
Introduction 

Alzheimer disease (AD), age-dependent dementia characterized 
by irreversible and progressive loss of memory and cognition, 
shows an approximately 11.3% prevalence in patients aged 65 
years and older in the United States [1]. The prevalence of de-
mentia was reported to be 10.2% in the Republic of Korea, of 
which approximately 74.5% were diagnosed with AD [2]. Both 
reports showed that the incidence of AD increases with age and 
that the prevalence of AD is expected to increase until 2050. The 
cause of AD is not completely understood [3], and its patho-
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physiology is associated with amyloid-beta (Aβ) and tau protein 
accumulation, glial dysfunction, neurodegeneration (loss of 
neuronal connections), and altered oscillatory network activity 
[1,4-6]. 

Approximately 70% of the risk of AD is believed to be inherit-
ed from, with many genes usually involved [7]. Glenner and 
Wong [8] first suggested a correlation between cerebrovascular 
Aβ protein and Down syndrome (trisomy 21), which is homolo-
gous to AD. In dominantly inherited AD, missense mutations in 
amyloid precursor protein (APP) or presenilin-1/-2 genes on 
chromosome 21 increase Aβ production. Nondominant AD in-
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creases Aβ levels in the brain via the failure of Aβ clearance. Both 
of these situations result in the accumulation of Aβ42 oligomers 
in limbic systems. Affluent diffuse Aβ plaques without neuritic 
dystrophy, microgliosis, astrocytosis, and tangle formation have 
been observed in people who died in their early to mid-teens be-
cause of familial AD [9]. Aβ42 oligomers, which have been iso-
lated from late-onset AD brains, reduce synapse density, suppress 
prolonged potentiation, and reinforce prolonged synaptic de-
pression in the rodent hippocampus [9], and intraventricular in-
jection of Aβ42 oligomers damages memory in healthy mature 
rats [10].  

Thus, Aβ could directly or indirectly injure synapses and induce 
neuritis [9]. Aβ42 oligomers in patients with AD could also induce 
tau phosphorylation, which is associated with an increase in neuro-
fibrillary tangles and neurotoxicity [9,11]. Since the discovery of 
Aβ protein, the Aβ hypothesis [12,13] has become the dominant 
model of AD pathogenesis and is guiding the development of po-
tential therapeutic strategies. Although it is unclear how Aβ accu-
mulates in the central nervous system and subsequently initiates 
AD, the generation of Aβ may occur in the neuronal axonal mem-
branes after APP-mediated axonal transport of β-secretase, γ-secre-
tase, and presenilin-1 [14,15], thus forming senile plaques outside 
neurons [16,17]. 

According to the Aβ hypothesis, several strategies have been 
identified as possible interventions against Aβ [18], including in-
hibitors against β-secretase or γ-secretase, selective Aβ42-lowering 
agents, and immunotherapy against Aβ. The results of a few clinical 
trials with monoclonal antibodies to Aβ have suggested a signifi-
cant cognitive decline in patients with mild, but not moderate AD 
[9], but most immunotherapies eventually failed in phase II (cren-
ezumab and gantenerumab) or phase III (solanezumab, adu-
canumab, and bapineuzumab) clinical trials [19]. These failures of 
Aβ monoclonal antibodies imply the need for a new approach to 
treat patients with AD. 

The ion channel hypothesis postulates that oligomers of soluble, 
nonfibrillar Aβ form membrane ion channels, allowing the unreg-
ulated calcium influx into neurons [20,21] that underlies the dis-
rupted calcium ion homeostasis and apoptosis seen in AD [22]. 
Optogenetics is a neuromodulation method that uses a combina-
tion of genetic methods and optical instruments to allow light to 
modulate the specific molecular and cellular activities of individual 
neurons in living tissue [23-26]. In this review, we will discuss the 
historical applications of optogenetics to investigate the mecha-
nisms and possible therapeutic strategies involved in AD based on 
the Aβ hypothesis. 

Optogenetic technique as a new  
neuromodulatory method 

After Crick [27] speculated the concept of using light to control 
neuronal activity in 1979, Callaway and Katz [28] used light to un-
cage glutamine in living brain slices. Zemelman et al. [29] devel-
oped a targeting method using light to control rhodopsin-sensi-
tized neurons. Nagel et al. [30] first applied the optogenetic ma-
nipulation of cation-selective ion movement by expressing chan-
nelrhodopsin-2 in Xenopus laevis and mammalian cells. Boyden et 
al. [23] used channelrhodopsin-2 to control neuronal spiking and 
synaptic transmission. 

Based on this historical background, the application of optoge-
netics is fundamentally composed of (1) light-sensitive microbial 
opsin engineering, (2) genetic methods to introduce the opsin 
into cells, and (3) optical instruments for guiding light to activate 
or inhibit specific neural circuits to manipulate their behavior with 
temporal precision [23,25,31] (Fig. 1). 

Light-activated proteins are required for the optical manipula-
tion of molecular or cellular activity. Channelrhodopsin and an-
ion-conducting channelrhodopsins are used to excite and inhibit 
neurons, respectively [32]. Halorhodopsin, bacteriorhodopsin, 
and archaerhodopsins are also used to inhibit neuronal activity 
[33,34]. 

The expression of microbial opsins in mammalian cells has been 
challenging. The use of viral vectors such as adeno-associated virus 
(AAV) is a fundamental method to express high levels of opsins, 
and the transfected neurons become electrically active in response 
to light [35,36]. Transgenic mice, including those using the Thy1 
promoter, express opsins in the affected region at higher specificity 
than viral vectors do [36,37]. Using the Cre/lox recombinase sys-
tem to create transgenic mice is a novel approach to optogenetics 
[36]. Photo-activable Cre recombinase can stably modify gene ex-
pression in the mouse brain [38,39]. 

Optogenetics principally depends on light stimulation. Al-
though mercury arc lamps, light-emitting diodes (LEDs), and la-
sers have been used as in vitro light sources, organic LEDs are 
emerging technologies for optogenetics. Organic LEDs are suit-
able for implantation into the brain because they are softer, thinner, 
and more flexible than existing light sources and can supply ade-
quate optical power over an acceptable temperature range [40]. 
Eventually, optogenetic techniques allow localized modulation of 
cell types of interest and simultaneous bidirectional control [41]. 
Moreover, the amplitude of stimulation and the time course are 
easily controlled by the light. This stimulation was shown to be rel-
atively reproducible [42]. 
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Gamma oscillation entrainment and  
Alzheimer disease 

The different cell types in the central nervous system interact with 
each other, resulting in specific rhythmic oscillations such as delta, 
theta, alpha, beta, gamma, and sharp-wave ripples [6]. Jasper and 
Andrews [43] first introduced the term “gamma wave” in their re-
port on the “normal differentiation of occipital and precentral re-
gions in man” to describe higher frequencies (35–48 Hz) beyond 
the beta range. The widely reported frequency of gamma oscilla-
tions is 25 to 140 Hz, with the 40-Hz frequency being of particular 
interest [44]. In addition to light, sound, or tactile stimuli [44], var-
ious methods to stimulate gamma waves, including temporal inter-
ference [45], ultrasound stimulations [46], and optogenetics [47] 
have been suggested. Gamma oscillations correlate with various 
functions of the brain, including sensory processing and cognitive 
functions such as learning and memory [48]. Inter-areal coherence 
and local regulation have generated interest in gamma oscillations 
[49,50]. Parvalbumin-positive inhibitory neurons are dominant in 
gamma oscillation generation [6,51], while the activation of pyra-
midal neurons increases lower frequency oscillations in vivo [49]. 

Decreased synchronization of gamma oscillations [52-54] or 
enhanced gamma band power and lagged gamma responses 
[55,56] have been observed in patients with AD. Disturbances of 
slow gamma oscillations have also been reported in rodent AD 

models [57]. Interestingly, the transgenic APP-presenilin-1 mouse 
model of AD exhibits decreased gamma oscillation power in the 
lateral entorhinal cortex, which transmits various sensory inputs to 
the hippocampus and thus participates in memory processes anal-
ogous to those affected by human AD [58]. Decreased hippocam-
pal slow gamma oscillation power has also been observed in a 
transgenic mouse model of AD [57]. 

Stimulation of gamma oscillations may have therapeutic poten-
tial for AD. Stimulation with light and sound sources at 1 to 30 Hz 
increases physical and cortical performance in patients with AD 
[59]. Light and sound stimulation between 8 and 15 Hz in patients 
with AD who are elderly improves cognitive performance, memo-
ry function, and alpha waves [44,60]. Visual stimulation by light 
flashes increases gamma band activity, in which patients with AD 
demonstrate increased frontoparietal gamma coherence and re-
duced occipitoparietal coherence [44,56]. 

Although the precise molecular and cellular mechanisms by 
which gamma oscillation stimulation ameliorates AD pathology 
are unknown, a correlation between Aβ and altered gamma oscilla-
tions has been reported. Decreased gamma oscillations could ap-
pear without Aβ plaques in TAS10 mice overexpressing human 
APP [61]. A close association between reduced gamma activity 
and functional behavioral deficits, as well as altered hippocampal 
gamma oscillations connected to Aβ, was found in the olfactory 
network of APPswe transgenic mice [62]. 

Fig. 1. Schematic overview of optogenetics. (A) Genetic materials containing microbial opsin are introduced in viral vectors such as 
adeno-associated virus to transduce microbial opsins in laboratory mice. The vector is injected to target neuron cells and express opsins. 
(B) Creating transgenic mice through Cre recombinase is a novel approach to develop opsin-expressing mice. Through Cre-mediated 
recombination of loxP sites, microbial opsins can be expressed in specific cells that express Cre recombinase. (C) After expression of 
microbial opsins, light sources introduce light to specific sites in the laboratory animals. Some microbial opsins such as channelrhodopsin 
activate signals and others such as halorhodopsin inhibit signals. P, promoter; LED, light-emitting diode; OLED, organic LED.
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Optogenetic neuromodulation and  
Alzheimer disease 

As the control of neural activity and neural circuit interrogation 
was made possible using optogenetic techniques [35,63], optoge-
netic approaches to AD subsequently began. 

Since the loss of α4β2 nicotinic receptors is increased in AD [64-
67], acetylcholine is released synaptically by optogenetic stimula-
tion [68]. Bell et al. [68] suggested that activation of α4β2 recep-
tors mediates nicotinic excitatory postsynaptic potential (EPSP) in 
CA1 interneurons by affecting the stratum lacunosum-moleculare 
using retroviral AAV expressing oChIEF in a Cre-dependent man-
ner. Optogenetic activation of pyramidal neurons in the entorhinal 
cortex layer III improves synaptic defects between pyramidal neu-
rons and CA1 parvalbumin-positive neurons in transgenic AD 
mice. It also halts the decrease in spatial learning and memory 
[69]. Although AAV has been generally used as a viral vector, the 
incidence of sharp wave ripples is reduced by optogenetic stimula-
tion at the target location. The medial septum cholinergic stimu-
lation of sleeping animals decreases sharp-wave ripples and ad-
vances theta-gamma oscillations. This research highlights the sig-
nificance of the timing of cholinergic input. This could explain the 
limited success of cholinesterase inhibitor drugs in AD [70]. 

Optogenetic inhibition of hilar GABAergic interneurons of the 
dentate gyrus (DG) through Cre-dependent gene expression of 
enhanced halorhodopsin disrupts spatial learning and memory re-
trieval without affecting short-term working memory, motor coor-
dination, and memory retention. Using optogenetic stimulation, 
GABAergic interneurons can be activated without affecting pyra-
midal neurons in the CA3 and CA1 regions [71]. Optogenetic 
stimulation of hippocampal memory engram cells in transgenic 
AD mice overexpressing APP/presenilin-1 induces memory re-
trieval. Optogenetic stimulation of DG engram cells improved 
long-term memory and spine density [72]. Optogenetic stimula-
tion of the DG in APP/presenilin-1 ×  ArcCreERT2 ×  channelrho-
dopsin-2-enhanced yellow fluorescent protein mice improved 
memory impairment. Stimulation of DG neural ensembles leads 
to enhancement of memory retrieval and reactivation of neural en-
sembles [73], which suggests that optogenetic DG manipulation 
could be a target for AD treatment. 

Optogenetic activation of glutamatergic neurons in Aβ-injected 
mice improves working memory and short-term memory without 
affecting long-term memory in the bilateral DG. This stimulation 
downregulates Aβ and upregulates neuronal nuclei, which are bio-
markers of neuroprotection [10]. As antagonism of adenosine A2A 
receptor (A2AR) mimics memory impairment prevention in AD 
animal models [74-77], optogenetic activation of a chimeric rho-

dopsin-adenosine A2AR protein activates cyclic adenosine mono-
phosphate (cAMP) signaling, which increases cAMP levels and 
mitogen-activated protein kinase phosphorylation. This activation 
induces memory dysfunction in the hippocampus through phos-
pho-CREB signaling [77]. These reports suggest that multiple, 
targeted optogenetic approaches can be used to treat AD [10]. 

Optogenetics-induced gamma oscillations 
and Alzheimer disease 

Since the excitation of gamma oscillations reduces circuit noise 
and amplifies signals that result in an increase in the signal trans-
mission of the neocortex [49], optogenetics-induced gamma oscil-
lations may have therapeutic potential for AD. Studies on the appli-
cations of optogenetics to 40-Hz gamma oscillations have been on-
going since the optogenetic stimulation of fast-spiking parvalbu-
min-positive interneurons in gamma oscillations was first demon-
strated in mice [78]. Entrainment or synchronization of hippo-
campal gamma oscillations and spiking to 40 Hz via noninvasive 
stimuli, such as flashing lights or pulses of sound [79], reduces the 
Aβ load and activates microglia in a well-established 5XFAD 
mouse model of AD [80]. 

Decreased amyloidogenesis and increased amyloid endocytosis 
can be mediated by microglia [80]. Co-localization of microglia 
and Aβ was confirmed by histological analysis and induction of 
genes related to morphologic transformation of microglia was con-
firmed by gene expression profiling. That study suggested a neuro-
protective role of gamma oscillations that affect neurons and mi-
croglia. Gamma oscillations also decrease phosphorylated tau pro-
tein levels [80]. 

In the JA20 AD mouse model, optogenetic stimulation of parv-
albumin-positive interneurons restores slow gamma oscillations 
and increases spatial memory [47]. Accumulation of Aβ1-42 oligo-
mers disrupts long-term potential and theta-nested gamma oscilla-
tions in the hippocampus. Furthermore, stimulation of GABAer-
gic interneurons reduces neuroinflammation and activates autoph-
agy. Photostimulated APP/presenilin-1 mice showed a significant 
decrease in escape latency in the Morris water maze test, indicating 
that optogenetic stimulation ameliorates spatial learning [81]. Op-
togenetic modulation of channelrhodopsin-2-expressing parvalbu-
min-positive interneurons restores gamma oscillations and gamma 
oscillation-induced spike timing-dependent long-term potentia-
tion [82]. This activation selectively increases spontaneous inhibi-
tory postsynaptic currents at theta and gamma frequencies and re-
stores Aβ-induced reductions [83].  

However, activation of parvalbumin-positive neurons by 40-Hz 
optical stimulation in the basal forebrain increased Aβ1-42 levels. 
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Accumulation of amyloid plaques was increased in the medial pre-
frontal cortex and the septal nuclei. These results indicate that the 
method of activation of gamma oscillations changes the modula-
tion of Aβ plaques [84]. Optogenetic stimulation of double-fre-
quency slow waves increased the disruption of calcium homeosta-
sis by Aβ and induced synaptic spine loss [85]. Subsequent human 
clinical trials of gamma oscillation band stimulation have shown 
mild cognitive improvements in patients with AD who have been 
exposed to light, sound, or tactile stimuli in the 40-Hz range [44]. 
However, the precise molecular and cellular mechanisms by which 
gamma oscillation band stimulation ameliorates AD pathology are 
unknown. 

Limitations and prospects of optogenetics 

Various anti-Aβ therapies are ongoing in clinical trials, but effective 
drugs are still lacking [86]. Although optogenetic technology for 
AD could be a new therapeutic approach, the major limitation of 
optogenetics is the use of viral vectors to express microbial opsins 
in human cells. Using viral vectors for gene therapy is considered a 
risky method that has not been fully tested to date, since AAV may 
cause activation of innate immunity and systemic inflammatory re-
sponses in humans [87,88]. Current optogenetics is mostly inva-
sive because of the implantation of optic fibers, and overheating 
that induces tissue damage may be caused by the light [89]. Opto-
genetic stimulation also increases neuronal DNA double-strand 
breaks in mice [90]. The inappropriate use of optogenetics may 
paradoxically induce AD. Five months of chronic optogenetic 
stimulation could increase the formation of Aβ [91] and the re-
lease of tau protein [92]. Moreover, it remains a challenge to target 
opsins to defined organelles, including the plasma membrane or 
mitochondria [93,94] or to specific regions including dendrites or 
axon terminals [94]. 

Although optogenetics may have limitations, optogenetic neu-
romodulation allows for deep brain stimulation. In addition to 
AD, optogenetics-driven research has led to insights into Parkin-
son disease [93,95], autism, schizophrenia, drug abuse, anxiety, 
and depression [34,49,78,96]. As shown in the historical time-
line (Fig. 2), this technology could modulate specific targets and 
neuronal activity [97]. The technical development of light delivery 
sources is also required. MicroLED arrays selectively stimulate op-
sins and act as biological amplifiers [98]. For in vivo modulation, 
the wireless form of a light source improves the application of op-
togenetics. Wireless control of light sources has been studied since 
2011 [99]. In vivo injectable instruments require safe injectable 
battery technologies. The battery-free wireless system developed 
by Zhang et al. [100] could be another solution. 

Conclusion 

A new clinical approach for AD is needed because of the failure of 
Aβ monoclonal antibodies. Optogenetics could play key roles in 
learning the mechanisms of cellular responses and thus has the 
potential to treat neuronal diseases. In addition, optogenetics-in-
duced gamma oscillations might provide a new method to mod-
ulate local neuronal signals in AD. Further research is needed to 
determine how optogenetics might be associated with gamma 
oscillations, and we suggest that, based on studies to date, it is 
highly related to the continuity of excitation-inhibition signals, 
frequency of gamma oscillations, and cytokine production-relat-
ed cell signaling. Although optogenetics and gamma oscillations 
are currently not fundamental therapeutic approaches for AD, 
their combination could be a new way to manage AD. The devel-
opment of actuators and sensors must precede the clinical use of 
optogenetics, since the viral vectors and opsins that have been 
used in optogenetic research are currently limited. As deep learn-
ing technology advances, the artificial manufacturing of opsins or 
modulation of viral vectors could be a breakthrough in optoge-
netic technology. 

Fig. 2. Timeline of optogenetics and gamma entrainment related 
to the development of therapeutic strategies for Alzheimer 
disease (AD). Aβ, amyloid-beta; white arrowhead, related to 
gamma entrainment; black arrowhead, related to optogenetics.
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