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Biosurfactants are a series of organic compounds that are composed of two parts, hydrophobic and hydrophilic, and since they have
properties such as less toxicity and biodegradation, they are widely used in the food industry. Important applications include
healthy products, oil recycling, and biological refining. In this research, to calculate the curves of rhamnolipid adsorption
compared to Amberlite XAD-2, the least-squares vector machine algorithm has been used. Then, the obtained model is formed
by 204 adsorption data points. Various graphical and statistical approaches are applied to ensure the correctness of the model
output. The findings of this study are compared with studies that have used artificial neural network (ANN) and data group
management method (GMDH) models. The model used in this study has a lower percentage of absolute mean deviation than
ANN and GMDH models, which is estimated to be 1.71%.The least-squares support vector machine (LSSVM) is very valuable
for investigating the breakthrough curve of rhamnolipid, and it can also be used to help chemists working on biosurfactants.
Moreover, our graphical interface program can assist everyone to determine easily the curves of rhamnolipid adsorption on
Amberlite XAD-2.

1. Introduction

As mentioned above, biosurfactants are organic compounds
that are produced by microorganisms and consist of two
parts: hydrophilic and hydrophobic. They are often produced
by bacteria on living surfaces. One of the reasons for
attracting many industrial applications to biosurfactants
is due to their amphiphilic properties. Among the usable
and outstanding capabilities of biosurfactants used in various
industries such as mines, fertilizers, petrochemicals, and
petroleum, we can mention the environmental degradability
and reduction of surface tension between interstitial and low

toxicity. The reduction of the interfacial tension is due to the
increase in the solubility of hydrophilic molecules when
using biosurfactants. Capabilities such as surface modifica-
tion and interfacial tension have made surfactants attractive
to the industry. Rhamnolipids (RLs) are the most studied
type of biosurfactants. According to the literature, rhamnoli-
pids can reduce water surface tension by about 60% [1–3] for
different concentrations of RL 50-65mg/L. The production
of RLs usually involves a final product from a dilute solution
contaminated with undesirable impurities. There are several
ways to increase the concentration and eliminate contami-
nants in which the adsorption process is widely studied.
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In this research, activated carbon is used for adsorbent in
the process. The breakthrough curve of a packed column is a
very significant attribute of this system. As a result, determin-
ing such curves will be useful for optimizing and understand-
ing the performance of the column. To model the adsorption
phenomena, the mass balance in liquid and solid phases is
evaluated. It may also include modeling the porous and
liquid film resistance and also axial dispersion. Finally, with
a suitable software package, a set of differential equations
can be solved.

Ill conditions and uncertainty in differential equations
make using conventional mathematical models not suitable.
Intelligent models have to be a powerful tool in solving pro-
cess modeling problems. To predict the optimized targets, in
various fields such as petroleum and gas fields, methods such
as SVM, ANN, group method data manipulation (GMDH),
fuzzy logic system, and adaptive fuzzy neural inference
system can be used. Interactions between AI neurons are
achieved by connecting different units. Artificial neurons’
interactions are achieved by connecting different units. Each
weighted output is related to the sum of the output from the
previous synaptic weight layer, and then it is used as an input
for a specific neuron. Backpropagation ANNs are extensively
applied, as they have shown to be a capable and powerful tool
[4]. The GMDH model is a type of backpropagation ANN
that was proposed by Ivakhnenko [5]. Darwin’s theory of
selection inspired this approach. The prominent feature of
this method is the internal process of the elements [6–8].

To process elements in a conventional ANN, log sigmoid,
hard limit, linear, and tangent sigmoid transfer functions
are considered. On the other hand, the GMDH method
constructs simple polynomials, roughly predicting the tar-
geted systems. In the next step, the complexity of the poly-
nomials is further developed so that satisfactory models are
achieved. [9, 10].

Due to the importance of predicting a trustworthy
estimation of breakthrough curves, this research is aimed at
predicting of breakthrough curves utilizing the LSSVM
method for rhamnolipid (Figure 1) adsorption over Amber-
lite XAD-2. Furthermore, results are compared with those
of ANN and GMDH models. The investigated model takes
into account 204 data points in its network for adsorption
over the Amberlite XAD-2. Various graphical and statistical
methods are considered to evaluate the accuracy of this
strategy.

2. Model Development

In the present research, the LSSVM strategy was applied to
calculate the curve to achieve rhamnolipid uptake relative
to the Amberlite XAD-2 model resulting in a more simplified
way [11, 12]. SVM can be defined as a function as below:

f xð Þ =wTφ xð Þ + b: ð1Þ

The parameters of the above expression are as follows:
wT denotes the transpose vector corresponding tothe

output layer.
b and φðxÞ represent the bias and the kernel function,

respectively.
The input ðxÞ consists ofN × n dimension in which n and

N are input parameters and some data points, respectively.
The following cost function is optimized to evaluate wT

and b parameters [13]:

cost function =
1
2
wT + C〠

N

k=1
ξk − ξ∗k
� �

, ð2Þ

which is constrained by

yk −wTφ xkð Þ − b ≤ ε + ξk, k = 1, 2,⋯, N

wTφ xkð Þ + b − yk ≤ ε + ξ∗k , k = 1, 2,⋯, N

ξk, ξ
∗
k ≥ 0

8>><
>>: ð3Þ

yk is the k
th output while xk is the k

th input. ε stands for the
fixed precision of the estimation. Also, slack variables
(ξk, ξ

∗
k ) are dealing to determine the acceptable error margin.

The below lagrangian is applied to minimize the cost
function:
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Figure 1: Chemical structure of the first identified rhamnolipid,
symbolized as Rha-Rha-C10-C10.
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L a, a∗ð Þ = −
1
2
〠
N

k,l=1
ak − a∗kð Þ al − a∗lð ÞK xk, xlð Þ

− ε〠
N

k=1
ak − a∗kð Þ + 〠

N

k=1
yk ak − a∗kð Þ,

〠
N

k=1
ak − a∗kð Þ = 0, ak, a∗k ∈ 0, c½ �,

K xk, xlð Þ = φ xkð ÞTφ xlð Þ, k = 1, 2,⋯,N , ð4Þ

where ak and a∗k stand for Lagrangian multipliers. In the last
step, the SVM is given below:

f xð Þ = 〠
N

k,l=1
ak − a∗kð ÞK x, xkð Þ + b: ð5Þ

Quadratic programming must be solved to determine
the SVM parameters. The LSSVM eliminates deficiencies
in the solving process of a quadratic programming problem
[11, 12]. LSSVM uses the below equation in the process of
model development:

cost function = 1
2
wTw + 1

2
γ〠

N

k=1
e2k, ð6Þ

where
γ denotes tuning parameter.
ek is the error variable.
The following constraints are applied to the cost function:

yk =wTφ xkð Þ + b + ek: ð7Þ

The Lagrangian of the LSSVM is expressed as

l w, b, e, að Þ = 1
2
wTw +

1
2
γ〠

N

k=1
e2k − 〠

N

k=1
ak wTφ xkð Þ + b + ek − yk
� �

:

ð8Þ

In the above phrase, the symbol ak represents the
Lagrangian multipliers. To optimize Eq. (8), its derivatives
are set to zero, and as a result, the following equations
are achieved:

∂L
∂w

= 0⟹w = 〠
N

k=1
akφ xkð Þ,

∂L
∂b

= 0⟹ 〠
N

k=1
ak = 0,

∂L
∂ek

= 0⟹ ak = γek, k = 1, 2,⋯,N ,

∂L
∂ak

= 0⟹wTφ xkð Þ + b + ek − yk = 0, k = 1, 2,⋯,N:

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð9Þ

By solving the aforementioned equations, LSSVM
parameters are obtained. LSSVM employs the kernel func-
tion in the same way that SVM strategy does. The most
common applied kernel function is the radial basis function
(RBF) which is given by

K x, xkð Þ = exp − xk − xk k2/σ2� �
, ð10Þ

where σ2 stands for the tuning parameter corresponding to
the kernel function. As a result, two tuning parameters (σ2

and γ) are adjustable. The last-mentioned parameters can
be determined by minimizing the error between the pre-
dicted values and experimental ones through the applica-
tion of mean square error (MSE):

MSE =
1
N
〠
N

k=1
ypred:k − yexp:k

� �2
, ð11Þ

where y is the output value, and exp. and pred. subscripts
denote experimental and predicted values, respectively.
Also, in this paper, we used the particle swarm optimiza-
tion algorithm for the determination of these tuning
parameters. A typical diagram of the proposed LSSVM
approach has been shown in Figure 2.

The adjusted parameters are γ and σ2 in the LSSVMmodel
and based on the identified cost function (Eq. (11)), and these
parameters are optimally determined by optimization tech-
nique. The values of γ and σ2 in this study are 984523.52
and 0.246, respectively, through the PSO algorithm with
swarm size and iteration of 80 and 1000, respectively.

Different statistical error analyses such as mean absolute
error (MAE), coefficient of determination (R2), and root
means square error (RMSE) are implicated to analyze the
model’s performance.

R2 = 1 −
∑N

k=1 yexp:k − ypred:k

� �2
∑N

k=1 yexp:k − yave:
� �2 ,

MAE =
∑N

k=1 ypred:k − yexp:k

��� ���
N

,

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
〠
N

k=1
ypred:k − yexp:k

� �2vuut :

ð12Þ

3. Identification of Outlying Experimental Data

The outlier is a set of data having a different behavior in com-
parison with the bulk of data. Finding outliers would improve
the accuracy and reliability of a proposed model remarkably.
To help to trace outliers, there are two procedures numerical
and graphical procedures. One of the most powerful methods
is the Leverage method in which the deviation of estimated
values from the experimental ones is calculated. It also
includes dealing with Hat matrix being made of experimental
and predicted data. The equation below is used for calculat-
ing the Hat indices [14–16]:
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H = X XtX
� �−1Xt : ð13Þ

X ðn × xÞ is a matrix including n data and k parameters of the
model, and t denotes the transpose matrix. The diagonal

values of the matrix (H) are called H values. H values will
aid in the detection process of the possible outliers, utilizing
a Williams plot in which the relationship between standard-
ized crossvalidated residuals (R) and Hat indices is shown.
The warning leverage is given as follows:
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Figure 2: Schematic diagram of PSO-LSSVM strategy.
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Figure 3: Plot of PSO-LSSVM model’s prediction vs. experimental data at training and testing stages.
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H∗ = 3
f + 1ð Þ
p

: ð14Þ

p and f stand for numbers of data points and model param-
eters, respectively.

A reliable model would contain the majority of the pre-
dicted values by satisfying the following constraint:

R ∈ −3, 3½ �, 0 <H <H∗: ð15Þ

Regardless of the value of H, if the value of R for a given
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Figure 5: Cross plot of predictions of different models for total data points: (a) ANN, (b) GMDH, and (c) LSSVM.
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data is outside the above range, it is considered a possible
candidate for being an outlier. The data in this paper are
provided in Table S1, and this data set is taken from the
previous paper [17]. As discussed, input parameters are
initial rhamnolipid concentration, fixed bed height, flow
velocity, and run time, while the ratio of final to initial
concentration of rhamnolipid (C/C_0) would be the output
parameters ones. The 204 data points are divided into two
categories: training and testing.

To create the LSSVM model, 75% of data points are con-
sidered as learning points, and the rest of them were used to
examine the efficiency of the opposed model. Furthermore,
data are normalized within the range of [-1,1] applying the
equation below:

DN = 2
D −Dmin

Dmax −Dmin
− 1: ð16Þ

Here, D and DN represent actual and normalized data

points, respectively. Also, Dmin and Dmax stand for minimum
and maximum values of data points, respectively.

3.1. Evaluation of the model’s Accuracy. The predictive
model’s accuracy is investigated employing different graphi-
cal and statistical methods. Figure 3 represents experimental
data points and model estimation by the proposed LSSVM
method in the training and testing stages.

Figure 4 shows predicted values against experimental
ones. The more it would be close to line Y = X, the more
appropriate the prediction of the proposed model.
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Figure 6: Absolute error for different models’ outcomes: (a) ANN, (b) GMDH, and (c) LSSVM.

Table 1: Statistical parameters calculated for three models.

Analysis
LSSVM ANN GMDH

Train Test Total Total Total

MSE 0.0001 0.0002 0.0001 0.0005 0.0047

AAD 0.7293 0.8043 0.7481 1.9111 6.2395

R2 0.9990 0.9990 0.9990 0.9946 0.9526

STD 0.0112 0.0122 0.0115 0.0271 0.0808
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Figure 7: Predicted C/C0 as a function of time by the three models for (a) H0 = 7, U = 160, and C0 = 24, (b)H0 = 11, U = 160, and C0 = 8, (c)
H0 = 7, U = 240, and C0 = 24, and (d) H0 = 11, U = 80, and C0 = 8.

Results of the current study are compared to the LSSVM,
ANN, and GMDH models [17]. To estimate the curvature of
rhamnolipids on activated carbon, the structures of the pro-
posed GMDH model are given below:

(i) First layer:

Node 1 : z1 = 0:183x21 + 0:149x22 + 0:165x1x2
+−0:242x1 − 0:048x2 + 0:678

Node 2 : z2 = 0:141x22 − 1:6x24 − 0:21x2x4 − 0:028x2
þ 2:76x4 − 0:167

Node 3 : z3 = 0:182x23 − 1:606x24 − 0:124x3x4
−0:075x3 + 2:778x4 − 0:167

Node 4 : z4 = −0:002x21 − 1:64x24 + 0:172x1x4
−0:169x12:684x4 − 0:075

ð17Þ

(ii) Second layer:

Node 1 : w1 = −0:253z21 + 0:248z22 − 0:319z1z2
−0:05z1 + 0:948z2 − 0:044

Node 2 : w2 = 4:923z21 + 0:234z23 − 0:057z1z3
−5:738z1 + 0:794z3 + 1:676

Node 3 : w3 = 2:915z21 + 0:237z24 − 0:535z1z4
−2:733z1 + 1:097z4 + 0:577

ð18Þ

(iii) Third layer:

Node 1 :u1 = −0:802w2
1 − 1:248w2

2 + 1:972w1w2

+ 0:419w1 + 0:666w2 − 0:011

Node 2 :u2 = 1:433w2
2 + 1:571w2

3 − 3:077w2w3

+ 0:603w2 + 0:48w3 − 0:014
ð19Þ
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(iv) Genome expression:

Node 1 :
C
C0

= −0:802u21 − 1:24u22 − 1:972u1u2

þ 0:419u1 + 0:666u2 − 0:011
ð20Þ

The ANN model based on these four input variables as
mentioned as follows:

(1) input layer

(2) hidden layer including six neurons

(3) output layer

Figure 5 represents the cross plot of the aforementioned
strategies. As explained, data points of the LSSVM model
are closer to the line Y = X, than ANN and GMDH models.
Also, the calculation of the determination coefficient shows
that the proposed LSSVM approach is superior to ANN
and GMDH in terms of accuracy.

Compared to ANN and GMDH models, the less relative
error is observed in the proposed LSSVM model. Figure 6
indicates more reliability of the suggested LSSVM model.

Estimation accuracy is also investigated by applying the
following statistical methods:

R2 = 1 −
∑N

i=1 CPred ið Þ − CExp ið Þ� �2
∑N

i=1 CPred ið Þ − �CExp ið Þ� �2 ,

%AAD =
100
N

〠
N

i=1
CPred ið Þ − CExp ið Þ,

MSE =
∑N

i=1 CPred ið Þ − CExp ið Þ� �2
N

 !
,

STD = 〠
n

i=1

CPred ið Þ − �CExp ið Þ� �2
N

 !0:5

: ð21Þ

Table 1 presents statistical values of the presented model
compared with ANN and GMDH approaches showing the
higher value of R2 and lower values of STD, AAD, and RMSE,
and as a result, the LSSVM model possesses higher accuracy
and reliability than others. The dependency of the (C/C0) as
an output parameter on input parameters is illustrated in
Figure 7.

Four different conditions of H0 = 7, U = 160, and C0 = 24
, and H0 = 11, U = 160, and C0 = 8 and H0 = 7, U = 240, and
C0 = 24 and H0 = 11, U = 80, and C0 = 8 were investigated to
measure the prediction ability of LSSVM, ANN, and GMDH
models for indicating that the LSSVM model acquired better
estimation. As this figure shows, as time goes by, the ratio of
C/C0 increases.

In the last part of this research, the leverage approach is
applied to find outliers, employing the Hat matrix, Williams
plot, and residuals. As discussed, Eq. (13) is used to calculate
H values. Figure 8 also illustrates the Williams plot. All of the
H is in the range [-3, +3], and R is in the range [0, 0.08], and
then the accuracy of the proposed model is desirable and
acceptable; so, the accuracy of the proposed model is satisfac-
tory. There are only two of the data points that are outside of
the applicable domain which is shown in the figure by a blue
circle. As R values approach zero and H value reduces, the
reliability of data points is increased [18–23].
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4. Conclusion

Then LSSVM approach was employed to estimate break-
through curves of rhamnolipid adsorption over Amberlite
XAD-2 as a function of fixed bed height, flow velocity, run-
time, and initial rhamnolipid concentration. The particle
swarm optimization method was employed for the training
process enhancing the accuracy of the proposed model. Var-
ious statistical and graphical methods were applied to evalu-
ate the model’s reliability showing that the AAD% value for
adsorption over activated carbon was 0.75%. For ANN and
GMDH models that were developed by Padilha et al.,
AAD% of activated carbon is reported to be 1.9% and 6.2%.
Based on the above evidence, we can find that the proposed
LSSVM model is more reliable for the process of predicting
the breakthrough curves.

Appendix

Instructions of the Developed Program

A graphical user interface (GUI) version of the model is
developed (Figure 9). The code is compiled to an Exe file
which is given in the supplementary content. Matlab soft-
ware must be installed before running the code. It starts by
giving four parameters as input; then, to show the output
result, it is enough to click on the calculate button.

Data Availability

The datasets generated during and/or analyzed during the
current study are available from the corresponding author
on reasonable request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The research presented in this paper was supported by the
Funds of High-level Hospital Construction Research Project
of Maoming People’s Hospital.

Supplementary Materials

Table S1: experimental data points used in this study.
(Supplementary materials)

References

[1] A. Abalos, A. Pinazo, M. Infante, M. Casals, F. García, and
A. Manresa, “Physicochemical and antimicrobial properties
of new rhamnolipids produced byPseudomonasaerugino-
saAT10 from soybean oil refinery wastes,” Langmuir, vol. 17,
no. 5, pp. 1367–1371, 2001.

[2] A. A. Bodour and R. M. Miller-Maier, “Application of a mod-
ified drop-collapse technique for surfactant quantitation and
screening of biosurfactant-producing microorganisms,” Jour-
nal of Microbiological Methods, vol. 32, no. 3, pp. 273–280,
1998.

[3] J.-Y. Wu, K.-L. Yeh, W.-B. Lu, C.-L. Lin, and J.-S. Chang,
“Rhamnolipid production with indigenous Pseudomonas aer-
uginosa EM1 isolated from oil-contaminated site,” Bioresource
Technology, vol. 99, no. 5, pp. 1157–1164, 2008.

[4] R. Hecht-Nielsen, “Theory of the backpropagation neural net-
work,” Neural Networks, vol. 1, pp. 445–448, 1988.

Figure 9: GUI version of the developed LSSVM model.

9BioMed Research International

https://downloads.hindawi.com/journals/bmri/2021/5530093.f1.docx


[5] A. G. Ivakhnenko, “Polynomial theory of complex systems,”
IEEE Transactions on Systems, Man, and Cybernetics, vol. -
SMC-1, no. 4, pp. 364–378, 1971.

[6] S. Atashrouz, M. Mozaffarian, and G. Pazuki, “Modeling the
thermal conductivity of ionic liquids and ionanofluids based
on a group method of data handling and modified Maxwell
model,” Industrial & Engineering Chemistry Research, vol. 54,
no. 34, pp. 8600–8610, 2015.

[7] S. Atashrouz, H. Mirshekar, A. Hemmati-Sarapardeh, M. K.
Moraveji, and B. Nasernejad, “Implementation of soft comput-
ing approaches for prediction of physicochemical properties of
ionic liquid mixtures,” Korean Journal of Chemical Engineer-
ing, vol. 34, no. 2, pp. 425–439, 2017.

[8] A. Dargahi-Zarandi, A. Hemmati-Sarapardeh, S. Hajirezaie,
B. Dabir, and S. Atashrouz, “Modeling gas/vapor viscosity of
hydrocarbon fluids using a hybrid GMDH-type neural net-
work system,” Journal of Molecular Liquids, vol. 236,
pp. 162–171, 2017.

[9] A. Hemmati-Sarapardeh, M. H. Ghazanfari, S. Ayatollahi, and
M. Masihi, “Accurate determination of the CO2-crude oil
minimum miscibility pressure of pure and impure CO2st-
reams: a robust modelling approach,” The Canadian Journal
of Chemical Engineering, vol. 94, no. 2, pp. 253–261, 2016.

[10] E. Mohagheghian, H. Zafarian-Rigaki, Y. Motamedi-Ghahfar-
rokhi, and A. Hemmati-Sarapardeh, “Using an artificial neural
network to predict carbon dioxide compressibility factor at
high pressure and temperature,” Korean Journal of Chemical
Engineering, vol. 32, no. 10, pp. 2087–2096, 2015.

[11] J. A. K. Suykens and J. Vandewalle, “Least squares support vec-
tor machine classifiers,” Neural Processing Letters, vol. 9, no. 3,
pp. 293–300, 1999.

[12] K. Pelckmans, J. A. K. Suykens, T. Van Gestel et al., LS-
SVMlab: a matlab/c toolbox for least squares support vector
machines, Tutorial, vol. 142, KULeuven-ESAT, Leuven, Bel-
gium, 2002.

[13] J. A. K. Suykens, T. Van Gestel, and J. De Brabanter, Least
Squares Support Vector Machines, World Scientific, 2002.

[14] M. E. Johnson, “Wiley series in probability and mathematical
statistics,” in Multivariate Statistical Simulation, pp. 231–235,
John Wiley & Sons, Inc., 1969.

[15] C. R. Goodall, “13 computation using the QR decomposition,”
Handbook of Statistics, vol. 9, pp. 467–508, 1993.

[16] F. Gharagheizi, A. Eslamimanesh, M. Sattari, B. Tirandazi,
A. H. Mohammadi, and D. Richon, “Evaluation of thermal
conductivity of gases at atmospheric pressure through a corre-
sponding states method,” Industrial & Engineering Chemistry
Research, vol. 51, no. 9, pp. 3844–3849, 2012.

[17] C. E. . A. Padilha, C. A. . A. Padilha, D. F. . S. Souza, J. A. de
Oliveira, G. R. de Macedo, and E. S. dos Santos, “Prediction
of rhamnolipid breakthrough curves on activated carbon and
Amberlite XAD-2 using artificial neural network and group
method data handling models,” Journal of Molecular Liquids,
vol. 206, pp. 293–299, 2015.

[18] A. Hemmati-Sarapardeh, R. Alipour-Yeganeh-Marand,
A. Naseri et al., “Asphaltene precipitation due to natural deple-
tion of reservoir: determination using a SARA fraction based
intelligent model,” Fluid Phase Equilibria, vol. 354, pp. 177–
184, 2013.

[19] A. Baghban, M. A. Ahmadi, B. Pouladi, and B. Amanna,
“Phase equilibrium modeling of semi-clathrate hydrates of
seven commonly gases in the presence of TBAB ionic liquid

promoter based on a low parameter connectionist technique,”
The Journal of Supercritical Fluids, vol. 101, pp. 184–192, 2015.

[20] A. Baghban, M. A. Ahmadi, and B. Hashemi Shahraki, “Pre-
diction carbon dioxide solubility in presence of various ionic
liquids using computational intelligence approaches,” The
Journal of Supercritical Fluids, vol. 98, pp. 50–64, 2015.

[21] A. Baghban, A. Bahadori, A. H. Mohammadi, and
A. Behbahaninia, “Prediction of CO 2 loading capacities of
aqueous solutions of absorbents using different computational
schemes,” International Journal of Greenhouse Gas Control,
vol. 57, pp. 143–161, 2017.

[22] A. Baghban, M. Bahadori, J. Rozyn et al., “Estimation of air
dew point temperature using computational intelligence
schemes,” Applied Thermal Engineering, vol. 93, pp. 1043–
1052, 2016.

[23] A. Baghban, A. H. Mohammadi, and M. S. Taleghani, “Rigor-
ous modeling of CO2 equilibrium absorption in ionic liquids,”
International Journal of Greenhouse Gas Control, vol. 58,
pp. 19–41, 2017.

10 BioMed Research International


	On the Evaluation of Rhamnolipid Biosurfactant Adsorption Performance on Amberlite XAD-2 Using Machine Learning Techniques
	1. Introduction
	2. Model Development
	3. Identification of Outlying Experimental Data
	3.1. Evaluation of the model’s Accuracy

	4. Conclusion
	Appendix
	Instructions of the Developed Program
	Data Availability
	Conflicts of Interest
	Acknowledgments
	Supplementary Materials

