGL. But, the MSR (31.4 dB) of the sunflower array was smaller by about 5.2 dB than that of
the dense rectangular array.
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For the sparse arrays pairs, the SSA pairs had lower (better) PGL values than the SRA pairs except
in one group with PR = 4 and LR = 2, while all the SRA pairs had higher (better) MSR values. These
results can be explained by the fact that the periodic arrangement of elements in the rectangular arrays
concentrates the grating lobe energy in certain directions, as was observed in Figures 7–9, whereas the
irregular spiral arrays spread the grating lobe energy, as shown in Figures 13–15. Finally, it can be seen
from Tables 1 and 3 that the SSA pairs had narrower main lobe BWs (both BW6 and BW50) than the
corresponding SRA pairs. As an exception mentioned above, the PGL of TSA(2,1)/RSA(4,2) (red square)
was measured to be −43.4 dB, which was slightly higher than that (−43.6 dB) of TRA(22,12)/RRA(42,22)
(blue square). We think this is because SSA(4,1) with only 70 elements was too sparse to produce the
theoretically expected grating lobe and nulling rings. This effect on the simulated PSFs was investigated
with Figure 12c,d.Sensors 2020, 20, x FOR PEER REVIEW 18 of 20 
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Figure 17. Main lobe-to-side lobe energy ratio (MSR) vs. peak grating lobe level (PGL) for the
rectangular array pairs (blue) and the spiral array pairs (red). The number of elements of the receive
array for each array pair is also marked. The same number of elements (140) were used in the transmit
arrays for the sparse array pairs.

The proposed design rule is very simple, effective, and readily applicable to commercially available
or custom-made rectangular and sunflower arrays. As well as the dense rectangular array that has a
perfectly uniform distribution of elements, the sunflower array is known to have the most uniform
distribution of elements among the irregular arrays. The sparse array designs of both the SRAs and the
SSAs conserve the uniformity of the corresponding dense arrays. Such arrays with uniform element
distributions offer significant advantages: (1) The element size can be maximized to obtain the highest
SNR; (2) uniform beam patterns can be obtained along any scanning direction, and (3) uniform 2D
arrays are relatively easy to fabricate.

So far, spiral arrays have been studied mainly to reduce the huge number of elements of rectangular
arrays [14,15]. However, to the best of the authors’ knowledge, no attempt on designing Tx/Rx sparse
spiral array pairs on a sunflower array has been made. In this paper, we have shown that the number of
active elements of the spiral arrays can be further reduced by the proposed design rule when necessary.
The SSA pairs, which have advantages of lower PGL and narrower BW compared to the SRA pairs,
may find increasing application as a cost-effective method of manufacturing spiral arrays has recently
been reported [23].
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Further improvement in the SRA pairs can be achieved by optimizing the positions of Lx·Ly active
elements in the subarray block of Px·Py elements rather than fixing the positions, as shown in Figure 2.
We think there also exist other approaches for designing more efficient SSA pairs, for example, using
various optimization techniques. The density-tapered spiral arrays [15] can also be adapted to the
proposed SSAs to improve the imaging quality. We also plan to curve the proposed sparse array
designs as the curving improves beamforming performances [24].

6. Conclusions

Sparse 2D array designs, SRAs, and SSAs, based on a rectangular and a sunflower gird, respectively,
were presented. Design rules for the optimal Tx/Rx pair of each of the SRAs and the SSAs were also
developed from the structured models of the arrays. The purpose of the design rule was to pair
the Tx/Rx sparse arrays without any CGLs in their beam patterns. The rules were developed by the
theoretical models for the beam patterns of the arrays. The verification of the design rules for both
schemes was done by assessing the simulated field responses. The results showed that the sparse array
pairs following the design rule have PSFs of much-suppressed grating lobes than the ones that did not
follow the rule while maintaining similar BWs of that of the dense array pair.

The implementation of the proposed sparse array pairs is not difficult due to the commercially
available arrays and the advanced manufacturing technology for 2D arrays. Thus, the experimental
evaluation of the sparse array pairs is ready to be done. Although comparing the beamforming
performance of the two array schemes was not the main purpose for this work, we have also discussed
the pros and cons of the two schemes for the future development of a new 3D imaging probe.
The comparison study showed that the SRA pairs had higher MSR than the SSA pairs, and the SSA
pairs had advantages on low PGLs and narrow BWs.

Previous design methods for sparse 2D arrays either lacked array uniformity or generalization
for the design rule, and they were mostly based on rectangular arrays. A few studies emphasized
the good beamforming performance of the spiral arrays, but various ways of designing Tx/Rx sparse
array pairs were yet to be studied intensively. This paper presents a generalized design rule for the
SRA array pairs that can be easily implemented on the existing 2D array probes and paves a way of
developing further improved sparse spiral array designs.
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