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ABSTRACT

Motivation: Analysis of relationships of drug structure to biological

response is key to understanding off-target and unexpected drug ef-

fects, and for developing hypotheses on how to tailor drug therapies.

New methods are required for integrated analyses of a large number of

chemical features of drugs against the corresponding genome-wide

responses of multiple cell models.

Results: In this article, we present the first comprehensive multi-set

analysis on how the chemical structure of drugs impacts on genome-

wide gene expression across several cancer cell lines [Connectivity

Map (CMap) database]. The task is formulated as searching for drug

response components across multiple cancers to reveal shared ef-

fects of drugs and the chemical features that may be responsible.

The components can be computed with an extension of a recent ap-

proach called Group Factor Analysis. We identify 11 components that

link the structural descriptors of drugs with specific gene expression

responses observed in the three cell lines and identify structural

groups that may be responsible for the responses. Our method quan-

titatively outperforms the limited earlier methods on CMap and iden-

tifies both the previously reported associations and several interesting

novel findings, by taking into account multiple cell lines and advanced

3D structural descriptors. The novel observations include: previously

unknown similarities in the effects induced by 15-delta prostaglandin

J2 and HSP90 inhibitors, which are linked to the 3D descriptors of the

drugs; and the induction by simvastatin of leukemia-specific response,

resembling the effects of corticosteroids.

Availability and implementation: Source Code implementing the

method is available at: http://research.ics.aalto.fi/mi/software/GFAsparse

Contact: suleiman.khan@aalto.fi or samuel.kaski@aalto.fi

Supplementary Information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Modeling and understanding the diverse spectrum of cellular
responses to drugs is one of the biggest challenges in chemical

systems biology. Some of the responses can be predicted for

targeted drugs, which have been designed to bind to a specific

protein that triggers the biological response. The binding of a
drug to a target largely depends on the structural correspondence

of the drug molecule and the binding cavity of the target mol-

ecule, which can be modeled in principle, given ample computa-
tional resources. Off-target effects are harder to predict. They are

dependent on the cell types, individual genetic characteristics and

cellular states making the spectrum of responses overwhelmingly

diverse. The less well-known the drug’s mechanism of action and

the characteristics of the disease, the harder the prediction from

first principles becomes. The most feasible way to approach this

challenge in an unbiased way, which does not require prior

knowledge of all on- and off-target interactions of drugs, is to

collect systematic measurements across different drugs, cell types

and diseases and search for response patterns correlating with the

characteristics of the drugs. The patterns found can be used as

evidence for hypotheses on underlying action mechanisms or

directly in predicting the responses.
The Connectivity Map (CMap; Lamb et al., 2006) described

the basis for a data-driven study of drug–effect relationships at a

genome-wide level. CMap hosts the largest collection of high-

dimensional gene expression profiles derived from treatment of

three different human cancer cell lines with over one thousand

drugs. The CMap data have been used in a multitude of studies

revealing new biological links between drugs and between drugs

and diseases. Genome-wide gene expression responses from the

CMap have been used to discover clusters of drugs having simi-

lar mechanisms of action, resulting in novel findings, such as

effects of heat shock protein (HSP) inhibitors and identification

of modulators of autophagy (Iorio et al., 2010). The CMap data

have also been successfully used in large-scale integrative studies

including the analysis of regulation of drug targets (Iskar et al.,

2010), hERG annotations to predict novel inhibitors (Babcock

et al., 2013) and drugs’ interactions with protein networks

(Laenen et al., 2013).
Quantitative structure–activity relationship analysis (QSAR;

Cramer et al., 1988) is a widely adopted approach to studying

drug responses. Traditionally, univariate biological activities are

predicted using a range of methods, including classical regres-

sion, support vector machines and Random Forests. The key

challenge when moving from traditional QSAR to system-wide

analysis of chemical effects is how to relate structural features to

genome-wide cellular responses.
Integration of chemical structures with genome-wide responses

has become a major research direction in chemical systems biol-

ogy (Iskar et al., 2012; Xie et al., 2012). Keiser et al. (2009)

studied structural similarities between ligand sets while

Klabunde and Evers (2005) used protein–ligand complexes to

predict off-targets. To infer potential indications for drugs,

Gottlieb et al. (2011) combined similarities from chemical

structures, gene expression profiles, protein targets and several*To whom correspondence should be addressed.
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other datasets. Atias and Sharan (2011) modeled linkage between

structural descriptors of drugs and their side effects using canon-

ical correlation analysis (CCA; Hotelling, 1936). Structures have

also been used with genomic datasets to predict toxicity and

complex adverse drug reactions (Russom et al., 2013).

Recently, Menden et al. (2013) combined structures of drugs

and mutation information of cell lines to predict drug cytotox-

icity in a series of cell lines.
Relationships between structural descriptors of drugs and their

gene expression profiles have also been studied. Cheng et al.

(2010) examined similarities between chemical structures and

molecular targets of 37 drugs that were clustered based on

their bioactivity profiles. Low et al. (2011) classified 127 rat

liver samples to toxic versus non-toxic responses, based on com-

bined drug-induced expression profiles and chemical descriptors,

and identified chemical substructures and genes that were re-

sponsible for liver toxicity. In a broader setting, when the goal

is to find dependencies between two data sources (chemical struc-

tures and genomic responses), correlation-type approaches

match the goal directly, and have the additional advantage

that a predefined classification is not required. Khan et al.

(2012) generalized structure response analysis to multivariate

correlations with CCA on the CMap. Because of the limitations

of classical CCA, their study was restricted to a limited set of

descriptors (76) and genomic summaries (1321 genesets), and did

not attempt to take into account the data from the three separate

cell lines.
In this article, we present the first probabilistic approach to the

problem of integrated analysis of effects of chemical structures

across genome-wide responses in multiple model systems. We

extend the earlier work in three major ways: (i) instead of

using only two data sources (as in classical CCA), we used the

recent Bayesian group factor analysis (GFA) method (Virtanen

et al., 2012) that generalizes the analysis to multiple sources, here

three cell lines and two sets of chemical descriptors. (ii) Our

Bayesian treatment with feature-level priors enabled us to cope

better with the uncertainties in the high-dimensional data. (iii)

We included a more informative set of 3D chemical descriptors

to complement the widely used 2D fingerprints, which are

recognized to only explain limited aspects of drugs (Schneider,

2010).
Our goal was to uncover the big picture of relationships be-

tween chemical structure parameters and genome-wide re-

sponses, in a data-driven fashion (Fig. 1). The data came from

CMap, 11 327 gene expression responses in three cell lines

(HL60-Blood Cancer/Leukemia, MCF7-Breast Cancer and

PC3-Prostate Cancer; Lamb et al., 2006) and from two sets of

chemical descriptors: 780 3D Pentacle descriptors of drugs

(Duran et al., 2008) and 2769 functionally relevant structural

fragments (FCFP4; Glen et al., 2006) as 2D fingerprints of the

drugs. These five datasets consist of samples from the 682 drug

treatments, coupled by the detailed drug identity. We analyzed

the statistical relationships between the datasets by decomposing

them into a set of interpretable components. Our method quan-

titatively outperformed previous studies, thereby validating the

approach. We rediscovered findings reported earlier as well as

identified novel drug associations and detailed structure response

relationships.

2 METHODS

2.1 Gene expression datasets

We used the CMap (Lamb et al., 2006) gene expression data as a measure

of the biological response of the three cancer cell lines to drug treatments,

forming the gene expression datasets. The CMap hosts over 7100 gene

expression profiles including technical replicates treated with 1309 drugs

and is the largest available resource of its kind. Responses from a subset

of these drugs (682) were measured on all of the three cell lines, namely,

HL60 (leukemia), MCF7 (breast cancer) and PC3 (prostate cancer cell

line).

We obtained the raw gene expression profiles from the CMap and used

the data from the most abundant microarray platform (HT-HG-U133A).

The data were preprocessed using the Robust Multiarray Averaging

(RMA; Irizarry et al., 2003) and drug treatment versus control (log2) dif-

ferential expression was calculated batchwise (Khan et al., 2012).

Technical replicates were merged by taking the mean of each gene.

This resulted in gene expression profiles for the 682 drugs having meas-

urements over all three cell lines. To reduce noise, we adapted the ap-

proach of Iorio et al. (2010) for our setting, by retaining the expression of

top 2000 up- and 2000 downregulated genes for each sample, while con-

sidering the rest as noise (set to zero). The threshold was large to retain

diverse effects and removed small values. These profiles formed three

biological response datasets (one for each cell line), each being a differ-

ential gene expression matrix of 682 drugs times 11 327 genes.

2.2 Chemical descriptor datasets

The chemical space of drugs was represented using two different types of

chemical descriptors, namely, the 2D fingerprints ‘FCFP4’ and 3D de-

scriptors ‘Pentacle’. The FCFP4 (functional connectivity fingerprints of

radius 4; Glen et al., 2006) are circular topological fingerprints designed

specifically for structure–activity modeling and similarity searching. They

are rapidly computable and heavily used in a wide variety of applications

(Rogers and Hahn, 2010). Each dimension of the fingerprints represents a

certain 2D fragment of the compounds, interpretable as presence of

certain substructures, typically stereochemical information, and allows

easy visual inspection of structures. Therefore, FCFP4 can be used to

identify the core 2D substructures that make compounds structurally

similar and are responsible for biological activity.

The more complex 3D descriptors Pentacle (Duran et al., 2008) cap-

ture the functional properties of the compounds using molecular inter-

action fields. They are able to group together compounds with dissimilar

chemical structures and yet having the same type of molecular field prop-

erties. This is especially important in our study where the aim is to find

small molecules that share biological functions despite structural dissimi-

larity. Most of the traditional fingerprints, like MACCS (Molecular

Access System) and FCFP4, are superior to recognize 2D structural simi-

larity but unfortunately unable to recognize structurally unrelated and yet

biologically similar compounds binding into the same binding pocket.

The opposite is true with most (if not all) field-based similarity methods

like Pentacle, which find more effective distant similarities; therefore, we

decided to combine both approaches. In the earlier work, Khan et al.

(2012) had used VolSurf descriptors to represent molecular properties.

Although VolSurf is an optimal method for physicochemical properties

estimation, it is not able to describe pharmacophore features extensively,

unlike the Pentacle descriptors, and thus is not an option in our study.

Pentacle field distance descriptors were computed using Pentacle v

1.0.4 (http://www.moldiscovery.com/soft_pentacle.php), by Molecular

Discovery. The descriptors were calculated for all the available 10

probe sets, namely, D2, O2, N2, T2, DO, DN, DT, ON, OT, NT, where

D is dry probe to represent hydrophobic interactions, O is carbonyl

oxygen probe to represent hydrogen bond donor feature of the molecules

and N flat probe of Nitrogen is the hydrogen bond acceptor, while T is

TIP probe representing shape of the molecule, in terms of steric hot spots.
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For each probe set, 78 descriptors were obtained, representing the inter-

action potentials of probes at different distances, resulting in 780 descrip-

tors in total. Distances in the Pentacle descriptors are true distances

between putative interaction sites (hot spots) and are thus connected to

the size of the compound and distances between potential pharmacopho-

ric features. This results in a 682� 780 data matrix, with each row being a

drug and the 780 columns representing the Pentacle descriptors. This

forms the first chemical dataset in our study.

The 2D FCFP4 represent the chemicals as structural fragments. In

FCFP, the fragments are not predefined, rather computed dynamically

and thus can represent variation in novel structures. The FCFP4 finger-

prints were computed using Pipeline Pilot Student Edition software

(http://accelrys.com/products/pipeline-pilot/), by Accelrys. A total of

2769 unique structural fragments are found, and the fingerprints are rep-

resented as a matrix of 682 compounds� 2769 fragment descriptors. This

forms the second chemical dataset in our study.

2.3 Model: GFA

We search for relationships between chemical descriptors and biological

responses, as clues to the key underlying biological processes. GFA is a

model designed to capture such relationships (statistical dependencies) by

explaining a collection of datasets (‘views’) by a set of factors or compo-

nents, which form a combined low-dimensional representation (Virtanen

et al., 2012). In themulti-view setting, each component is active in a subset

of the datasets and is a simplified model of an underlying process visible

in those sets. The task solved by GFA is to separate the shared compo-

nents that capture the structure–biology relationships from the rest of the

data: the former are visible in all or a subset of the datasets, whereas

components active in a single view describe variation specific to that

particular view or noise.

Given a collection of M datasets X 1ð Þ 2 RN�D1 . . .X mð Þ 2 RN�DM , con-

sisting of N co-occurring samples x mð Þ
n , GFA finds a set of latent compo-

nents (with upper limit K, see below). Each dataset is assumed to have

been generated as a linear combination of latent components Z 2 RN�K,

with weights of the combination given by a loadings matrix

W mð Þ 2 RDm�K: Assuming normal distributions for simplicity, the

model is

x mð Þ
n �Normal W mð Þzn;S

mð Þ
� �

;

zn�Normal 0; Ið Þ;
ð1Þ

where zn is the nth row of Z, and S
mð Þ is a diagonal noise covariance

matrix. GFA is special in that the projections W are required to be

group-wise sparse, i.e. all the elements W mð Þ
:;k are set to zero for the com-

ponents k that are not active in the mth dataset. The components with

non-zero projections between two or more views capture dependencies

between the views.

To increase the interpretability of the model, we extend GFA by intro-

ducing element-wise sparsity in addition to the group sparsity for the

projection matrices, matching the biological prior assumption that each

process typically activates only a subset of genes. We introduce element-

wise automatic relevance determination (ARD; Neal, 1995) prior for the

projection weight matrices, pushing irrelevant weight values W
mð Þ
d;k toward

zero and making each component element-wise sparse. For the group

sparsity, we apply the group spike and slab prior where the binary vari-

able H
mð Þ
k controls the activity of the kth component in the group m. The

prior is

W
mð Þ
d;k �H

mð Þ
k Normal 0; ð� mð Þ

d;k Þ
�1

� �
+ 1�H

mð Þ
k

� �
�0;

H mð Þ
k �Bernoulli �kð Þ;

�k�Beta a�; b�ð Þ;

� mð Þ
d;k �Gamma a�; b�ð Þ:

ð2Þ

IfH
mð Þ
k becomes zero, all values inW

mð Þ
:;k will be set to zero. To complete

the model description, we set an uninformative before the diagonal elem-

ents of the precision matrix ðS
mð Þ
Þ
�1. Here we made two assumptions, (i)

Fig. 1. Overview of the symmetric multi-structure to multi-response decomposition. (A) The five datasets spanning the common 682 drugs are (B)

decomposed into components by GFA. Components of Type 1 represent shared patterns in both chemistry and biology, whereas Type 2 describes

biology-only or chemistry-only variation (not as useful in our case). (C) Each shared component identifies key structures and genes of an underlying

biological process
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normal distributions for simplicity and (ii) sparsity. Sparsity was imple-

mented by combining the previously (Klami et al., 2013) separately used

beta-Bernoulli formulation and the element-wise normal-gamma ARD.

We represent our (M=5) datasets as matrices of drugs versus fea-

tures. The rows represent the samples (drugs), and the columns are the

features (genes or chemical descriptors). Drugs pair all the views, i.e. a

row in all matrices corresponds to the same drug. A total of N=682

drugs were used in the study. The features of the chemical descriptors,

Pentacle (m=1) and FCFP4 (m=2) are D1=780 Pentacle probe fields

and D2=2769 fragments, respectively. The biological responses of the

three cell lines (m=3,4,5) are represented by differential expression of

Dm=11327 genes each.

The hyperparameters are set to a�; b�=10�3 and a�; b�=1, to obtain

uninformative priors. We initialize the model by sampling the latent vari-

ables from the prior. The model parameters (W
mð Þ

:;k ,H
mð Þ
k , S

mð Þ
, � mð Þ

d;k , �k, Z)

are then learned from the data using Gibbs sampling. The number of

components is optimally learned from data by initializing K to be large

enough, such that sparsity assumptions push some to be inactive. Here

for computational reasons, we set K=80, a value significantly larger

than the actual number of shared components, and let the noise model

represent the rest of the data. For sampling, we ran 10 chains and selected

for further analysis the one having its likelihood closest to the mean of

non-outlier chains. The first 5000 samples were discarded as the burn-in,

and the chain was run for 1000 more iterations, with a thinning factor of

5. The mean value of the samples was used as a representation of the

model. As a sanity check, we verified that our shared components had

over 70% similarity in top genes and descriptors with the second (non-

used) chain. The model’s complexity is O(NDK2+K3) where

D=sum(D1:M). The current implementation ran for 5 days on a stand-

ard desktop computer consuming 6 GB memory.

For interpretation, we represent each component by listing the high-

valued latent scores Z and projection values W. For the latent scores, we

performed a permutation test to detect the most significantly (q-

value50.05) activated drugs, while for the projections we inspected the

top 30 elements.

3 RESULTS

Figure 2 gives an overview of the types of components discovered

by the model. For studying structure–activity relationships, the

most important are the components shared by one or more

chemical view and one or more of the cancer subtypes. The com-

ponents active in only the expression datasets represent drug

responses not captured by the used chemical descriptors, and

components only active in the chemical datasets represent bio-

logically irrelevant structural variance. Additionally, components

active in only a single dataset may represent dataset-specific

noise. We found 11 shared components, which will be discussed

below. The detailed structure–response relationships discovered

from all the shared components are visualized in Supplementary

Figure S1 and tabulated in a usable format in Supplementary

Table S2.

3.1 Validation via chemical biology ontology

We started by quantitatively evaluating how closely related the

drugs in the shared components are in terms of known chemical–

biology relationships and compared our data with those of two

previous studies (Iorio et al., 2010; Khan et al., 2012) that inves-

tigated drug actions using the same CMap database version.
The established chemical–biology relationships were obtained

from the ontology Chemical Entities of Biological Interest

(ChEBI; Degtyarenko et al., 2008), which is the largest such

ontology of small compounds. ChEBI links compounds with

respect to chemical structure, biological roles they are known

to play and their applications. Examples of classifications are

antibiotic, coenzyme and agonist (biological); donor, ligand, in-

hibitor (chemical); and pesticide, antiasthmatic (applications).

ChEBI was downloaded as a graph and contained paths between

328 (of 682) of our compounds via 611 ontology terms (http://

www.ebi.ac.uk/chebi).
The average similarity (inverse path distance) of drugs within

the shared GFA components was consistently higher than the

corresponding similarities of Khan et al., (2012) and Iorio et al.,

(2010) and random sets of compounds (Fig. 3). The largest path

length (16) in ChEBI linked all drugs, whereas the smallest (2)

linked only the most similar. Interestingly, the difference in GFA

and others on small path lengths was higher than that on larger

ones, indicating that drugs closely connected in ChEBI were even

better found by GFA.

Fig. 3. Quantitative validation of chemical biology similarity of drugs in

shared GFA components. Drugs in the same GFA component (blue

squares) had a consistently higher mean average similarity (y-axis) in

ChEBI than either of the earlier studies, and random sets of compounds,

over the entire range of ChEBI path lengths (x-axis). To access the rela-

tive contribution of the 3D descriptors we additionally plotted results

with components containing them (dashed line) and components contain-

ing only 2D descriptors (dotted line), demonstrating that both descriptors

are valuable. Error bars (red) are one stdandard over 1000 randomly

generated sets

Fig. 2. Summary of the GFA components. The plot demonstrates activ-

ity (black is active) of each component (y-axis) over the five input datasets

(x-axis). Each component is active in some or all of the datasets.

Components shared by (active in) both chemical descriptor and expres-

sion datasets capture structure–response relationships
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3.2 Component interpretations

We next analyzed the shared components in detail. Each com-

ponent connects a set of structural drug properties and gene ex-

pression changes, forming a hypothesis of a structure–activity

relationship. A component can be characterized by the set of

drugs that activate it the most, and by the set of genes that are

expressed differentially when the component is active.
We first compared the findings with the two other studies that

have investigated drug actions using the same CMap database

(Iorio et al., 2010; Khan et al., 2012). Of the 11 shared GFA

components, the majority of the drugs in seven components were

similar to the clusters found by Iorio et al. (2010), while three

components captured structurally driven cell-specific responses

they had missed. Compared with the other earlier study (Khan

et al., 2012), the majority of the drugs in 6 of the 11 GFA com-

ponents matched a corresponding structure-response subcompo-

nent of Khan et al., (2012), again indicating conformance to

known results. Our components also revealed several novel

drug actions because of cell-type specificity and advanced 3D

descriptors that were missed by both of these earlier studies,

and are presented below.
Detailed interpretation of all the 11 shared components is pre-

sented in Supplementary Table S1. The components are num-

bered in the order of the amount of variation they captured; the

cell line-specific components identified by the model are separ-

ately ordered with the prefix SP. One component (SP3) captured

outlier response of a single drug and was omitted from further

analysis.

The majority of the components captured effects shared

among all the three cell lines, whereas five components had re-

sponses that were cell line-specific (Components SP1, SP2, SP4),

dominant in a specific cell line (Component 7) or revealed some

cell line specificity indications for an interesting drug

(Component 1). The 2D structural features were active in most

components, identifying similarities in structurally analogous

drugs. The pentacle descriptors captured similarities in five com-

ponents, four of which indicated novel responses of drugs that

have not been reported before. We discuss these four novel com-

ponents in detail below. One of them had cell line-specific effects

(SP2), whereas the remaining cell line-specific components (SP1

and SP4) are summarized in Table 1.
Component 1 was characterized by cardenolides. The top seven

drugs of the component, lanatoside C, digitoxigenin, digoxin,

digoxigenin, ouabain, helveticoside and strophantidin belonged

to this class. The primary activity of the other drugs anisomycin,

lycorine and cicloheximide is protein synthesis inhibition, and

bisacodyl is used as a laxative through stimulation of secretion

in the colon. Cardenolides act onNa+/K+ pumps and are known

for ion flux alterations. Interestingly, the other compounds of

Component 1 also appeared to affect membrane potassium ion

flux. Bisacodyl and anisomycin activate K+ flux, lycorine is

known to reduce membrane potential (indicative of potassium

efflux) and, indicative of affecting K+, emetine needs to be ad-

ministered with potassium to reduce cardiotoxicity. Interestingly,

bisacodyl exhibited the response in MCF7 and PC3 cells only,

suggesting that its target may be expressed selectively.
On the structural side, the top four FCFP4 fragments collect-

ively represented the correct core 2D response triggering sub-

structure in all the seven cardenolides, as detailed in Figure 4.

The other two key drugs, bisacodyl and anisomycin, were differ-

ent from cardiac glycosides in terms of 2D structures, but the

Pentacle descriptors indicated potential field similarities on ON,

OT and NT probes. These probes referred to existence of

common structural pharmacophoric features: hydrogen bonding

and shape-related features. The 3D descriptors may therefore

indicate that these drugs bind the same ion channels as the

cardenolides.

Component 3 captured protein synthesis inhibition. All drugs

in the component are known to inhibit protein synthesis but each

in a different way. The only exception, alexidine, is a derivative

of clorhexidine, which is used as an antibacterial mouth wash.

Interestingly, it has been described to have anticancer cell activity

through an unknown target (Yip et al., 2006). The model identi-

fied pentacle probe fields of D2, DO and DT (shape and

lipophilicity-related probes) that relate alexidine’s protein synthe-

sis inhibition response with the known protein synthesis

inhibitors.

Component 5 was HSP90 inhibition response. The component

contains the three similar drugs geldanamycin, tanespimycin,

alvespimycin, and on the 2D structure level dissimilar 15-delta

prostaglandin J2 (PGJ2) and puromycin. Geldanamycin and its

two analogs tanespimycin and alvespimycin are HSP90 inhibi-

tors, and the latter two have been explored in the clinic as

anticancer drugs. PGJ2 has also been described as having

anticancer activity through an unknown mechanism, causing in-

hibition of several cancer survival signals. Puromycin is reported

Table 1. Shared components having cell line-specific response

Drug description Biological interpretation Structural P.

SP1 Antimetabolite (8-Azaguanine) used for antineo-

plastic activity and anisomycin a protein synthesis

inhibitor. 8-azaguanine has been used in leukemia

(Colsky et al., 1955).

Protein synthesis inhibition in HL60 and PC3 cells

only. It could be interesting to explore 8-azaguanine

as an anti-prostate cancer drug. In a recent study, Wen

et al. (2013) also indicated 8-azaguanine for potential

therapeutic efficacy in prostate cancer.

2D ring structures of 8-

azaguanine

SP4 Antiestrogen drugs Response visible in MCF7 (estrogen receptor) cell line

only.

Pentacle ON/ OT fields.

Note: The components (rows) are summarized by their top drugs (Column 1), biological response (Column 2) and the structural properties (Column 3).
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as an aminonucleoside antibiotic with a primary function of

terminating ribosomal protein translation. At the response

level, this component appeared to be strongly inducing a heat

shock response with many HSP and related genes being upregu-

lated (see Fig. 5, left). The expression profile strongly indicated

that PGJ2 and puromycin are also inhibiting HSP90. PubChem

drug-target data demonstrate that HSP90 targets have been re-

ported as active in geldanamycin and its derivatives, while un-

tested/unspecified for both puromycin and prostaglandin.

On the structural side, the 2D descriptors confirmed that puro-

mycin and prostaglandin are dissimilar to the three geldanamy-

cin analogs. However, the Pentacle descriptors clearly indicated

that N2, DN and NT fields shared a strong pattern across all the

five drugs. The patterns were only visible in features of smaller

distances of these large molecules, indicating that only a small

region of these compounds (polar atoms of all compounds) cre-

ated the activity, whereas the rest of the structure is just needed

to maintain the shape. This fitted well with the observation that

the drugs are overall structurally dissimilar. At the smaller dis-

tances, the structure responsible for biological response was char-

acterized by N2: ligands hydrogen bonding capacity, DN:

hydrogen bonding and lipophilicity and NT: hydrogen bond-

ing/shape-based descriptors. In geldanamycin and prostaglandin,

this distance (see Fig. 5 where N2 descriptor is plotted) was con-

nected to polar ring atoms and more precisely corresponding

hydrogen bonding positions. These same positions, although in

a different conformational arrangement (but with almost identi-

cal distance), are critical in the binding of geldanamycin to

HSP90. Hence, while the expression data strongly argue for

PGJ2 inhibiting HSP90 activity at some level, the structural in-

formation suggests that this effect could be through a direct

binding to HSP90 enzymes.

Component SP2 was characterized by responses to a set of

corticoids, other steroids such as etynodiol, and surprisingly dif-

ferent drugs simvastatin and repaglinide. There appears to be a

dual response: an HL60-specific metabolic regulatory response

and an HL60 and PC3-selective anti-inflammatory response

(Fig. 6) with the MCF7 not exhibiting these responses at all,

indicating that the relevant target or signal may be selectively

expressed in HL60 and PC3 cells. Both simvastatin (a choles-

terol-lowering HMG-CoA reductase inhibitor drug) and repagli-

nide (a diabetes drug) are highly dissimilar at the 2D level when

compared with the corticosteriods, but both interestingly have

been reported to have anti-inflammatory activities, likely because

of targets other than the primary target(s). Once again, Pentacle

descriptors capture the underlying similarities between these

drugs through NT and N2 fields, suggesting that the common

gene expression patterns induced by the different drugs (cortico-

steroids, simvastatin and repaglinide) is a result of binding the

same targets.

4 CONCLUSIONS AND DISCUSSION

We extended the drug response analysis paradigm from standard

QSAR, of relating drug properties and univariate responses, to

finding relationships between specific structural descriptors of

drugs with the genome-wide responses they elicit in multiple cell

lines. The task was formalized as discovering dependencies be-

tween multiple datasets and addressed using the state-of-the-art

method GFA. The approach identified structure–genomic re-

sponse relationships as underlying components of the data and

can be used as a tool for exploring such relationships from large-

scale measurement datasets.
We quantitatively validated our structure–response compo-

nents over the established chemical–biology relationships of

ChEBI and found them to be better than earlier studies (Iorio

et al., 2010; Khan et al., 2012) that did not account for separate

cell lines and advanced 3D chemical descriptors. Moreover, sev-

eral drug groups we identified were consistent with earlier stu-

dies, while several revealed interesting novel findings earlier

studies had missed, demonstrating that our approach is viable

for explorative multi-set structure–activity analysis. These novel

findings were clearly attributed to separate cell lines and

advanced 3D descriptors in our formulation. In a different set-

ting, Yera et al., (2011) found 3D similarity to be more important

Fig. 4. Structure identification in Component 1. Left: the top four FCFP4 structural fragments identified by the model as strongly relating to the

response of the drugs (right). When combined, these fragments represent the core response triggering structure steroid backbone (shaded gray) in all the

cardenolides
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for off-target identification, and this was partially supported by

our study as well.

The discovered components revealed interesting new findings

of potential importance for revealing novel action mechanisms of

drugs. The 2D fingerprints highlighted important core structural

groups primarily responsible for activity of similar drugs, such as

the identification of the steroid backbone in cardiac glycosides

and aromatic ring in HDAC (Histone deacetylases) inhibitors.

The joint analysis of data from multiple cell lines with advanced

3D Pentacle descriptors allowed us to identify relationships

between drugs that were not known earlier. If validated, this

suggests an approach that could significantly help in medicinal

chemistry and drug design. For example, our data led to the

identification of a previously unknown and novel shared mech-

anism of 15-delta prostaglandin J2 (PGJ2) and HSP90 inhibitors.

Interestingly, PGJ2 and related prostaglandin analogs have re-

peatedly been described in the literature for having anticancer

activities, but their mechanism of action has not been clarified

before (Fionda et al., 2007; Hegde et al., 2011; Zimmer et al.,

2010). Furthermore, our analysis revealed that simvastatin, a

cholesterol-lowering drug, has a leukemia-specific response simi-

lar to a range of corticosteroids. This appears to be a significant

finding as lovastatin, a close structural analog of simvastatin,

was recently shown to selectively inhibit leukemic stem cells to-

gether with several steroids (Hartwell et al., 2013).

Such systematic explorations raise the possibility for targeted

interventions and will become a growing trend in the future as

more large-scale datasets like the CMap will become available.

For drug designers, it opens up the opportunity to tailor drug

molecules to match a desired gene expression fingerprint.

For medicinal chemists, it could help to increase understanding

of actionmechanisms of existing drugs and revealing potential on-

label and off-label applications for use in precision medicine.
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Fig. 5. Component 5 identified a novel HSP90 response of prostaglandin. Left: gene expression response of the top seven drugs in the three cell lines (y-

axis), over the top genes (x-axis) of the component, demonstrates HSP genes being strongly upregulated by the HSP90 inhibitors and by the strikingly

different puromycin and prostaglandin. Right: N2 descriptor in geldanamycin and prostaglandin connected to several polar ring atoms (red and blue).

The Pentacle feature (N2 distance range) found by GFA as related with HSP gene expression is represented with the yellow line

Fig. 6. SP2: corticosteroids showing response specific to HL60 cells, while

only minor regulation in PC3 and not at all in MCF7
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