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This paper proposed to take advantages of resonant ultrasound spectroscopy (RUS) tomeasure themechanical properties of human
dentin specimen. The resonant spectroscopy of the dentin specimen was obtained between the frequency bands 155 and 575 kHz,
and resonant frequencies were extracted by linear predictive filter and then by Levenberg-Marquardt method. By inverse problem
approach, 13 experimental resonant frequencies progressively matched to the first 30 orders of theoretical resonant frequencies
calculated by Lagrangian variational method. The full second-order elastic tensor of dentin specimen was adjusted. The whole
set of human dentin engineering moduli, including Young’s moduli (𝐸11 = 22.641GPa, 𝐸33 = 13.637GPa), shear moduli (𝐺12 =10.608GPa, 𝐺23 = 7.742Gpa), and Poisson’s ratios (]12 = 0.067, ]31 = 0.378), were finally calculated. This study demonstrates that
RUS can be successfully adapted to measure the mechanical properties of low quality factor biomaterials.

1. Introduction

As the most abundant mineralized tissue in human teeth,
dentin is composed of about 50% inorganic components
(basically calcium hydroxyapatite), 30% organic components
(mainly type I collagen fibers), and 20% water [1, 2]. Com-
paredwith enamel, dentin has less inorganic components and
thus is softer and more elastic. These characteristics ensure
dentin being indispensable to cushion chewing force and
protect internal pulp [3].

The researches about dentinmechanical properties began
from 19th century and never stopped since then [3]. To date,
the main methods of dentin mechanical properties measure-
ment mainly included tensile and compression test [2, 4],
acoustics method (pulse echo method, bulk wave method,
elasticity imaging, etc.) [4–8], and macroscopic indentation
and nanoindentation method [9–11]. These methods helped
not only promote the understanding of macromechanical
properties of dentin and micromechanical properties of
dentin tubule, but offer important significance for the design,
development, and evaluation of clinical dental restorative
materials as well. Nevertheless, these methods mentioned
above have their own limitations. For example, the macrotest

methods required a relative larger size of the specimen, which
was difficult to obtain from human dentin. Besides, although
the nanoindentation method could be used to measure the
elasticmoduli in different directions of small-sized specimen,
it mainly reflected that the mechanical properties deeply rely
on the scope of indentation, which led to the differences from
the macroscopic mechanical properties.

Since the 1990s, resonant ultrasound spectroscopy (RUS)
has been developed as an accurate and efficient method to
characterize the material properties [12–15]. The basic mech-
anism of RUS is to obtain a series of mechanical resonant
frequencies by generating free vibrations with ultrasound
excitations, then predict theoretical model frequencies with
Lagrangian variational method, and finally get the material
elastic properties by comparing the measured frequencies
with the predicted ones (inverse problem approach). RUS has
been regarded as the gold standard for measuring the elastic
moduli of high𝑄 (quality factor) solid materials. And it beats
other methods by the following three advantages:AThe full
elastic tensor could be assessed from a single sample in a sin-
gle nondestructive experiment over other elasticity measure-
ment methods;B RUS was well-adapted to small-sized sam-
ples (a few millimeters or less); C The measurement results
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were more repeatable and accurate [12, 14, 16]. In recent
years, Pascal’s group were dedicated to measuring the elastic
coefficients of cortical bone by RUS, which made it possible
for breaking the limitations whenmeasuring low-𝑄materials
by RUS [12, 13, 17].

In this paper, the method of human dentin elasticity
extraction based on RUS was studied. Firstly, the resonant
spectroscopy of dentin specimen was obtained by ultrasound
experiment. Then, the resonant frequencies were extracted
through signal processing of linear predictive filter and then
by nonlinear least squares method (Levenberg-Marquardt
method). Combined with the theoretical resonant frequen-
cies calculated by Lagrangian variational method, inverse
problem approach was introduced to obtain the complete
second-order elastic tensor of dentin samples. The engineer-
ing moduli, including Young’s moduli, shear moduli, and
Poisson’s ratios, were finally calculated.

2. Materials and Methods

2.1. Specimen Preparations. The tooth used in this paper was
complete, fresh, and caries-free. It was a left upper thirdmolar
from a 25-year-old male, which was collected from Beihang
Hospital. The donor provided consent to donate his tooth for
this study.The entire experimental procedures were approved
by the Institutional Animal Care and Use Committee of
Beihang University and performed under the guidelines of
the National Institutes of Health.

Before experimentation began, the specimen was stored
in saline solution at room temperature (22∘C). After cleaning
the entire tooth surface by removing calculus and granula-
tion, the dentin part was cut into a rectangular parallelepiped
by a low speed diamond cutting machine (SYJ-150, Shenyang
Kejing Auto-Instrument Co., Ltd., Shenyang, China) with
0.01mmpositioning accuracy and 25–300 rad/min rotational
speed and a whole sintered diamond saw blade (0.3mm
thick).The six faces of the specimenwere polished with P500,
P800, and P1000 abrasive paper progressively. With repeated
protractor measurements of each corner of the specimen and
polish, a standard rectangular parallelepiped human dentin
specimen was obtained (accuracy: 90∘ ± 0.5∘) [12]. The
mass of the specimen was 111mg, and the dimensions were5.696mm × 3.620mm × 2.704mm.

2.2. Theoretical Resonant Frequencies Calculation. The reso-
nant frequencies of solid material are related to many factors
such as density, dimensions, elastic tensor, and boundary
conditions. Moreover, the relationship among these factors is
nonlinear and no analytical solutions exist either. To figure
out the approximate numerical solutions, Lagrange varia-
tional method was imported here. As (1) shows, the resonant
angular frequencies 𝜔 could be calculated by searching for
the stationary points of the Lagrangian 𝐿 under free-surface
boundary condition [14, 18–21].𝐿 = ∫ (𝐸𝑘 − 𝐸𝑝) 𝑑𝑉, (1)

where 𝐸𝑘 and 𝐸𝑝 are kinetic energy and potential energy,
respectively, given by𝐸𝑘 = 12∑

𝑖

𝜌𝜔2𝑢𝑖2,
𝐸𝑝 = 12 ∑

𝑖,𝑗,𝑘,𝑙

𝑐𝑖𝑗𝑘𝑙 𝜕𝑢𝑖𝜕𝑥𝑗 𝜕𝑢𝑘𝜕𝑥𝑙 . (2)

In (2), 𝜌 and 𝑉 are the specimen’s density and volume,
respectively, 𝑢𝑖 is the component of the displacement field in
Cartesian coordinates, and 𝑐𝑖𝑗𝑘𝑙 are the stiffness constants of
solid material.

Kinney et al. found the elastic constants 𝐶𝑖𝑗 of hydrated
dentin exhibited as transverse isotropy, with five independent
constants: 𝐶11, 𝐶12, 𝐶13, 𝐶33, and 𝐶44, as (3) shows [1, 22]:

𝐶𝑖𝑗 = ((((((
(

𝐶11 𝐶12 𝐶13 0 0 0𝐶12 𝐶11 𝐶13 0 0 0𝐶13 𝐶13 𝐶33 0 0 00 0 0 𝐶44 0 00 0 0 0 𝐶44 00 0 0 0 0 12 (𝐶11 − 𝐶12)
))))))
)

. (3)

To find the stationary point of the Lagrangian 𝐿, (4) was
calculated: 𝛿𝐿 = 0. (4)

To solve the numerical solutions of (4), by expanding
the displacement field 𝑢𝑖 to a set of polynomial functions,
Rayleigh-Ritz method was introduced:𝑢𝑖 = ∑

𝜆

𝑎𝑖𝜆𝜙𝜆, (5)

where the choice of 𝜙𝜆 is rather arbitrary.
Historically, Visscher et al. found that there was none

simpler than powers of the Cartesian coordinates when
expanding the displacement field [18], so a set of power
exponent functions were chosen for simplifying computing:𝜙𝜆 = 𝑥𝑙𝑦𝑚𝑧𝑛, (6)

where 𝑙 + 𝑚 + 𝑛 ≤ 𝑁.
When 𝑁 → +∞, the solutions of (4) are the exact

solutions. Considering a good compromise between compu-
tational accuracy and computing time, 𝑁 was chosen as 12.

Based on (5) and (6), (4) was transferred to the general-
ized eigenvalue problem:𝜔2𝐸𝑎 = Γ𝑎, (7)

where 𝐸 and Γ are expressed as follows:𝐸𝜆𝑖𝜆𝑖 = 𝛿𝑖𝑖𝜌 ∫
𝑉

𝑥𝑙+𝑙𝑦𝑚+𝑚𝑧𝑛+𝑛𝑑𝑉,
Γ𝜆𝑖𝜆𝑖 = ∑

𝑗,𝑗

𝐶𝑖𝑗𝑖𝑗 ∫
𝑉

𝜕𝑥𝑙𝑦𝑚𝑧𝑛𝜕𝑥𝑗 𝜕𝑥𝑙𝑦𝑚𝑧𝑛𝜕𝑥𝑗 𝑑𝑉. (8)
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Figure 1: RUS experiment platform: photograph of the dentin specimen mounted between emitting and receiving transducers and block
diagram of other hardware.

In the end, the theoretical values of solid resonant fre-
quency could be calculated by solving (7).

Before the resonance experiment, a set of initial elastic
tensors combined with the density and dentin specimen
dimensions were needed to be set; then the theoretical res-
onant frequencies could be calculated later. The initial elastic
tensor set plays a decisive role in iterative efficiency and
accuracy, so it is indispensable to find an exact-value-closest
set as shown in matrix (9) [18, 22]. In this paper, the first 30
frequencies’ range was chosen as the experimental frequency
sweep range reference.

(((((((
(

42.6 25.4 19.7 0 0 025.4 42.6 19.7 0 0 019.7 19.7 34.6 0 0 00 0 0 9.4 0 00 0 0 0 9.4 00 0 0 0 0 8.6
)))))))
)

. (9)

2.3. RUSExperiment. TheRUS experiment platform is shown
in Figure 1. The platform was made just to fit the free-surface
boundary condition. The dentin specimen was mounted on
opposing corners between two shear wave contact transduc-
ers (V154RM, Panametrics Inc., Waltham, US) in the RUS
system. A network analyzer (Bode 100, Omicron electronics
GmbH, Klaus, Austria) was used to output a swept-frequency
signal between 155 kHz and 575 kHz (frequency resolution:
30Hz) as the excitation of the transmit transducer. The
frequency response of the specimenwas received by the other
transducer, amplified by a broadband charge amplifier (HQA-
15M-10T, Femto Messtechnik GmbH, Berlin, Germany), sent
back to the network analyzer, and recorded [12].

2.4. Experimental Resonant Frequencies Extraction. The fre-
quency response FR acquired by the network analyzer was
modeled as a sum of 𝑀 Lorentzian lineshapes [12]:

FR (𝑓) = 𝑀∑
𝑘=1

𝑎𝑘(𝑓𝑘2 − 𝑓2) + 𝑖 (𝑓𝑘𝑓/𝑄𝑘) , (10)

where 𝑎𝑘 are the complex amplitudes, 𝑓𝑘 are the resonant
frequencies, and 𝑄𝑘 are the resonant quality factors.

When RUS was used on low damping (high 𝑄) materials,
the resonant frequencies 𝑓𝑘, the sharp peak, could be easily
recognized from the resonant spectrum. For those low 𝑄
materials such as dentin, peaks may be broad and overlap
each other, which made it difficult to directly extract reso-
nant frequencies from spectrum. Therefore linear predictive
filter, an accurate signal processing method, introduced by
Kumaresan, Tufts, and Lebedev et al. was selected here to
distinguish the resonant frequencies, which was proved to be
a perfect solution [23–27].

The frequency response FR was converted to 𝑦(𝑛) in
time domain by 𝑁-point inverse Fourier transform (𝑁 is the
length of the FR data), and then matrix 𝐴 was created based
on

𝐴 = ( 𝑦 (𝐿) 𝑦 (𝐿 − 1) ⋅ ⋅ ⋅ 𝑦 (1)𝑦 (𝐿 + 1) 𝑦 (𝐿) ⋅ ⋅ ⋅ 𝑦 (2)... ... d
...𝑦 (𝑁 − 1) 𝑦 (𝑁 − 2) ⋅ ⋅ ⋅ 𝑦 (𝑁 − 𝐿)) . (11)

According to the linear prediction method, the first 𝐿
points of 𝑦(𝑛) contained enough information to predict
values of the others. So the linear predictive filter equation
could be set as 𝐴𝑔 = 𝑏, (12)



4 BioMed Research International

where 𝑏 has the definition:

𝑏 = ( 𝑦 (𝐿 + 1)𝑦 (𝐿 + 2)...𝑦 (𝑁) ) (13)

and 𝑔 is a column vector with 𝐿 components:

𝑔 = ( 𝑔1𝑔2...𝑔𝐿) . (14)

Then the transfer function of this linear predictive filter
could be written as 𝐻 (𝑧) = 1 + 𝐿∑

𝑘=1

𝑔𝑘𝑧−𝑘. (15)

The predicted values of the resonant frequency 𝑓𝑘 and
the quality factor 𝑄𝑘 could be obtained by finding the zeros
outside the unit circle in𝑍 domain. Substituting the predicted𝑓𝑘 and 𝑄𝑘 into (10), complex resonant amplitude 𝑎𝑘 and also
the predicted frequency spectrum FR𝑙𝑝 could be calculated.
One of the advantages of this method was that there was no
need to know the exact numbers of resonant peaks in FR, but
some differences existed between FR𝑙𝑝 and FR. To figure out
these differences, a Levenberg-Marquardt method was taken
to optimize the parameters, and we considered the𝑓𝑘’s which
minimized (16), the true resonant frequencies [28].𝐹 (𝑓) = ∑ (FR𝑙𝑝 (𝑓) − FR (𝑓)

FR (𝑓) )2 . (16)

During a single experiment, some resonant mode might
not be excited, so 7 measurements on the dentin specimen,
by remounting it on opposing corners each time, were
conducted for a good reproducibility. Each of the regarded
experimental resonant frequencies𝑓exp was present in at least
two frequency responses in the 7 measurements.

2.5. Elastic Tensor Calculation. Levenberg-Marquardt non-
linear optimization inverse problem approach was selected
for the purpose of calculating the elastic tensor [14, 28, 29].
Here the cost function was introduced as a criterion for the
iteration, and the value of the cost function was calculated, as
shown in 𝐹 (𝐶) = 𝑁∑

𝑖=1

𝑤𝑖 (𝑓exp
𝑖 − 𝑓cal

𝑖 (𝐶))2, (17)

where 𝐶 is an independent component of the elastic tensor,𝑁 is the number of the resonant frequency, 𝑓cal
𝑖 is the 𝑖th

order calculated resonance frequency, 𝑓exp
𝑖 is the 𝑖th order

experimental resonance frequency, and𝑤𝑖 is weighting factor,
expressed as follows:

𝑤𝑖 = {{{{{
0 𝑓cal

𝑖 does not match 𝑓exp
𝑖1(𝑓exp

𝑖 )2 𝑓cal
𝑖 matches 𝑓exp

𝑖 . (18)

The iterative process was completedwhen the experimen-
tal and theoretical frequencies matched perfectly. In other
words, cost function reached the global minimum and also
became convergent.

2.6. Engineering Moduli Calculation. The 6 × 6 stiffness
matrix was constructed and numerically inverted to obtain
the compliance matrix 𝐶−1𝑖𝑗 , from which engineering moduli
could be calculated.

𝐶−1𝑖𝑗 =
((((((((((((((
(

1𝐸11 −]12𝐸11 −]31𝐸33 0 0 0−]12𝐸11 1𝐸11 −]31𝐸33 0 0 0−]31𝐸33 −]31𝐸33 1𝐸33 0 0 00 0 0 1𝐺23 0 00 0 0 0 1𝐺23 00 0 0 0 0 1𝐺12

))))))))))))))
)

, (19)

where 𝐸𝑖𝑖’s are Young’s moduli (GPa), 𝐺𝑖𝑗’s are shear moduli
(GPa), and ]𝑖𝑗’s are Poisson’s ratios.

3. Result and Discussion

3.1. Results of Experimental Resonant Frequencies Extractions.
In accordance with the method of 2.4, in each of 7 mea-
surements, two or more resonant frequencies with similar𝑄 values were selected, and their mean values and standard
deviations were calculated from 2 to 7 values depending
on the frequency. As shown in Table 1, when the standard
deviation (column 2) was less than 0.5%, the mean value
(column 1) was retained as the resonant frequencies extracted
from the experiment.

Figure 2 shows the measured frequency responses of the
dentin specimen between 155 and 575 kHz. The 16 calculated
resonant frequencies, presented at least two times, are repre-
sented as ∗. The mean values are represented as the vertical
line.

3.2. Results of the Inverse Problem. After nonlinear opti-
mization, the theoretical values of resonant frequency were
obtained and shown in column 4 of Table 2. Among the first
30 orders of the calculated resonant frequencies, 13 can be
paired with themeasured frequencies.The root-mean-square
error between calculated and experimental frequencies was
below 0.65%.
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Figure 2: Measured frequency response of the dentin specimen
between 155 and 575 kHz and the 16 resonant frequencies distribu-
tions. ∗: the calculated resonant frequencies presented at least two
times. Vertical line: the mean values of the resonant frequencies.

Table 1: Results of 16 experimental resonant frequencies’ extraction
and 𝑄 factors.𝑓exp/kHz SD% 𝑄
166.34 0.22 45.56
186.44 0.43 46.05
214.20 0.36 45.40
280.50 0.20 47.98
314.47 0.22 42.05
368.28 0.23 46.41
382.30 0.45 44.57
402.73 0.29 48.32
422.47 0.17 46.21
428.92 0.19 40.78
478.22 0.18 44.81
504.72 0.06 42.28
508.66 0.25 45.63
532.94 0.01 53.49
535.48 0.02 39.95
565.41 0.22 48.76

The correspondence elastic tensor is shown in matrix
(20), with the unit of GPa.

(((((
(

35.27 14.06 18.63 0 0 014.06 35.27 18.63 0 0 018.63 18.63 27.71 0 0 00 0 0 7.74 0 00 0 0 0 7.74 00 0 0 0 0 10.61
)))))
)

. (20)

3.3. Results of Engineering Moduli Calculations. In accor-
dance with (19), engineering moduli could be calculated
as shown in Table 3. Column 3 also listed the engineering
moduli results of Kinney et al.’s work [22].

3.4. Discussion. In this paper, the method of human dentin
elasticity extraction based on RUS was studied. Firstly, the

Table 2: Results of the original calculated, experimental, and opti-
mized calculated resonant frequencies.

Mode Original 𝑓cal/kHz 𝑓exp/kHz Final 𝑓cal/kHz Err%
1 161.13 166.34 165.53 −0.48
2 195.31 186.44 186.62 0.10
3 220.66 214.20 213.07 −0.53
4 292.13 280.50 281.66 0.42
5 294.42 — 312.63 —
6 313.36 314.47 313.06 −0.45
7 333.39 — 315.26 —
8 366.55 — 342.12 —
9 385.12 — 350.58 —
10 412.00 368.28 368.17 −0.03
11 414.05 — 370.08 —
12 416.61 382.30 384.59 0.60
13 418.61 — 386.37 —
14 438.89 402.73 401.68 0.08
15 445.36 — 403.31 —
16 457.02 422.47 422.80 0.08
17 457.20 428.92 428.06 −0.20
18 484.41 — 430.71 —
19 484.84 — 451.03 —
20 496.81 — 453.71 —
21 498.90 — 453.81 —
22 516.59 — 476.06 —
23 528.65 478.22 477.13 −0.23
24 551.61 — 485.94 —
25 557.68 — 490.54 —
26 560.68 — 495.24 —
27 563.08 504.72 506.36 0.33
28 565.01 508.66 511.92 0.64
29 568.89 — 521.58 —
30 569.86 — 531.23 —

Table 3: Results of engineering moduli calculations.

Modulus Kinney et al. [22]𝐸11/GPa 22.641 25𝐸33/GPa 13.637 23.2𝐺12/GPa 10.608 8.6𝐺23/GPa 7.742 9.4
]12 0.067 0.45
]31 0.378 0.29

resonant spectroscopy between 155 and 575 kHz of a dentin
specimen was obtained. The resonant frequencies were
extracted by linear predictive filter and then by nonlinear
least squares method (Levenberg-Marquardt method). Com-
bined with the theoretical resonant frequencies calculated by
Lagrangian variational method, inverse problem approach
was introduced to obtain the complete second-order elastic
tensor of the dentin sample. Young’s moduli, shear moduli,
and Poisson’s ratios were finally calculated.
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In theory, the lower order resonant modes are mostly
shearmodes, so, in the experiment, the shearwave ultrasound
transducer could get stronger signal and more accurate
frequency response [30]. As shown in Figure 2, the first three
orders of resonant frequencies aremore obvious and the reso-
nance peaks are sharper, but the subsequent resonance peaks
become broad due to the low quality factor of dentin. When
the experimental resonant frequency was extracted, the
linearly predictive filtering and nonlinear least squares opti-
mization of the experimental frequency response couldmake
it possible for the originally gentle and overlapping resonance
peaks to be distinguished.

In general, when choosing the resonant order to be
calculated, the number should be at least five times the
number of unknown independent elastic constants [12, 14].
For transversely isotropic solids with five independent con-
stants, it is reasonable to choose the theoretical value of
the first 30-order resonant frequency in the calculations.
During the Levenberg-Marquardt iteration, the elastic tensor
changes constantly, leading to the the first 30-order calculated
frequency band being smaller, in which only 13 orders could
match with the first 13 out of the whole 16 measured resonant
frequencies. In this paper, we compared each experimental
resonance frequency with the theoretical resonance frequen-
cies and tried to figure out all the pairings. But interestingly,
in most cases, the cost function will not converge to the min-
imum value if the pairing is incorrect. Using this method, the
error of each matched pairing between experimental res-
onance frequency and calculated resonance frequency was
all less than 0.65%, which is in accordance with the 0.8%
criterion described by Migliori and Maynard [30].

Comparing the result of this study, matrix (20), with the
result of Kinney et al.’s group [22], shown as matrix (9), the
original elastic tensor, there are differences between each
independent elastic constant. We guessed that one reason is
that the experimental resonant frequency extractions after
the signal processing might be more accurate, which lead
to the difference compared to the extraction without signal
processing method of Kinney et al.’s work. Another reason
might be the individual differences among different teeth.The
differences in elastic tensors also resulted in some differences
in engineering moduli, mainly on 𝐸33 and ]12.

Bernard et al. added probabilistic methods in the pairing
process [13, 31], in which simulated annealing algorithm was
introduced to compute the possibility of the pairing and then
the calculated value could be automatically matched to the
experimental value according to the probability. In our future
work, we will try to introduce this algorithm into pairing
process and explore the differences and advantages of present
pairing methods. Moreover, we will also try to use more
specimens to learn structure-function relationships and find
other verification methods to RUS.

4. Conclusion

In conclusion, the elastic tensor, even Young’s moduli, shear
moduli, and Poisson’s ratios of dentin specimen, can be
accurately extracted by the signal processing method and
inverse problem approach, which demonstrates that RUS is

suitable for the mechanical properties measurement of low
quality factor biomaterials and can provide a theoretical basis
for the development of clinical dental restorative materials
and the design of dental prostheses.
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