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The Ras subfamily is the member of small G proteins superfamily involved in cellular signal transduction. Activation of Ras
signaling causes cell growth, differentiation, and survival. Bombyx mori Ras-like protein (BmRas1) may belong to the Ras
subfamily. It contained an H-N-K-Ras-like domain. The BmRas1 mRNA consisted of 1459 bp. The open reading frame contained
579 bp, encoding 192 amino acids. The protein had such secondary structures as α-helices, extended strand, and random
coil. BmRas1 was expressed successfully in E. coli BL21. The recombinant protein was purified with metal-chelating affinity
chromatography. The GTPase activity of purified protein was determined by FeSO4-(NH4)2MoO4 assay. The results showed that
purified recombinant protein had intrinsic activity of GTPase. High titer polyclonal antibodies were generated by New Zealand
rabbit immunized with purified protein. The gene expression features of BmRas1 at different stages and in different organs of the
fifth instar larvae were analyzed by Western blot. The results showed that BmRas1 was expressed highly in three development stages
including egg, pupae, and adult, but low expression in larva. BmRas1 was expressed in these tissues including head, malpighian
tubule, genital gland, and silk gland. The purified recombinant protein would be utilized to further function studies of BmRas1.

1. Introduction

Ras genes were first identified as homologues of rodent sar-
coma virus genes. In 1982, human DNA sequences homol-
ogous to the transforming oncogenes of the v-Harvey (H-
Ras) and Kirsten (K-Ras) rat sarcoma virus were identified
in DNA sequences derived from a human bladder and a
human lung cancer cell line, respectively. There are three
mammalian Ras proteins: H-Ras, N-Ras, and K-Ras, which
consisted of 188-189 amino acid (p21 proteins), encoded by
three ras genes [1]. The Ras isoforms are highly homologous
[2]. Ras proteins are positioned at the inner surface of the
plasma membrane where they serve as binary molecular
switches to transduce extracellular ligand-mediated stimuli
into the cytoplasm to control signal transduction pathways
that influence cell growth, differentiation, and apoptosis
[3, 4]. The Ras protein is the prototype of the Ras superfamily
of small GTPases, which share a high degree of sequence
similarity and a common three-dimensional structure, called

the GTP-binding domain. This domain enables them to act
as molecular switches cycling between two defined confor-
mational states: an inactive guanosine-diphosphate (GDP-)
bound and an active guanosine-triphosphate-(GTP-) bound
state [3, 5, 6]. The guanine nucleotide exchange factors
(GEFs) promote formation of the active Ras-GTP complex
by inducing dissociation of bound GDP to allow association
of the more abundant GTP, thus increasing the rate of
intracellular exchange of GDP for GTP [5, 7–9].

Studies in Caenorhabditis elegans, Drosophila, and mam-
malian cells established the mode of action of Ras proteins
[10–12]. Ras couples the signals of activated growth factor
receptors to downstream effectors that interact with the
active GTP-bound form of Ras. Ras effectors include protein
kinases, lipid kinases, and GEFs, which transmit signals
to cell nuclear, recruitment to the plasma membrane, and
association with substrates [13–15]. Of these, the best
characterized are the Raf kinases, also referred to as the
mitogen-activated protein kinase (MAPK) cascade. MAPK
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modules include the ERK pathway, the SAPK/JNK pathway,
and the p38 pathway [7, 16]. MAPK pathways are well-
conserved major signaling systems involved in the trans-
duction of extracellular signals into cellular responses in a
variety of organisms The MAPK cascades activate various
substrates in the cytoplasma and the nucleus of the cell,
including transcription factors. These downstream targets
control cellular responses (e.g, apoptosis, proliferation, and
differentiation) [12, 17, 18].

The COOH-terminal regions of small GTP-binding pro-
teins are classified into at least four groups: (1) Cys-A-A-
X (A, aliphatic acid; X, any amino acid); (2) Cys-A-A-Leu/
Phe; (3) Cys-X-Cys; (4) Cys-Cys [19, 20]. The Cys-A-A-X
structure is furthermore subclassified into two groups: one
has an additional Cys residue upstream of the Cys residue
of the Cys-A-A-X structure and the other has a polybasic
region. In the case of the Cys-A-A-X structure, H-Ras and
K-Ras are first farnesylated at the Cys residue followed by the
proteolytic removal of the A-A-X portion and the carboxyl
methylation of the exposed Cys residue [21–23].

Bombyx mori was studied to excavate its potential eco-
nomic value and to explore the molecular mechanisms of the
physiological development in lepidoptera insects as a model
species. The silkworm genome has 28 chromosome pairs
containing 4.8 billion base pairs. The complete genome was
sequenced and analyzed, 18,510 genes were estimated [24].
In our laboratory, a cDNA library of silkworm pupae was
constructed and the whole cDNA sequencing had been per-
formed. We found a gene named Bombyx mori ras-like pro-
tein 1 (BmRas1) (GenBank accession no. NM 001043508)
from the cDNA library. BmRas1 contained an H-N-K-Ras-
like domain. It may be involved in the regulation of cell
growth. Here we described the expression, purification, and
biochemical characterization of functional BmRas1 using
an E. coli expression system. The purified recombinant
protein BmRas1 was detected with GTPase activity. BmRas1
was expressed in tissue throughout four developmental
stages. Subcellular localization showed BmRas1 was found
on membrane, partly in cytoplasm. The further studies
aimed to understand the role of BmRas1 in development and
biological function of Bombyx mori.

2. Materials and Methods

2.1. Animals and Tissues. The Bombyx mori strain used in
this study is the progeny of Qingsong × Baiyu. Silkworms
were reared on mulberry leaves at 25◦C and 60–90% relative
humidity in natural light. Fifth instar larvae, pupae, moths,
and nascent eggs were frozen in liquid nitrogen and stored
at −80◦C. Malpighian tubule, head, epidermis, fatty body,
seminal glands, ovary, and silk glands were dissected from
fifth instar larvae, frozen immediately in liquid nitrogen, and
stored at −80◦C.

2.2. Bioinformatics Analysis. The protein sequences of Ras
homology proteins in some species were retrieved from
NCBI Protein database. Amino acid sequence of BmRas1
protein was compared with those of some members
of the Ras family, which included BmRas2 (AB206960),

BmRas3 (AB170011), Aedes aegypti (EAT46745, EAT38763,
EAT35784), Anopheles gambiae (XP 307965), Tribolium cas-
taneum (XP 975587), Xenopus laevis (AAA49944), Mus
musculus (NP 032310, NP 056461), Homo sapiens (NP
004976, NP 056461, NP 036382), Drosophila melanogaster
(NP 476857, NP523917, NP476699), Caenorhabditis elegans
(NP 502213), Apis mellifera (XP 394288, XP 393035), and
Nasonia vitripennis (XP 001608221). Alignments of BmRas1
and Ras homology protein sequences were performed using
the Jotun Hein method in DNAStar.

2.3. Plasmid Construction. A cDNA encoding BmRas1 was
obtained from the cDNA library of the metaphase pupae
constructed by our laboratory. Based on the cDNA sequence,
two primers were designed as follows: 5′-GGGAATTCA-
TGTCTCGAGCAGGCGACAGAC-3′ and 5′-CCCTCG-
AGTTAAAAAAGGGTGCAATC-3′, including restriction
enzyme sites for EcoR I and Xho I, respectively. The predicted
open reading frame was amplified. The PCR was performed
for denature at 95◦C for 5 min; 35 cycles of 94◦C for
30 s, 60◦C for 30 s, 72◦C for 1 min, followed by a 10-min
extension at 72◦C. The PCR products were purified using the
E.Z.N.A.Cycle Pure Kit (Omega, USA). After digestion with
EcoR I and Xho I, the interested fragment was ligated into
the expression vector pET-28a (+) and transformed into E.
coli TG1 competent cells. pET-BmRas1, the positive plasmid
colony with the BmRas1 gene, was sequenced subsequently
by ABI 3130-xl Genetic Analyzer.

2.4. Protein Expression and Purification. The recombinant
expression plasmid, pET-BmRas1, was transformed into
E. coli BL21 (DE3). Bacterial cultures were incubated at
37◦C in LB medium containing kanamycin until an OD600

of 0.5 was reached. Recombinant protein expression was
induced by the addition of IPTG to a final concentration
of 0.1 mM. Following 4 h incubation at 37◦C, bacteria were
harvested by centrifugation and frozen at −20◦C. Bacterial
pellets were resuspended with lysis buffer (50 mM Tris-
HCl, 2 mM EDTA, 100 mM NaCl, pH 8.0) and lysed by
pulsed sonication. Briefly, cell suspension was sonicated with
30 short bursts of 10 sec followed by intervals of 20 sec
for cooling, with an Ultrasonic Crasher Φ2 cell disruptor
(Ningbo Scientz, China). Keep the suspension at all times
on ice. The lysates were centrifuged at 14,000 g for 20 min
at 4◦C. The supernatant was collected and filtered through
a 0.45 μm filter (Millipore, USA). The filtrate was subjected
to metal chelation column chromatography using Ni-NTA
His·Bind resin (Novagen) to purify the recombinant protein,
as instructed by the manufacturer. The recombinant BmRas1
proteins were separated on SDS-PAGE and verified by
immunoblotting with antibodies specific for the recombi-
nant proteins.

2.5. GTPase Activity Assay. GTPase activity of purified
BmRas1 was assayed by the FeSO4-(NH4)2MoO4 method
[25]. The purified BmRas1 protein was transferred into dial-
ysis bag to renaturation. The refolded protein (100 μg/mL)
was added to the reaction buffer containing 100 mM Tris-
HCl (pH 8.0), 0.4 mM DTT, 650 μM GTP, 10 mM MgCl2 to
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10 μg/mL. Controls were the same reaction buffer without
the BmRas1 protein or GTP. The reaction mixture was incu-
bated at 37◦C for 0, 30, 40, 50, 60, 75, 90, 105, and 120 min.
25 μL aliquots of the reaction were quenched with 5 μL of
20% trichloroacetic acid (TCA). Added ddH2O to the final
volume of 50 μL, and centrifuged at 12.000 g for 15 min. The
supernatant was added 200 μL FeSO4-(NH4)2MoO4 solution
containing 0.7% FeSO4, 0.14% (NH4)2MoO4, 5 mM H2SO4.
The amounts of hydrolyzed inorganic phosphate were
measured at 660 nm with SpectraMax Plus384 Absorbance
Microplate Reader (Molecular Devices, USA).

2.6. Antibody Preparation. A male New Zealand white rabbit
was immunized with 1 mg of purified recombinant BmRas1
protein emulsified with Freund’s complete adjuvant (Sigma).
Three booster doses were given at intervals of 14 days with
the half amount of antigen and Freund’s incomplete adjuvant
(Sigma). Blood was collected after 1 month of last immuniza-
tion, and the serum was isolated. The polyclonal antibody
was purified by Protein A chromatography (Sigma) following
the manufacturer’s instructions. The purified antibody was
used for immunoblotting and immunofluorescence.

2.7. Subcellular Localization. BmN cells were cultured to
60–70% confluence on the confocal dish. Cells were rinsed
twice with 1 mL PBS, and fixed in 3.7% formaldehyde
at 25◦C for 10 min. After being washed three times with
PBS, cells were blocked with 3% BSA at 37◦C for 2 h, and
then incubated with anti-BmRas1 IgG (1 : 1000 dilutions)
at 4◦C for 12 h in contrast with negative serum as negative
control. After washing three times in PBS with 0.05% Tween-
20, cells were incubated with Cy3-labeled goat anti-rabbit
antibody (1 : 1000 dilutions, Promega) and DAPI (1 : 2000
dilution, Promega) at 37◦C for 2 h, following three washes
in PBS with 0.05% Tween-20. Stained cells were viewed by
Nikon ECLIPSE TE2000-E Confocal Microscope with image
analysis software EZ-C1 3.8.

2.8. Tissues Localization. The distributions of BmRas1 in
different tissues in silkworms were analyzed by Western
blot. Eggs, the fifth instar larvae, pupae, moths, and tissues
isolated from fifth instar larvae were ground to powder in
liquid nitrogen. Powders were suspended in buffer (50 mM
Tris pH 8.0, 0.15 M NaCl, 5 mM EDTA, 0.5% NP-40, 1 mM
DTT, 5 g/L sodium deoxycholate, 100 mg/L PMSF, 5 μg/mL
Aprotin) and incubated for 30 min on ice. Homogenates
were centrifuged at 12 000 g for 15 min at 4◦C. Protein
concentrations in all samples were equalized before SDS-
PAGE. Protein extracts from each tissue were separated by
12% SDS-PAGE, and electrotransferred onto PVDF mem-
branes (Millipore). After blocking with 3% nonfat milk
in PBS at 4◦C overnight, the membranes were probed
with rabbit anti-BmRas1 antibody at room temperature for
2 hours. After washing with PBST, the membranes were
incubated with HRP-conjugated goat anti-rabbit IgG (Bio-
Rad Laboratories). The bands were detected by staining with
diaminobenzidine method.

3. Results

3.1. Bioinformatics Analysis. The complete mRNA of the
BmRas1 was 1459 bp with an open reading frame (ORF) of
579 bp encoding a protein of 192 amino acids. The predicted
molecular weight of the protein was 21.8 kD and the
theoretical isoelectric point was 6.33. A homology search
using BLAST (http://blast.ncbi.nlm.nih.gov/) revealed that
conserved domain of BmRas1-specific hits H-N-K-Ras-like
subfamily. Amino acid sequences were aligned using the
algorithm Jotun Hein Method in the software package
DNAStar (Figure 1). Amino acid residues of Ras superfamily
members which were important to GTP/Mg2+-binding site,
GEF interaction site, Switch I and Switch II region were
conserved in the BmRas1. The amino acids 32–40 and amino
acids 60–76 domains were generally referred to as the switch
I and switch II domains. GEF interaction site was within the
switch II domain of Ras, as residues 62–69.

The carboxy-terminal sequences of the different Ras
isoforms comprising 20–25 amino acids, termed “the hyper-
variable region” (HVR), were highly varied between the
different Ras proteins. A C-terminal CAAX motif was in
diversity, which undergoes posttranslational prenylation by
cymosely farnesyl transferase to generate S-farnesyl cysteine
thioester, followed by proteolytic cleavage of the AAX seq-
uence and methyl esterification of the resulting C-terminal
isoprenylated cysteine in the ER.

3.2. Protein Expression and Purification. The ORF for
BmRas1 was ligated into the expression plasmid, pET-28a,
with a 6 × His tag. The fusion protein His-BmRas1 was
successfully expressed in E. coli. Recombinant proteins were
separated by 12% SDS-PAGE and analyzed by Coomassie
Blue staining (Figure 2). Recombinant protein was purified
using Ni-NTA His·Bind resin (Novagen) columns. Purified
proteins were separated by SDS-PAGE and recognized by
anti-BmRas1 antibody in Western blot (Figure 3).

3.3. GTPase Activity Assay. GTPase activity of purified
BmRas1 was assayed by the FeSO4-(NH4)2MoO4 method
to detect the amount of inorganic phosphorus. Purified
proteins were incubated in the reaction mixture at 37◦C for
0, 30, 45, 60, 75, 90, 105, and 120 min. At 30 min, inorganic
phosphorus was detected. The amount of inorganic phos-
phorus was increased significantly with the time, reaching
the peak at 75 min and remaining the similar high level
(Figure 4). The results showed that the purified recombinant
BmRas1 protein had GTP-binding activity and hydrolysis
activity without accessory protein.

3.4. Subcellular Localization. Ras proteins function as signal
molecule switch, anchoring in the internal leaflet of the
plasma membrane, which relay signals from a number of
different cell-surface receptors to the interior of the cells and
induce specific cellular responses resulting in cell growth and
differentiation. Immunostaining with antibody to BmRas1
showed that BmRas1 was located on membrane, partly in
cytoplasm in BmN cells (Figure 5).

http://blast.ncbi.nlm.nih.gov/
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Figure 1: Alignment of amino acid sequences of Ras superfamily members. Bm, Aae, Aga, Am, Dm, Ce, Xl, Hm, Mm, Tc, and Nv mean
Bombyx mori, Aedes aegypti, Anopheles gambiae, Apis mellifera, Drosophila melanogaster, Caenorhabditis elegans, Xenopus laevis, Homo
sapiens, Mus musculus, Tribolium castaneum, and Nasonia vitripennis, respectively. The residues with solid light gray shade differed from
BmRas1. Amino acids which are important for GTP/Mg2+ binding were boxed in real lines. The C-terminal CAAX motif were boxed in
broken lines.

3.5. Tissue Distribution. The gene expression levels of
BmRas1 during different silkworm developmental stages and
tissues distribution in fifth instar larvae were detected by
Western blot. BmRas1 was expressed throughout four devel-
opmental stages (Figure 6). BmRas1 was expressed at high

level in egg, pupae, and moth but at low level in fifth instar
larva. BmRas1 was highly expressed in malpighian tubule,
head, silk glands, and lowly expressed in seminal glands and
ovary. No expression of BmRas1 was detected in epidermis
and fatty body (Figure 7).



Comparative and Functional Genomics 5

1 2 M

116 kD

66.2 kD

45 kD

35 kD

25 kD

18.4 kD

14.4 kD

BmRas1

Figure 2: Analysis of the recombinant BmRas1 protein in SDS-
PAGE. Lane 1, lysates from E. coli cultures transformed with pET-
28a vector plasmid after IPTG induction. Lane 2, lysates from E.
coli cells transformed with pET-28a-BmRas1 plasmid after IPTG
induction. Lane M, Protein molecular weight marker.
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Figure 3: Western blot analysis of purified BmRas1 protein. Lane
M. Protein molecular weight marker. Lane 1, recombinant BmRas1
was purified by nickel metal affinity resin columns and separated by
SDS-PAGE. Lane 2, purified protein was analyzed by Western blot.

4. Discussion

Many different receptors at the cellular surface are expressed
which allow cellular response to extracellular signals pro-
vided by the environment. Receptor activation by binding
of ligand leads to a variety of biochemical events in which
small GTPases are crucial. Ras proteins, a member of small
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Figure 4: Time course of GTP hydrolysis by BmRas1. GTPase activ-
ity of purified BmRas1 was assayed by the FeSO4-(NH4)2MoO4

method to detect the amount of inorganic phosphorus. Purified
proteins were incubated in the reaction mixture at 37◦C for 0, 30,
45, 60, 75, 90, 105, and 120 min. At 30 min, inorganic phosphorus
was detected. The amount of inorganic phosphorus was increased
significantly with the time, reaching the peak at 75 min and
remaining at the similar high level.

GTPases family, play a key role in signal transduction,
proliferation, and malignant transformation. The Ras branch
of the Ras superfamily presently comprises 20 proteins,
that belong to various subgroups: Ras (H-Ras, K-Ras with
two alternatively spliced variants expressing the A or B
fourth exon, and N-Ras), Rap (with the Rap1 A and B
proteins, and Rap2 A, B and C proteins), Ral (A and B), R-
Ras (comprising the R-Ras, R-Ras2/TC-21 and R-Ras3/M-
Ras proteins), Rit/Rin, Rheb, Di-Ras (1 and 2), and ARHI
proteins [26]. The ras genes encode 21 kDa proteins. Ras
functions as a relay switch that is positioned downstream
of cell surface receptor tyrosine kinases and upstream of a
cytoplasmic cascade of kinases that included the mitogen-
activated protein kinases (MAPKs). Activated MAPKs in
turn regulated the activities of nuclear transcription factors
between the cell surface and the nucleus in signaling cascade
where it was defined and conserved in worms, flies, and
man [2]. It is becoming increasingly evident that different
members of the Ras subfamily may have different biological
functions that depend not only on differences in their
affinities to regulators or effectors but also in their precise
subcellular localization [9]. The functions of Ras protein
had been investigated in Drosophila melanogaster [27–31],
but the study on the biological functions of Ras protein in
Bombyx mori as representation of Lepidoptera insect was
largely unknown [32, 33].

We conducted the research on the gene named Bom-
byx mori Ras protein (BmRas1) (GenBank accession no:
NM 001043508) from the cDNA library. Bioinformatics
analysis showed that BmRas1 contained an H-N-K-Ras-like
domain belonging to Ras subfamily. Amino acid sequences
of some members of the Ras family from many species
were aligned. BmRas1 were highly homologous with ras
protein of Aedes aegypti (EAT35784), Anopheles gambiae
(XP 307965), Apis mellifera (XP 394288), and Drosophila
melanogaster (NP476699). The lysine-rich C-termini (last
24-25 amino acids), termed “the hypervariable region”
(HVR), was highly varied, which was divided into the lipid
anchor and the preceding linker domain. This domain was
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Figure 5: Subcellular localization of BmRas1 protein in BmN cells. Immunostaining with antibody to BmRas1 showed that BmRas1 was
located on membrane, partly in cytoplasm in BmN cells. (a), (e), (i) cells in the light transmission; (b), (f), (j) nucleolus dyed by DAPI; (c),
(g), (k) intracellulare BmRas1 dyed by Cy3; (d), (h), (l) merged image; (a–d) were negative control. Scar bars indicated 10 μm.
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Egg Larvae Pupae Moth

21 kD

Figure 6: Expression of BmRas1 protein in different stages of
Bombyx mori. BmRas1 expressions in four developmental stages
were analyzed by Western blot. BmRas1 was expressed at high level
in egg, pupae and moth, but at low level in fifth instar larva.

responsible for the membrane anchoring and intracellular
trafficking of Ras protein, which interacted electrostatically
with negatively charged phospholipids in the internal mem-
brane leaflet [34]. The CAAX motif of BmRas1, CTLF,
was different with all aligned sequences of other species.
Bombyx mori Ras proteins were neither farnesylated nor
palmitoylated but were geranylgeranylated [33].

BmRas1

1 2 3 4 5 6 7

21 kD

Figure 7: Expression of BmRas1 protein in different tissues of the
fifth instar larvae of Bombyx mori was analyzed by Western blot. The
BmRas1 protein was highly expressed in malpighian tubule, head,
silk glands, and lowly expressed in seminal glands and ovary. No
expression of BmRas1 was detected in epidermis and fatty body. 1:
malpighian tubule; 2: head; 3: epidermis; 4: fatty body; 5: seminal
glands; 6: ovary; 7: silk glands.

BmRas1 gene was cloned into pET-28a (+) vector and
expressed in E.coli cells. Ras protein with low intrinsic
GTPase activity can bind to GTP to hydrolysis. The GTPase
activity of purified recombinant BmRas1 protein was tested
by FeSO4-(NH4)2MoO4 assay. The result showed that we
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successfully expressed the recombinant BmRas1 proteins
which possessed an intrinsic GTP hydrolysis activity.

The expression of BmRas1 was detected during different
developmental stages in Bombyx mori. BmRas1 protein was
expressed in high level in egg, pupae, and moths, but in
low expression in fifth instar larvae. In order to learn more
about the distribution of BmRas1 protein, the expression
levels of BmRas1 in various tissues of the fifth instar larvae
were analyzed. BmRas1 proteins were expressed in tissues
including malpighian tubule, head, seminal glands, ovary,
and silk gland. The biological functions of BmRas1 protein
in different tissues distribution need to be explored in further
research. Subcellular localization of the protein can provide
valuable clues about its function. The subcellular localization
of the BmRas1 was examined by laser confocal microscopy.
The result suggested that BmRas1 mainly localized on
cellular membrane, partly in cytoplasm of BmN cells. The
difference from Ogura’s result that BmRas1 proteins were
specifically localized on the cell membrane may be related
to difference in cells used. Furthermore, Sf-9 cells were
used in Ogura’s experiment, while BmN cells were used
in this research. Sf-9 Cells are derived from Spodoptera
frugiperda, whereas BmN cells are derived from Bombyx
mori. The basic research of the silkworm BmRas1 protein in
tissue localization and biological functions will provide an
important basis for further study of the role of this protein in
silkworm.
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