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ABSTRACT
Whereas TLR9 agonists are recognized as powerful stimulators of antitumor immunity, GM-CSF has had
mixed reviews. In previously reported randomized trials we assessed the effects of local immune
modulation in early-stage melanoma with CpG-B alone or with GM-CSF. Here we discuss the added
value of GM-CSF and show sex-related differences.
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Introduction

Granulocyte-macrophage colony-stimulating factor (GM-
CSF) is an important hematopoietic growth factor that plays
multiple roles in the development and differentiation of pro-
genitor cells into granulocytes, macrophages and dendritic
cells (DC). Results from clinical trials that evaluated GM-
CSF for the treatment of advanced melanoma, extensively
reviewed by Hoeller et al., have been ambiguous.1 GM-CSF
can enhance anti-tumor responses by stimulating DC but it
can also promote myeloid-derived suppressor cell (MDSC)
expansion and act as a chemo-attractant for neutrophils
which can dampen the immune response and even promote
tumor growth and disease progression.1 Much is influenced
by the context in which GM-CSF is administered2 and more
research is warranted in order to find optimal dosing, combi-
nations, and administration routes for GM-CSF as a potential
treatment for melanoma. For instance, in combination with
ipilimumab, an overall survival advantage has been reported,
which, beside immune activation, may have been related to
lower toxicity rates.3,4 There has also been the further sugges-
tion that clinical benefit may be associated with lower doses,
leading to DC activation, rather than with higher doses, which
may result in detrimental MDSC mobilization.1 In line with
this, localized expression of GM-CSF, encoded by the intra-
tumorally delivered oncolytic virus Talimogene laherparepvec
(T-VEC), led to an actual decrease in intratumoral MDSC and
regulatory T cell (Treg) rates and increased T cell infiltration.5

In patients with early metastatic melanoma (IIIB/C-IVM1a)
impressive clinical outcomes were observed after T-VEC
treatment with a best overall response rate and complete
response rate of 88.5% and 61.5% respectively.6

In localized melanoma, disease recurrence after resection
of the primary tumor is dependent on disease stage, which
includes risk factors such as Breslow thickness, tumor ulcera-
tion and whether or not the tumor has metastasized to the
regional lymphatics.7 As a prognostic measure, a sentinel
node biopsy (SNB) is performed to assess lymphogenic metas-
tasis, although so far the treatment implications are very
limited after identifying a tumor positive (sentinel) lymph
node (stage III disease). A complete lymph node dissection
is no longer indicated as this does not improve overall
survival8 and thus far only high-risk stage III patients have
an indication for treatment with checkpoint inhibitors. For
patients without lymphatic spread or with stage IIIA disease,
the only available treatment is surgery followed by a wait-and-
see policy, even though the chances of recurrence can be
considerable. Our clinical work has clearly demonstrated the
potential clinical benefits of local immune modulation prior
to SNB.

In three previously reported randomized controlled phase II
trials, we intradermally injected GM-CSF alone,9 the TLR9 ago-
nist CpG-B/CPG7909 alone,10,11 or CpG-B/CPG7909 and GM-
CSF combined10 directly adjacent to the excision scar of the
primary tumor in early-stage (i.e. localized) melanoma in the
week leading up to the SNB. In the first trial, patients received
four consecutive daily doses of 3 μg/kg body weight GM-CSF
(n = 6) or placebo (n = 6), immediately preceding SNB. In
the second trial patients received one dose of 8 mg CpG-B
(n = 11) or placebo (n = 13) one week prior to SNB, and in the
third trial, patients received 1 mg CpG-B (n = 10), 1 mg CPG-B
with 100 µg GM-CSF (n = 9) or placebo (n = 9), 7 and 2 days
prior to SNB. We previously reported potential down staging
and an improved recurrence-free survival (RFS) in patients who
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were treated with CpG-B in the second and third trial.12 Of note,
30% of the patients in the intervention group (9/30) of this meta-
analysis actually received combinational treatment with CpG-B
and GM-CSF. Here, we elaborate on our previous findings from
immune monitoring and clinical follow-up studies,10 and, based
on previously published data as well as data presented here for
the first time, demonstrate and discuss the added benefits of
including GM-CSF in CpG-based immune potentiation of the
melanoma sentinel lymph node (SLN).

Results and discussion

Clinical findings

All patients who had been enrolled in one of the two previous
randomized trials which included treatment arms with GM-
CSF pre-SNB,9,10 alone (n = 5) or combined with CpG-B
(n = 9), were combined into one treatment arm. Their recur-
rence-free survival (RFS) was compared to that of
a corresponding combined control group of patients receiving
a saline placebo from the same two clinical trials (n = 15).
Remarkably, we did not find any loco-regional or distant
disease recurrences in the treatment arm after a median follow
up of 90 months (Figure 1a). In comparison, we found five
recurrences in the combined control groups (n = 15) from the
same trials (p = .002). Although we did not find any recur-
rences in the GM-CSF group, one patient had never attended
any follow-up visits and further data could not be retrieved
(this patient was therefore not included in the analyses) and
one patient died from an unrelated cause at 19 months after
treatment (this patient was censored at 19 months). Although
these patient groups are too small to draw any firm conclu-
sions, locally administered GM-CSF, either alone or combined
with CpG-B, certainly appeared to improve clinical outcome
in terms of RFS of patients with early-stage melanoma.

Myeloid subset modulation and sex disparities

We have previously identified two skin-derived migratory con-
ventional DC subsets (cDC), i.e. Langerhans cells (LC) and dermal
dendritic cells (DDC), and two lymph node resident cDC subsets
(LNR-cDC) in melanoma SLN.13 The LNR-cDC subsets differ in
their expression of CD14, with the CD14− LNR-cDC phenotypi-
cally resembling CD141+ cDC1 with particular cross-presenting
abilities. We found locally administered GM-CSF to activate and
induce the migration of skin-derived cDC subsets to the SLN.14

The combination of GM-CSF with CpG-B also resulted in super-
ior activation of skin derived cDC.10 These findings are in keeping
with our previous observation of increased activation of skin
explant-emigrated cDC subsequent to intradermal GM-CSF
injection.15 In contrast, no such effect was observed for CpG-B,
but rather cDC1 and pDC were mobilized to the deep dermis
upon intradermal delivery of CpG-B (Koster et al., manuscript in
preparation). We have also reported that the addition of GM-CSF
to locally administered CpG-B prior to SNB, resulted in more
profound activation of the LNR-cDC subsets, and indeed
increased the cross-presentation capacity of SLN-derived leuko-
cyte suspensions.10 We also observed that frequencies of the
CD14− LNR-cDC in SLN correlated with the decrease in cDC1

frequencies in PBMC of patients who had received the combina-
tion of CpG-B and GM-CSF (Figure 1b, top panel previously
published10). We now report that this correlation was absent in
patients who received CpG-B only (Figure 1b, lower panel). These
data indicate that the addition of GM-CSF to CpG-B enhances the
mobilization of cDC1 to the SLN as well as their activation.
Remarkably, when we subdivided patients by sex, disparities in
terms of DC activation became apparent (see Figure 1c). Whereas
CpG-B monotherapy in men induced significant activation of
both CD14− LNR-cDC and pDC in the SLN (by CD83 expres-
sion), and in equal measure as when combined with GM-CSF, in
women an equivalent activation induction in these subsets
required combined CpG-B and GM-CSF activation. Of note,
similar observations were made for the CD14+ LNR-cDC subset
(data not shown). The role of sex specific hormones and genetics
on the immune system16,17 and cancer progression18,19 has been
well documented, but this has not yet led to cancer treatment
implications based on the patient’s sex. Our data suggest that
optimal activation of DC and, as a consequence, subsequent
priming of antitumor effector T cells in women with early-stage
melanomamay require combined administration of GM-CSF and
CpG-B. This may be related to sex-dependent differences in TLR9
expression levels as previously observed in amouse study, wherein
increased TLR9 expression levels in males led to improved clear-
ance of a viral infection.20 Moreover, a sex-dependent inflamma-
tory cytokine pattern during melanoma development was also
described before in an experimental mouse model.21 Improved
pDC activation and IFNα release by GM-CSF has also been
previously reported,22 but, as far as we know, has never previously
been linked to sex-dependent mechanisms. It is important to note
that despite these remarkable differences in DC subset activation,
we did not find any differences in RFS between women receiving
CpG-B only or CpG-B combined with GM-CSF. However, again,
caution is warranted due to the small sample size.

Whereas CpG-B monotherapy led to a significant reduc-
tion in circulating monocytic MDSC (mMDSC) rates (defined
as CD14hiHLA-DR−) at day 7 after the first injection (i.e. day
of SNB, see Figure 1d), this reduction was abrogated by the
addition of GM-CSF. This is consistent with the reported
systemic mobilization of MDSC by GM-CSF,1 apparently
counteracting the mMDSC-reducing effect of CpG-B.
Whereas high doses of CpG and chronic type-I IFN exposure
may lead to increased MDSC levels,23,24 local CpG may actu-
ally attenuate MDSC development and their suppressive activ-
ity by inducing their maturation.25 The latter is consistent
with our observation.

IFN response gene expression

Type-I IFN responses have been identified as crucial to the
generation of an effective antitumor T cell response,26 indu-
cing the maturation of cDC1 and enhancing their cross-
presenting ability, while simultaneously boosting the effector
functions of cytotoxic T cells and NK cells alike. We ana-
lyzed transcript levels of IFN Response Genes (IRGs) in
PBMC before treatment (t = 0), one week after treatment
(t = 7) and three weeks after treatment (t = 21). Cluster
analysis revealed concerted up-regulation of a group of 33
IRGs at t = 7 in the CpG-treated patient groups (shown in
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Figure 1e). Of the in total 47 tested IRGs, 33 IRGs were
significantly upregulated at t = 7 as compared to matching
baseline values in the CpG-treated patient groups (p values,
corrected for multiple testing, ranging from 0.019 to
7.4x10e-6), but none in the saline placebo group. Of these
33 significantly up-regulated genes, 31 were also part of the
identified co-regulated cluster of 33 genes shown in Figure
1e. Interestingly, whereas the IRG expression levels

remained high on t = 21 in the CpG-B only group, their
levels had gone down by then in the combined CpG-B and
GM-CSF group (see Figure 1e). This would fit with reports
that GM-CSF may initially enhance pDC-derived type-I IFN
responses through up-regulation of IRF8, but at later time
points would lead to down-regulation of IRF8 and so attenu-
ate IFN responses.27,28 Analysis of changes in IRF8 tran-
script levels from t = 0 to t = 7 versus from t = 7 to t = 21

Figure 1. Added local and systemic effects of GM-CSF, co-delivered locally with CpG-B, in early-stage melanoma. Results shown are from patients receiving either
a saline placebo (saline), or two administrations of CpG-B (CpG, 1 mg) or CpG combined with GM-CSF (CpG+GM, 1 mg + 100 µg) at day −7 and day −2 before
sentinel lymph node biopsy (SNB), or GM-CSF alone (GM-CSF), 4 doses of 3µg/kg divided over the four days leading up to SNB. All were administered at the excision
site of the primary tumor. (a) Recurrence-free survival of patients who were treated with GM-CSF with or without CpG-B (n = 14) versus patients that received saline
(n = 15, p value is listed). (b) Correlation between changes in BDCA3/CD141+ peripheral blood cDC (cDC1) frequencies (between day −7 and 0) and
CD1a−CD11chiCD14− cDC (CD14-LNDC) rates in the SLN of patients who received CpG+GM or CpG. (c) CD14− LNDC and pDC activation (by CD83) in men and
women after local treatment with CpG or CpG+GM. (d) Pre- (day −7, open bars) and post-treatment (day 0, closed bars) frequencies of monocytic myeloid derived
suppressor cells (mMDSC) in peripheral blood of patients receiving either saline, CpG, or CpG-B+ GM-CSF. (e) Transcriptional profiling reveals post-treatment
induction of a type-I Interferon (IFN) response signature in peripheral blood mononuclear cells in patients receiving CpG or CpG+GM. (f) Changes in IRF8 transcript
levels (relative to GAPDH) between t = 7 and t = 0 and t = 21 and t = 7 for saline (n = 9); CpG (n = 9); CpG+GM-CSF (n = 5). Statistical significance: * P < .05; **
P < .01; either by One-way ANOVA with Tukey post-hoc test or by paired two-sided student’s T test.
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between the treatment groups would indeed seem to support
this hypothesis (figure 1f). Interestingly, these differential
expression levels of IRF8 transcripts between CpG-B only
and combined GM-CSF/CpG-B may also explain the
observed effects on mMDSC levels (Figure 1d), as GM-CSF-
induced down-regulation of IRF8 has been implicated in
increased MDSC development.29 Of note, although type-I
IFN responses favor antitumor immunity and facilitate
immune checkpoint blockade, chronic type-I IFN exposure
can also have detrimental effects, up-regulating MDSC rates
and PD-L1 expression and actually mediating resistance to
certain cancer therapies, including immune checkpoint
blockade.26,30 Thus, timely attenuation of IRGs by GM-CSF
may actually be beneficial.

Conclusion

Although GM-CSF can have both adverse and favorable
effects on parameters contributing to antitumor immunity,
its clearly positive effects on LNR-cDC recruitment and acti-
vation and its apparent ability to secure LNR-cDC and pDC
activation in women, warrants its further clinical exploration
in combination with next-generation CpG oligodeoxynucleo-
tides for the local treatment and conditioning of melanoma
SLN in patients with early-stage melanoma. Certainly, the
resulting significantly improved clinical outcome, with none
of the fourteen GM-CSF-treated patients experiencing recur-
rences, seems to underline this notion.

Patients and methods

For patient characteristics, we refer to Vuylsteke et al.9 and
Sluijter et al.10 Importantly, for both trials, the control groups
and treatment groups were balanced in terms of sex, age,
ulceration, Breslow thickness, and disease staging. For meth-
ods and statistics employed in the flow cytometry analyses, we
refer to Sluijter et al.10 and for methods and statistics
employed for clinical follow-up analysis, we refer to Koster
et al.12 For methods and statistics employed in the flow
cytometry analyses, we refer to Sluijter et al.10 and for meth-
ods and statistics employed for clinical follow-up analysis, we
refer to Koster et al.12 The studies were approved by the
Institutional Review Board of the VU University Medical
Center, and written informed consent was obtained from
each patient before treatment in accordance with the
Declaration of Helsinki.

Type-I interferon (IFN) response analysis

PBMC were isolated and total RNA isolated and reverse tran-
scribed as previously described.10 Forty-seven type I IRGs were
selected based on significant upregulation in more than 3 experi-
ments published on the Interferome database31 (http://www.inter
ferome.org/). Custom-designed TaqMan®assays for each gene
were supplied by Applied Biosystems. Quantitative PCR (qPCR)
analysis was performed at ServiceXS (ServiceXS B.V., Leiden, The
Netherlands) using the 96.96 BioMark™ Dynamic Array for Real-
Time PCR (Fluidigm Corporation, San Francisco, CA, USA),
according to the manufacturer’s instructions. Thermal cycling

and real-time imaging of the BioMark array was done on the
BioMark instrument, and cycle threshold (CT) values were
extracted using the BioMark Real-Time PCR analysis software.
Relative quantities were calculated using the standard curve
method, using glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) as a housekeeping gene. Expression levels were 2log-
transformed. Cluster analysis was used for categorization of IRGs
with respect to their relative expression between treatment arms.32

TreeView was used to visualize the clustering of genes (Eisen Lab,
Berkeley, CA, USA). Comparison of IRG expression between time
points was assessed using paired t tests. The Benjamini-Hochberg
procedure was applied to correct for multiple testing. Corrected
P values of <0.05 were considered significant.
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