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Host microbiome responses 
to the Snake Fungal Disease 
pathogen (Ophidiomyces 
ophidiicola) are driven by changes 
in microbial richness
Alexander S. Romer1, Joshua B. Grinath2, Kylie C. Moe1 & Donald M. Walker1*

Dermatophytic pathogens are a source of disturbance to the host microbiome, but the temporal 
progression of these disturbances is unclear. Here, we determined how Snake Fungal Disease, caused 
by Ophidiomyces ophidiicola, resulted in disturbance to the host microbiome. To assess disease 
effects on the microbiome, 22 Common Watersnakes (Nerodia sipedon) were collected and half were 
inoculated with O. ophidiicola. Epidermal swabs were collected weekly for use in microbiome and 
pathogen load characterization. For the inoculated treatment only, we found a significant effect of 
disease progression on microbial richness and Shannon diversity consistent with the intermediate 
disturbance hypothesis. When explicitly accounting for differences in assemblage richness, we found 
that β-diversity among snakes was significantly affected by the interaction of time and treatment 
group, with assemblages becoming more dissimilar across time in the inoculated, but not the control 
group. Also, differences between treatments in average microbiome composition became greater 
with time, but this interactive effect was not evident when accounting for assemblage richness. These 
results suggest that changes in composition of the host microbiome associated with disease largely 
occur due to changes in microbial richness related to disease progression.

Emerging infectious diseases (EIDs) have been identified by conservation biologists as a leading threat to global 
biodiversity in this century1–3. EIDs caused by fungal pathogens are of particular concern as they are more likely 
to result in the extinction/extirpation of their hosts when compared to diseases caused by other infectious agents4. 
Notable fungal diseases of wildlife include White-nose Syndrome of bats, Chytridiomycosis of amphibians, and 
Snake Fungal Disease5–7. Snake Fungal Disease (SFD) occurs in wild snake populations of many species, across a 
large geographic area in the United States, and has also been detected in numerous other countries8–13. Research 
has demonstrated that the fungus Ophidiomyces ophidiicola (previously Ophidiomyces ophiodiicola [Guarro, 
Deanna A. Sutton, Wickes and Rajeev] Sigler, Hambl. and Paré), is the causative agent of SFD5,14. Understand-
ing host responses to EIDs, such as SFD, may largely depend on our knowledge of how pathogens interact with 
host microbiomes.

The tissues and organs of multicellular organisms provide dynamic habitat for the host microbiome15,16. The 
epidermis of vertebrates harbors a diverse assemblage of microbes whose composition can be altered by factors 
such as microtopography, host demographics, and environmental conditions17. Additionally, multicellular organ-
isms possess complex relationships with their microbiome which can influence digestion, fitness, and pathogen 
susceptibility18–20. For example, Chytridiomycosis is known to alter the amphibian microbiome in wild popula-
tions and laboratory experiments21. Previous work has demonstrated that the epidermal microbiome of snakes 
sampled in the Eastern United States is distinct from environmental microbial assemblages22. Furthermore, host 
species, host habitat, and the presence of O. ophidiicola are predictive of the snake microbiome across spatial 
scales22,23. This suggests that the epidermal snake microbiome is not simply a product of random dispersal of 
microbes from the environment and is sensitive to host disease state. However, microbiome responses during 
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disease progression are generally unclear. This study investigates the relationship between Snake Fungal Disease 
progression and disturbance to the skin microbiome within an ecological context.

Ecological disturbance can be defined as the alteration of an ecological system by a perturbing biotic or 
abiotic process24. Host microbial assemblages are subject to ecological disturbance including such processes as 
epidermal disease flares25. Consequently, it may be reasonable to conceptualize colonization of snake skin by 
a fungal pathogen, like O. ophidiicola, as a disturbance to the host microbiome. Disturbance is associated with 
increased variability in microbial assemblage composition and alterations to the relative importance of stochastic/
deterministic assembly processes26. Additionally, increases in the magnitude or frequency of disturbance can 
result in changes to assemblage richness or other measures of diversity27. A widely accepted model relating dis-
turbance and species richness is the intermediate disturbance hypothesis28. This hypothesis suggests that higher 
levels of disturbance will increase species richness, until a threshold value is reached, at which point additional 
levels of disturbance will decrease richness28. Given that the extent of clinical signs associated with SFD generally 
increases over time14, it is likely that the microbiome may be differentially affected at different stages of infection. 
However, it is unclear whether microbiome response to disease is consistent with the intermediate disturbance 
hypothesis or other patterns of change.

Many field studies examining SFD have used samples of snakes collected at a single time point22,23,29,30. 
However, field studies with repeat sampling report significant variability in clinical signs and fungal load within 
individuals31–33. Understanding the mechanisms that underlie disease state variability is an unresolved but central 
issue in wildlife disease. SFD has been correlated with negative impacts to snake overwintering and reproductive 
suppression33–35. However, changes in the host microbiome may, in part, explain variation in pathogen load and 
disease signs, as the microbiome serves as the first line of defense against pathogens17. Studies have shown that 
infection with O. ophidiicola alters the composition of the host microbiome22,23. Furthermore, some culturable 
skin microbes of snakes are known to have inhibitory effects against O. ophidiicola36. Thus, understanding the 
effects of fungi on the microbiome, at the skin interface, may inform our understanding of microbial response 
to a pathogen mediated environment.

The overall objective of this experiment was to determine the effects of O. ophidiicola on the host microbi-
ome over temporal scales relevant to disease progression. We tested the following predictions: pathogen load 
will increase through time, prior to mortality, and infection will alter measures of alpha diversity (Operational 
Taxonomic Unit [OTU] richness, Shannon diversity, Shannon evenness), beta diversity (multivariate disper-
sion), and average community composition through time. To test these predictions, we inoculated snakes under 
controlled conditions and evaluated changes in microbial assemblages using metrics based on both the presence 
and abundance of OTUs to understand the community properties (i.e. richness, evenness) driving the observed 
patterns. This experiment provides a framework for interpreting the effects of wildlife pathogens on epidermal 
microbiomes over the course of disease progression. Additionally, our results elucidate bacterial-fungal interac-
tions in a non-mammalian epidermal microbiome within the context of host disease and wildlife conservation.

Results
We collected and analyzed 144 epidermal swabs via qPCR and high-throughput 16S rRNA amplicon sequencing. 
Eighteen snakes were swabbed on a weekly basis throughout the course of the experiment which lasted a total 
of 13 weeks. Eleven snakes were assigned to the inoculated treatment group and seven snakes were assigned to 
the sham treatment group. Over the course of the experiment, six inoculated snakes and four sham snakes died. 
Inoculated snakes had a mean value of 52% positive qPCR reactions when analyzed on a per-animal basis (i.e., 
not lumped before analysis). All snakes in the inoculated treatment group developed clinical signs of disease37.

Pathogen load.  Days prior to mortality was found to be significantly predictive of copy number (LME, 
χ2 = 3.92, p = 0.002; Fig. 1a). Thus, as the days prior to an animal experiencing mortality decreased, copy number 
increased in qPCR positive swabs (slope = −0.04; SE = 0.02). Additionally, experimental time was found to be sig-
nificantly predictive of copy number (LME, χ2 = 9.73, p = 0.003; Fig. 1b). Thus, as the experiment progressed, we 
detected higher pathogen load in our inoculated animals (slope = 0.07; SE = 0.03). These results indicate inocula-
tion success and disease progression through time.

Alpha diversity.  A significant and non-linear trend for OTU richness was found for the inoculated treat-
ment group through time (GAMM, edf = 2.53, F = 3.86, p = 0.0126; Fig. 2a) but not for the sham control group 
(GAMM, edf = 1.61, F = 1.83, p = 0.117; Fig. 2b). Inoculation produced a concave relationship where richness 
initially increased and then decreased through time. As with richness, a significant and non-linear trend for 
Shannon diversity (H) through time was observed for the inoculated treatment group (GAMM, edf = 2.559, 
χ2 = 20.75, p < 0.001; Fig. 2c) but not the sham control group (GAMM, edf = 2.18, χ2 = 2.82, p = 0.217; Fig. 2d). 
Thus, inoculation produced a non-linear trend on alpha diversity of the host microbiome, which was not 
observed in the sham control group. Furthermore, a significant effect of time on Shannon evenness (E) was 
observed for the inoculated treatment group (GAMM, edf = 1.00, F = 4.181, p = 0.043; Fig. 2e) but not the sham 
treatment group (GAMM, edf = 1.000, F = 0.002, p = 0.967; Fig. 2f). We observed a consistent decrease in even-
ness among inoculated snakes through experimental time. Additionally, as four of seven snakes in the sham 
control group died during the experiment, we assessed if mortality type (natural death or euthanasia) had a 
significant effect on alpha diversity among sham snakes. Time had a significant effect on OTU richness (GAMM, 
edf = 2.33, F = 4.058, p = 0.011) and Shannon diversity (GAMM, edf = 2.36, χ2 = 14.605, p = 0.001) among sham 
snakes that died naturally (Supplemental Material, Fig. S1). These relationships were concave in shape, but they 
did not drive patterns found when considering all sham snakes together in the analyses above. All results in this 
study were robust to the inclusion of mortality type as a covariate.
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β‑diversity.  Multivariate dispersion of the pathogen inoculated group was significantly higher than the 
sham control group for both the Jaccard index (LME, χ2 = 32.49, p < 0.001; Fig. 3a, Table 1) and Bray–Curtis 
index (LME, χ2 = 23.69, p < 0.001; Fig. 3b, Table 1). The interaction of time and treatment group had a significant 
effect on multivariate dispersion of the Raup-Crick metric (LME, χ2 = 3.90, p = 0.048; Fig. 3c, Table 1). A post 
hoc assessment found that time had no significant effect on multivariate dispersion of the Raup-Crick metric 
for the sham control group (GLS, T-value = −0.75, p = 0.457; Fig. 3c) but did have a significant effect on inocu-
lated treatment group (GLS, T-value = 2.34, p = 0.022; Fig. 3c). We observed a positive relationship between time 
and distance-to-centroid values for the Raup-Crick metric in the inoculated treatment group (slope = 0.002, 
SE = 0.001). The Raup-Crick metric is a presence/absence community dissimilarity metric, which generates a 
null expectation for the number of shared species between communities by relating global site occupancy of taxa 
to local site occupancy probabilities, and then accounting for sampling bias likely to occur due to differences in 
richness between sites38. Thus, when we explicitly account for differences in richness, pathogen inoculated snake 
microbiomes became more dissimilar over the entire course of the experiment resulting in increased β-diversity 
among snakes.

Assemblage composition.  The interaction between experimental treatment and time was found to have 
a significant effect on the average microbial composition when measured using both the Jaccard index (PER-
MANOVA, F-stat = 1.34, p = 0.020; Fig. 4a, Table 2) and the Bray–Curtis index (PERMANOVA, F-stat = 1.44, 
p = 0.038; Fig.  4b, Table  2) but not the Raup-Crick metric (PERMANOVA, F-stat = 1.58, p = 0.307; Fig.  4c, 
Table 2). This suggests that differences in host microbiome composition between treatment groups are primarily 
explained by differences in OTU richness.

Discussion
Disturbance ecology allows investigators to predict and interpret the effects of perturbations, such as disease, on 
biotic assemblages24. In this investigation, O. ophidiicola was investigated as a potential ecological disturbance 
to the host microbiome. By inoculating snakes with O. ophidiicola in a controlled and pseudo-naturalistic set-
ting, the effects of SFD could be measured through time for individual snakes. Thus, we were able to investigate 
temporal trends in host microbiome diversity and composition associated with infection. Our results suggest that 
SFD progression generates non-linear trends in host microbiome diversity. Furthermore, we found that analyses 
of null models of β-diversity (Raup-Crick dissimilarity) conflicted with traditional community dissimilarity 
metrics. This suggests that changes in assemblage richness are an important mechanism through which host 
microbiome composition is altered by O. ophidiicola. The patterns we observed within this system are consistent 
with conceptual models of disturbance ecology, in particular, the intermediate disturbance hypothesis.

Infection with O. ophidiicola can have detrimental consequences for the host such as increased basal meta-
bolic rate and evaporative water loss39. Fungal pathogen load has been shown to increase at both the population 
and individual level over the course of an infectious disease outbreak40,41, which is consistent with our study 

Figure 1.   Days before mortality and time are predictive of pathogen load in inoculated snakes. (a) Pathogen 
load is represented as a function of time measured in units of days before mortality. Pathogen load values were 
derived from the natural log transformation of copy number values for O. ophidiicola. The negative trendline in 
this subplot indicates that as snakes were temporally closer to mortality, we observed higher pathogen loads. (b) 
The positive trendline in this subplot indicates that as the experiment progressed, we observed higher pathogen 
loads. LME model p-values for temporal effects are provided within each panel.
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results. We found that infection progressed in severity throughout the clinical trial for inoculated animals. While 
field studies do suggest chronic infection in free-roaming snakes32–34, other attempts to inoculate snakes with 
O. ophidiicola have reported a similar acute progression of disease as reported here14,42. Additionally, we found 
that higher pathogen load was associated with a shorter time until mortality. We were unable to determine that 

Figure 2.   Time is predictive of OTU richness, Shannon diversity, and Shannon Evenness in inoculated but not 
sham snakes. (a,b) OTU richness of the host microbiome as a function of time. (c,d) Shannon diversity of the 
host microbiome as a function of time. (e,f) Shannon evenness of the host microbiome as a function of time. 
(a,c,e) Trendlines were generated using generalized additive mixed effects modeling. (a,c) Note that both OTU 
richness and Shannon diversity initially rose and then declined among the inoculated treatment group. (e) 
Among the inoculated treatment group, we observed a decrease in evenness through experimental time. (b,d,f) 
No significant effect of time was found for any measured component of alpha diversity among the sham control 
group. The dotted line in these subplots represents the mean value for OTU richness, Shannon diversity, or 
Shannon Evenness. P-values for temporal effects are provided within each panel.
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animals died from SFD via the methods used here as no necropsies were conducted, however, this does sug-
gest that snakes with increasing pathogen loads are more likely to be in poor health. Pathogen load dynamics 
are predicted to be an important factor in the persistence or extirpation of amphibian populations affected by 
Chytridiomycosis43. Thus, further research into pathogen load dynamics is likely to be informative in under-
standing SFD outbreaks and for conservation management decisions. We acknowledge the elevated attrition 
rate (6/11 inoculated and 4/7 sham snakes died prior to the end of the experiment) of Watersnakes in captiv-
ity (similar to Neuman-Lee et al., 2014) and suggest a larger sample size during future studies44. Wild-caught 

Figure 3.   Inoculation results in higher β-diversity of the host microbiome. Multivariate dispersion of the host 
microbiome was approximated by generating distance-to-centroid values for the (a) Jaccard, (b) Bray–Curtis, 
and (c) Raup-Crick dissimilarity metrics. (a,b) There was a significant difference between treatment groups for 
both the Jaccard and Bray–Curtis indices (boxplots; LME p-values within each panel). Inoculated snakes were 
predicted to have higher distance-to-centroid values indicating greater dissimilarity or β-diversity throughout 
the experiment. (c) A positive relationship was observed between time and distance-to-centroid values for the 
Raup-Crick metric in the inoculated treatment group. Thus, the host microbiome of inoculated snakes tended 
to become more dissimilar over time. No relationship between time and distance-to-centroid values was found 
for the Raup-Crick metric for the sham control group. Consequently, a dotted line was used to represent the 
regression for this group (p-values are provided for post-hoc regressions).

Table 1.   Summary of LME models of multivariate dispersion. Each subsection represents a distinct 
community dissimilarity metric (Jaccard, Bray–Curtis, and Raup-Crick, respectively). Predictor variables 
included in the model are denoted in the Fixed effects column. All other columns detail model output 
including denominator degrees of freedoms, Wald chi-square values, and p-values for each fixed effect. 
Evaluation of the LMER models was conducted using type-II sum of squares.

Fixed effects
Denominator 
degrees of freedom

Fixed effects 
estimates

Standard error of 
estimates χ2 P-values R-squared

Jaccard

Treatment 15 0.0235 0.0066 32.493  < 0.001

0.360
Time 124 −0.0003 0.0002 4.278 0.039

Treatment*time 15  < 0.0001 0.0001  < 0.001 0.999

Mortality type 124 −0.0082 0.0046 3.200 0.074

Bray–Curtis

Treatment 15 0.0329 0.0105 23.694  < 0.001

0.279
Time 124 −0.0001 0.0003 0.102 0.749

Treatment*time 15 −0.0001 0.0002 0.045 0.832

Mortality type 124 −0.0125 0.0071 3.066 0.080

Raup-Crick

Treatment 15 0.0098 0.0388 8.698 0.003

0.231
Time 124 0.0008 0.0009 1.539 0.215

Treatment*time 15 0.0017 0.0009 3.900 0.048

Mortality type 124 −0.0173 0.0265 0.423 0.515
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Figure 4.   Inoculation results in changes to host microbiome composition which are partially explained 
by differences in richness. Nonmetric multidimensional scaling (NMDS) ordinations representing host 
microbiome composition of sham and inoculated snakes throughout the experiment measured using (a) 
Jaccard, (b) Bray–Curtis, and (c) Raup-crick dissimilarity. Multiple indices were used in order to discern 
patterns that were shared, or not, across indices. Differences in composition between sham and inoculated 
treatments are indicated by ellipses (95% SE); time is represented by contours with lighter colors corresponding 
to later sampling events (weeks). (a, b) The interaction of time and treatment group (PERMANOVA p-values 
within each panel) was significantly predictive of composition for both the Jaccard and Bray–Curtis index, 
suggesting that average composition of the host microbiome varied depending on treatment across time. (c) The 
interaction term was not significantly predictive of community composition for the Raup-Crick metric, which 
explicitly accounts for differences in composition that are likely to occur due to differences in richness alone. 
Changes in richness following infection with O. ophidiicola may be a key mechanism resulting in alterations to 
the host microbiome.

Table 2.   Summary of PERMANOVA models of multivariate centroid position. Each subsection represents 
a distinct community dissimilarity metric (Jaccard, Bray–Curtis, and Raup-Crick respectively). Predictor 
variables included in the model are denoted in the Fixed effects column. All other columns detail model 
output, including F-statistics, partial R-squared, and p-values for each fixed effect.

Fixed effects Degrees of freedom Sum of squares Partial R-squared Mean squares F-statistic P-value

Jaccard

Treatment 1 0.91 0.014 0.905 2.13 0.001

Time 1 1.34 0.021 0.13 3.15 0.001

Treatment*time 1 0.57 0.009 0.569 1.34 0.020

Mortality type 1 0.67 0.107 0.67 1.58 0.010

Residuals 139 58.99 0.944 0.43

Total 143 62.46 1.000

Bray–Curtis

Treatment 1 1.04 0.019 1.042 2.79 0.001

Time 1 1.69 0.030 1.69 4.54 0.001

Treatment*time 1 0.54 0.010 0.539 1.44 0.038

Mortality type 1 0.70 0.013 0.70 1.88 0.008

Residuals 139 51.83 0.929 0.38

Total 143 55.80 1.000

Raup-Crick

Treatment 1 2.01 0.062 2.014 11.31 0.001

Time 1 4.43 0.137 4.43 24.87 0.001

Treatment*time 1 0.27 0.009 0.268 1.58 0.307

Mortality type 1 0.90 0.028 0.90 5.08 0.008

Residuals 139 24.76 0.764 0.18

Total 143 32.39 1.000
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snakes were brought into standardized conditions in captivity to explicitly test for microbiome differences due 
to disease while retaining biologically relevant microbial assemblages. This transition may have caused stress in 
study snakes. Indeed, non-diseased snakes that died naturally had temporal patterns of microbial richness and 
Shannon diversity similar to diseased snakes. However, our results are robust to the inclusion of mortality type 
in the analyses (Supplementary Material, Figure S1). In a similar fashion to pathogen load, we were able to test 
for temporal trends in the snake microbiome resulting from disease.

The microbiome is linked to host health, including processes of innate immunity17. Additionally, changes in 
alpha diversity of the microbiome are associated with factors such as obesity45, the environment46, and disease47. 
In this investigation, time was found to have a significant effect on OTU richness of pathogen inoculated, but 
not control snakes. Assemblage richness is sensitive to many factors including ecological disturbance48. Two 
factors suggest that ecological disturbance is a likely scenario to describe mechanistic interactions between skin 
bacteria and O. ophidiicola. First, a relationship was only observed between time and richness for the O. ophidii-
cola inoculated group. Previous work has shown that skin disease acts as a disturbance to the host microbiome 
resulting in changes to assemblage composition25. Second, the relationship between time (i.e., disease progres-
sion) and richness was concave for the O. ophidiicola inoculated group and absent for the sham control group. 
While the relationship between disturbance and richness varies depending on the ecological context, a widely 
accepted model relating these variables is the intermediate disturbance hypothesis. This hypothesis states that 
increasing levels of disturbance will increase species richness until a threshold value is reached, after which, 
species richness will decrease28. Our results are consistent with the intermediate disturbance hypothesis, as O. 
ophidiicola acts as a disturbance to the host microbiome, and disease progression leads to an increase in the 
magnitude of disturbance. It is likely this is a common process in host disturbed microbiomes, as pathogens are 
known to result in alternative stable states in frog skin microbiomes49 in both lab and field experiments21, and 
pathogens reduce the ability of the host or microbiome to regulate assemblage richness and/or composition50.

Previous observational studies of free-roaming snakes have demonstrated that the presence of O. ophidiicola 
correlates with alterations in the composition of the epidermal microbiome22,23. In this experiment, we imple-
mented two traditional measures of community dissimilarity (Jaccard and Bray–Curtis) which are differentially 
sensitive to the effect of rare taxa. We found a significant interaction effect on average community composition, 
indicating that pathogen inoculation was predictive of host microbiome changes through time. We further 
investigated this pattern by applying the Raup-Crick index to our dataset and found no significant effect of the 
time × treatment interaction term on community composition. Together, these results suggest that differences 
in assemblage composition between pathogen inoculated and sham control snakes are described by differences 
in assemblage richness through time51.

To assess the relationship between disease progression and microbiome β-diversity we evaluated distance-
to-centroid values representing the degree of heterogeneity in microbiome composition. The inoculated snake 
microbiome was found to have higher multivariate dispersion than sham snakes for both Jaccard and Bray–Curtis 
dissimilarity indices, indicating greater microbiome heterogeneity in the presence of a fungal pathogen. Addition-
ally, multivariate dispersion of the Raup-Crick metric indicated that the sham snake microbiomes tended to be 
less variable, whereas, the pathogen inoculated microbiome increased in variability over time. This increase in 
dissimilarity occurred as microbial assemblage alpha diversity initially increased for diseased snakes, and then 
the assemblages continued to differentiate as taxa were lost, and alpha diversity (richness and Shannon diversity) 
decreased during advanced stages of disease progression. These changes were associated with decreased micro-
bial assemblage evenness, indicating that some taxa became dominant, while others became rare through time. 
Our results indicate that disease progression generates increasing variability in host-microbiome composition 
even under conditions where the environmental microbial reservoir is similar. This suggests that fungal disease 
progression may be related to an increase in stochastic community assembly processes, such as drift, which can 
increase beta-diversity in the reptile microbiome52 as has been proposed in other animal microbiome systems50.

Wildlife diseases are an active area of research for understanding host-microbiome-pathogen interactions. 
This experiment has shown that the application of disturbance ecology can be useful in interpreting the effects 
of disease processes on the microbiome. We found that disturbance to the host microbiome occurred as a 
result of disease; causing alterations in alpha diversity. Our results show that O. ophidiicola alters the measured 
composition of the host microbiome throughout infection, but these changes are driven primarily by differ-
ences in richness, between healthy and diseased snakes. We found that SFD results in increased variability in 
the host microbiome with potential consequences for host health. We demonstrate that disruption of the host 
microbiome by a fungal pathogen is associated with host-health outcomes and changes to the host-associated 
epidermal microbiome. Given the growing threat of EIDs to wildlife in the twenty-first century, developing an 
increased understanding of the relationship between disease and microbiome ecology is crucial to inform effec-
tive conservation strategies.

Methods
Snake and soil collection.  The Common Watersnake (Nerodia sipedon) is a nonvenomous semi-aquatic 
snake found throughout Eastern and Central North America53. We collected 22 N. sipedon in Tennessee during 
spring 2019. Any animal from the sham control group that had a positive qPCR reaction (Ct < 39) throughout 
the experiment (n = 4) was removed from all statistical analyses. Study snakes had a mean snout-vent length 
(SVL) of 28.4 cm and a mean mass of 11.4 g (Supplementary Material, Table S1). Study snakes were primarily 
neonates or juveniles with 15 of 18 animals having an SVL less than 25 cm (Supplementary Material, Table S1). 
We used nitrile gloves while handling snakes to prevent transmission of microbes between animals. We collected 
snakes free of clinical signs, to control for initial disease state, and further confirmed absence of O. ophidii-
cola using quantitative PCR (qPCR) of skin swabs54. We collected soil from snake capture locations to create a 
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pseudo-naturalistic environmental reservoir of microbes. We collected a two-liter bag of soil three meters away 
from the closest riverbank of each snake capture location. As with snake samples, we confirmed the absence of 
O. ophidiicola in soil samples via qPCR. We stored soil samples at 4 °C in darkness in a bag that allowed for gas 
exchange but conserved moisture until mesocosm construction.

Mesocosm design and animal care.  Throughout the experiment, snakes were maintained individually 
in 66.24 L plastic storage totes (66 × 34 × 41 cm) with ventilation holes. We used a soil/aspen substrate mixture 
to provide an environmental reservoir of microbes. Specifically, equal parts, by weight, of each soil sample were 
mixed for 15 min until homogeneous. We combined this soil mixture with autoclaved aspen shavings in a 2:1 
soil to aspen ratio by weight. We evenly layered this substrate into snake enclosures in a ~ 6 cm deep layer. When 
soiled, substrate was spot cleaned and replaced completely whenever snakes spilled large amounts of water. 
Snake enclosures had a hide box, autoclaved climbing branch, and water dish. Enclosures were located in a 23 °C 
room with a 12-h light/dark cycle. Depending on animal size, snakes were offered as many Guppies (Poecilia 
reticulata; small snakes; < 35 cm SVL) or Platies (Xiphophorus maculatus; large snakes; > 35 cm SVL) as they 
would consume weekly.

Live animal trials.  The experiment began on 31 May 2019 and concluded on 21 August 2019. Eleven snakes 
were randomly assigned to both the inoculation treatment and sham control groups. The snakes in the treatment 
group were inoculated with O. ophidiicola using the following procedure: A culture of O. ophidiicola was grown 
on Sabouraud dextrose agar (SDA) for 15 days and sectioned into 0.5 cm2 blocks then placed, mycelium side up, 
onto a waterproof bandage. Similar to Lorch et al. (2015), #150 sandpaper was used to abrade, via five strokes, 
the dorsal ventral and neck surface of the skin of each snake. Bandages with O. ophidiicola agar blocks were 
placed on each abrasion site to inoculate the skin for 72 h before being removed. Animals in the sham control 
group received the same treatment although sterile SDA blocks were applied to the bandages. Every seven days, 
samples were collected of the epidermal microbiome for all study snakes. Aseptic technique was used whenever 
work was conducted in and around the mesocosms to ensure that O. ophidiicola and other microbes were not 
transferred between enclosures. The swabbing protocol used to collect microbial samples involved wetting a 
rayon-tipped sterile applicator (Puritan 10808-146; VWR) with Millipore water that had been autoclaved for 
two hours. The applicator was then rolled using a stroking motion over a 15 cm portion of the snake’s midbody 
15 times to standardize the sampled grain size22,55. All swab samples were stored at -20 °C until DNA extraction. 
This study was completed under IACUC MTSU-19-3012 approval and carried out according to relevant animal 
care and ARRIVE guidelines.

Quantifying pathogen load.  DNA was extracted from swab samples using the DNeasy PowerSoil kit 
(Qiagen) per the manufacturer’s protocol (n = 144 total samples). On each 96 well plate, a single DNA control 
blank was extracted to filter out contamination during qPCR and bioinformatic analyses. Pathogen load was 
measured using qPCR of the ITS gene marker of O. ophidiicola54. Quantitative PCR reactions and criteria for 
detection of positive samples followed the methods described in Walker et al.22. To determine pathogen load 
within each sample, a serial dilution of 1–1 × 1010 copies of a synthetic DNA fragment representing the qPCR 
target sequence (gBlock; Integrated DNA Technologies) was used to generate a standard curve.

Amplicon sequencing and bioinformatics.  To characterize microbial assemblages, a 250 bp region of 
the 16S rRNA marker was PCR amplified using primers 515F and 806R56. Amplicons were dual indexed fol-
lowing Fadrosh et  al.57. Indexed amplicons were selected based on fragment size to remove adapter dimers 
using HighPrep magnetic beads (MagBio Genomics). The concentration of each library was quantified using 
a Quantus fluorometer (Promega), normalized, and pooled before sequencing on the Illumina MiSeq platform 
(2 × 250 bp paired end reads). Mothur v1.43.0 was used to conduct bioinformatic analyses according to the MiSeq 
SOP58,59 with several modifications. After forming contigs, screen.seqs was used to remove primers and barcodes. 
Sequences with a minimum of 248 bp and maximum length of 256 bp were then selected for downstream analy-
sis. Sequences with ambiguous base calls and homopolymers greater than eight were removed from the data set. 
Remaining sequences were aligned to the SILVA v132 reference alignment60,61. The data were denoised using 
pre.cluster to merge sequences with two or fewer nucleotide differences. The chimera.vsearch command was 
used to remove chimeric sequences using the parameter ‘template = self ’. Sequences identified as chloroplast, 
mitochondria, unknown, Archaea or Eukarya were removed from the dataset. Sequences were clustered into 
operational taxonomic units (OTUs) at 97% similarity using the cluster.split command. OTUs identified in nega-
tive control sequencing blanks (1602 total OTUs) were removed from the final data set. Rare OTUs (< 5) were 
removed using the remove.rare command and ‘bygroup = T’ option to remove any OTU that had fewer than the 
threshold sequences (< 5) on a per sample basis. Rarefaction of assemblages, based on total sequence reads, is 
typically conducted on a per sample basis in order to normalize ‘sampling effort’ across samples62. Therefore, we 
subsampled our data at 1102 sequence reads to generate a final rarefied abundance dataset that was imported 
into R v3.6.3 for statistical analysis63.

Analysis of pathogen load.  Analysis of qPCR data was restricted to positive samples from the inoculated 
treatment group. This allowed us to test hypotheses regarding changes in pathogen load. Specifically, we tested if 
time before an inoculated animal experienced mortality (natural or euthanasia) was predictive of O. ophidiicola 
copy number (fungal load). Modeling was accomplished using linear mixed effects models in nlme. We natural 
log transformed the copy number data to meet model assumptions of normality. We included days prior to mor-
tality, mortality type (natural or euthanasia), and their interaction as fixed effects. Snake identity was included 



9

Vol.:(0123456789)

Scientific Reports |         (2022) 12:3078  | https://doi.org/10.1038/s41598-022-07042-5

www.nature.com/scientificreports/

as a random effect and log copy number as the response variable. Death was defined as the date at which an 
individual experienced mortality over the clinical trial or was euthanized because the experiment concluded. 
Model fit was characterized using manual review of model residuals. Model selection was performed using 
Akaike Information Criterion (AIC) to determine if the inclusion of a random effect, temporal autocorrelation, 
and/or unequal variance term was appropriate64. A model was considered superior to another model iteration if 
the associated AIC value of that model was > 2 below the less complex model. In instances where there was not a 
difference of > 2, the simpler model was selected.

We also tested for the effect of experimental time on pathogen load. For this model, we included experimental 
time, mortality type, and their interaction as fixed effect terms, whereas log copy number was the response vari-
able. Snake identity was included as a random effect. Model selection was performed as described above. Neither 
a temporal autocorrelation nor unequal variance term was indicated for inclusion in either model. Analysis of 
variance with type-II sum of squares (Wald χ2 statistics; car package) was used to determine the significance of 
the fixed effects while accounting for unequal sample sizes among snakes due to differential mortality65.

Analysis of alpha diversity.  We employed a generalized additive mixed effects model, via the function 
gam from the software package mgcv, to test if time had linear or non-linear effects on the richness of the host 
microbiome. Our model formula specified richness as the response variable. Time, treatment group, and mortal-
ity type (natural or euthanasia) were designated as fixed effects. The effect of time was modeled separately for 
each treatment group. Basis complexity (k) was limited to four to prevent model overfitting66. Random effects 
were specified using the ‘bs = re’ argument to the smoothing function. Akaike Information Criterion values were 
used to determine the most efficient random effects structure, distribution function, transformation link, and if 
the inclusion of a temporal autocorrelation term was appropriate64. Shannon-diversity (H) was calculated using 
the diversity function with the argument “index = shannon” in vegan. We then used a generalized additive mixed 
effects model in the same manner described above. Shannon-evenness index (E) was calculated by computing 
the exponential function (ex) of an assemblage’s Shannon-diversity and dividing that by the assemblage’s OTU 
richness67. In the same manner as the other diversity metrics, a generalized additive mixed effects model was 
used to make inferences regarding this metric. Since four of seven sham control snakes died during the experi-
ment, we generated generalized additive mixed effects models in order to determine the effect of time on alpha 
diversity, according to mortality type (natural or euthanasia) within the sham treatment group. More specifically, 
we generated three models corresponding to each of the measures of alpha diversity examined in this study: 
OTU richness, Shannon diversity, and Shannon evenness. In each model, a measure of alpha diversity was speci-
fied as the response variable. Time and mortality type (natural or euthanasia) were designated as fixed effects. 
The effect of time was modeled as a smooth term separately for each level of mortality type. Basis complexity (k) 
was limited to four to prevent model overfitting. Random effects were specified using the ‘bs = re’ argument to 
the smoothing function. The function gam.check from the package mgcv was used to ensure that sufficient basis 
complexity was supplied to all fixed effects terms. Restricted maximum likelihood was used to estimate smooth-
ing parameters by specifying “REML” to the method argument. Stepwise AIC selection, as described above, was 
used to determine inclusion of a random effect, alternative distribution, and/or temporal autocorrelation terms.

Analysis of β‑diversity.  We applied the Jaccard, Bray–Curtis, and Raup-Crick dissimilarity indices metric 
to our dataset using the functions vegdist and raupcrick from the package vegan. The Jaccard index treats com-
positional data as presence/absence, and therefore, rare species have a greater effect on measured dissimilarity51. 
The Bray–Curtis index accounts for species abundance, and therefore, rare species have less of an effect on meas-
ured dissimilarity51. The Raup-Crick metric is a presence/absence community dissimilarity metric, which gener-
ates a null expectation for the number of shared species between communities by relating global site occupancy 
of taxa to local site occupancy probabilities, and then accounting for sampling bias likely to occur due to differ-
ences in richness between sites38. Using this metric, one is able to explicitly account for differences in richness on 
measured community dissimilarity38. The function betadisper in vegan was used to generate distance-to-centroid 
values for each of these community dissimilarity metrics. Communities were grouped by the interaction of 
experimental time and treatment group. Thus, a multivariate centroid against which distance-to-centroid values 
can be calculated was created for each treatment group separately at all time points. Distance-to-centroid values 
were then evaluated using linear mixed effects modeling with the function lme from the package nlme. Distance-
to-centroid values for each dissimilarity metric were used as the response variable while the fixed effects struc-
ture of all three models consisted of treatment group, time, their interaction, and mortality type. Stepwise AIC 
selection, as described above, was used to determine if the inclusion of a random effect, temporal autocorrela-
tion, and/or unequal variance term was appropriate. An analysis of variance with type-II sum of squares (Wald 
χ2 statistics; car package) was used to determine the significance of the fixed effects. A post-hoc assessment of 
any significant interaction terms was performed using the gls function from nlme. For post-hoc assessments, 
each treatment group was modeled independently to determine the relationship between multivariate disper-
sion and time on a per treatment basis.

Analysis of assemblage composition.  The function adonis in vegan was used to conduct Permutational 
Multivariate Analysis of Variance on distance matrices generated via the dissimilarity metrics above. The speci-
fied fixed effect terms included treatment group, time, their interaction, and mortality type. A statistically sig-
nificant interaction term would indicate average microbiome composition of each treatment group changed in 
a disparate fashion through time. For all adonis models, animal ID was specified as a grouping variable (using 
“strata = ”) to constrain permutations and account for repeated measures (see Supplementary Material, Methods 
Section for additional detail on all methods).
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Data availability
The R code and data frame to reproduce the above analysis are included within the Supplemental Material. Raw 
data are available through the corresponding author upon request.
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