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Tendon
Tendon Structure

Tendons are dense, regularly arranged connective tissues 
that attach muscle to bone and produce joint motion by 
transferring force from muscle to bone. Tendons are composed 
primarily of type I collagen arranged in parallel fibrils with 
the remaining 20% to 30% of dry weight composed of 
proteoglycans, glycosaminoglycans, other collagens (type 
III, V, XII, and others), and elastin.61,108,118 These minor 
constituents, such as type V collagen and decorin, help regulate 
fibrillogenesis.20,86,114,115 Tendon structure is highly regular with 
collagen forming triple helices (approximately 300 nm in length  
and 1.5 nm in diameter), which pack together to form 
microfibrils,45 which interdigitate to form fibrils (50 to  
200 nm in diameter), which coalesce to form fibers (3 to 7 µm in 
diameter), which combine to form fascicles, which are bundled 
together to form a tendon (mm or cm in diameter).57 The 
mechanical properties of tendon come from its highly oriented 
structure. It is able to resist tensile stress in the direction of its 
fiber orientation because of the collagen structure and it is able 

to resist some compressive stress because of its proteoglycan 
content.

Tendons have different mechanical properties dependent 
on anatomic location, exercise, immobilization, and age of 
the tendon. Material and structural properties of the tendon 
increase from birth through maturity and then decrease from 
maturity through old age. Tendon injuries correlate positively 
with patient age, but the cellular changes in the tendon 
associated with age are somewhat less clear. Some of the more 
commonly studied tendons are rotator cuff, Achilles, lateral 
humeral epicondylar, quadriceps, and patellar tendons because 
as people age, these areas become clinically problematic.

Vascular Supply

Tendons are metabolically active and are provided with a 
rich vascular supply during development.82 Tendons do not 
undergo neovascularization under normal circumstances, 
but during pathologic processes, changes in vascularity may 
take place. Tendons receive vascular supply through the 
musculotendinous junction, the osseotendinous junction, and 
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the vessels from the various surrounding tissues including 
the paratenon, mesotenon, and vincula.2,24,27,102 Tendons in 
different areas of the body receive different amounts of blood 
supply. The vascular supply of the specific tendon also relates 
to whether or not it is a sheathed tendon. If the tendon is 
sheathed, such as the digital flexor tendons, it receives blood 
supply from the mesotenon, vincula, and diffusion from 
vascularized surrounding segments. Tendons that are not 
sheathed are covered with a paratenon and have the advantage 
of a local extrinsic vascular supply with branches forming an 
intratendinous vascular network with multiple anastamoses. 
Tendon vascularity can be compromised at junctional zones 
and at sites of friction, torsion, or compression.

The vascular supply to the rotator cuff tendons is a 6-artery 
supply.27 However, it is not uniform to each tendon, with the 
supraspinatus having relatively reduced vascularity.85 The 
region of relative avascularity in the supraspinatus, called 
“Codman’s critical zone,” was described by Codman and 
Akerson in 1931.32 This area is actually hypovascular as the 
vascularity increases when the compression applied by the 
humeral head is removed.69

In addition to the supraspinatus having reduced tendon 
vascularity, the biceps,85 Achilles,95,99 patella,31 and posterior 
tibial tendon37 have areas of reduced vascularity. The Achilles 
tendon receives blood supply from the musculotendinous 
junction, the osseotendinous junction, and the paratenon, with 
the posterior tibial artery supplying the major contribution. 
However, histological analyses proved that the Achilles tendon 
has a poor vascular supply through its length, as shown by 
the low number of blood vessels per cross-sectional area.2 The 
Achilles tendon has a hypovascular zone approximately 2 to  
7 cm proximal to its bony insertion, with this area at the 
highest risk of rupture and surgical complications.29

Biology of Tendon Aging

Healthy tendon relies on a normal vascular supply and 
efficient mechanotransduction with cells that are capable of 

responding to mechanical cues with biochemical signals to 
maintain tendon development, homeostasis, healing, and 
degeneration.12,111

Changes in Vascular Supply

Astrom and Rausing14 noted that patients with Achilles 
tendinopathy demonstrated hypervascularity of the tendon 
with unevenly distributed thick-walled vessels as compared 
with healthy controls. A recent ultrasound study evaluating 
the volume of neovascularity in tendinopathic Achilles 
tendons revealed that 97.3% of the tendons had evidence 
of neovascularization and 55.6% of the tendons had 
neovascularization at the location of the tendon thickening.122

The origin of rotator cuff disease is controversial, with 
tendon ischemia, extrinsic compression, and chronic repetitive 
microtrauma having been cited as factors. There are both 
extrinsic as well as intrinsic reasons for tendon failure and 
age-related degeneration. A recent in vivo study evaluating 
the vascularity of rotator cuff tears using ultrasound showed 
that there was a significant decrease in blood flow in the 
intratendinous region in elderly subjects compared with younger 
subjects but no differences in the bursal blood flow suggesting 
an age-related decrease in intratendinous vascularity.39 Rudzki et 
al93 corroborated those results by finding a significant decrease 
in blood flow in the supraspinatus tendon in patients older than 
age 40 years compared with younger patients after exercise 
(Figure 1). Several studies have hypothesized that tendon 
vascularity is compromised at the articular surface of the distal 
aspect of the supraspinatus tendon.25,70,85,92 Adler et al1 reported 
an in vivo ultrasound study demonstrating a consistent region 
of decreased vascularity at the articular medial margin of the 
rotator cuff with significantly less flow compared with the bursal 
side. This study also suggested a trend toward decreased blood 
flow with increasing patient age.1

Vascular changes also play a role in the pathogenesis of 
patellar tendinitis. In a study of chronic patellar tendinitis, 
there was capillary proliferation and prominent angiogenesis 
in the degenerated region of tendon.58,124 The paratenon 
surrounding the patellar tendon can also be a site of chronic 
pain with marked neovascularization and degenerative vascular 
changes,16,63 with hypervascular changes resulting in abnormal 
blood flow and ischemic pain during exercise.63 An ultrasound 
study on the neovascularization of the patellar tendon in 
symptomatic elite athletes with patellar tendinitis noted that 
60% had neovascularization.47 A recent study on patellar 
and Achilles tendons of elite badminton players showed that 
intratendinous vascularity tended to increase with strenuous 
activity, but it was only significantly increased in the dominant 
leg after repetitive loading.21

Bales et al17 performed a microvascular anatomic study  
on the lateral epicondyle of the humerus and found 2 
hypovascular zones. The first was at the proximal lateral 
epicondyle just distal to the supracondylar ridge and the 
second was distal to the lateral epicondyle on the deep surface 
of the common extensor tendon. The presence of these 

Figure 1. Intratendinous vascularity by age. Comparative 
analysis of intratendinous supraspinatus vascularity in 
patients younger than and older than 40 years old. Error bars 
show the standard deviation. Reprinted with permission from 
Rudzki et al.93
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hypovascular zones may preclude the normal inflammatory 
cascade and healing response to microtearing in this region 
of tendon.17 Thus the common sites of clinical tendon 
degeneration with age show significantly altered tendon 
vascularity occurs with age and activity.

Changes in Mechanobiologic Environment

Tendon tissue homeostasis is based on the ability of the 
tendon cells to sense and respond to mechanical load through 
mechanotransduction.19,48,94,113 The exact level of mechanical 
and biological stimulation required to maintain normal tendon 
homeostasis is not currently known, but it is widely believed that 
an abnormal level of stimulation (underload or overload) may play 
a role in the pathogenesis of tendinopathy.8,10,52 Archambault  
et al6 proposed an algorithm for the onset of overuse tendinopathy 
in response to repetitive loading. Repetitive strains below injury 
threshold resulted in degenerative changes in the tendon-matrix 
composition and organization, which led to transient weakness of 
the tissue making it more susceptible to continued load. Over time, 
the damage continued until tendinopathy developed.6 Cyclic strain 
is beneficial to tendon health, but repetitive strain may result in 
overuse tendon injuries.6,98

Based on the theory that excessive loading of tendons 
during vigorous physical activity is the main stimulation 
for degeneration of the extracellular tendon matrix, several 
studies have looked at in vitro analyses of strain patterns and 
extrinsic factors that induce tendinopathy. Overstimulation in 
vitro of tendon cells increases inflammatory cytokines and 
degenerative enzymes.4,5,18,19,105,112 The in situ environmental 
conditions in these studies are in a monolayer cell culture and 
may not replicate the 3-dimensional collagenous matrix found 
in vivo. In addition, the high strain magnitudes and durations 
may provide an artificially enhanced cellular response to 
the repetitive loading stimulus, suggesting that these in situ 
conditions may not be clinically relevant. Further study is 
necessary under clinical conditions to evaluate the theory of 
repetitive loading resulting in overuse.

An increase in the degradative enzyme production in aging 
tendons or tendons unable to maintain homeostasis has been 
postulated in several biochemical studies. Fu et al38 showed 
that matrix metalloproteinase-1 (MMP-1) was increased in 
human patellar tendinosis tissue, and Riley et al88 showed that 
MMP-1 levels were high in ruptured tendons compared with 
normal tendons. Tendinosis may result from increased MMP 
production as the pathology associated with tendinosis results 
in irregular orientation of collagen, fiber disruption, changes 
in fiber diameter, decrease in density of collagen, and an 
upregulation of collagen type III production.50,53,55 The increase 
in MMP production has been associated with significant 
reductions in the tensile modulus and tensile strength of 
tendons.65 In addition, MMP inhibitors have been shown in 
vitro to prevent the decrease in mechanical properties of 
stress-deprived tendons.9

In addition to the increase in MMP production, other studies 
have suggested a role for increased apoptosis in clinical cases 

of tendinopathy.106,125,126 In degenerative supraspinatus tendons 
compared with normal controls, there was a significant 
increase in the number of apoptotic cells.106,125 Egerbacher  
et al33 reported an increase in the number of apoptotic cells in 
the stress-deprived rat tail tendon model.

Thus, as the tendon ages, it is subjected to more mechanical 
load and the sequela of that repetitive use may result in an 
increase in degradative enzymes, apoptosis, and resulting 
clinical tendinopathy or tendon rupture. Some authors, 
however, have proposed an alternative theory to tendon over-
stimulation as the etiology of tendon degeneration. Arnoczky 
et al7 proposed that understimulation may be a cause of 
tendinopathy as well. In tendons that have undergone an 
injury from a mechanical load, there are resulting damaged 
collagen fibers. These tendons are then understimulated 
because of the release of cellular tension on the remainder of 
that tendon structure. This understimulation may then induce 
apoptosis. Understimulation of tendon cells can produce a 
histological picture consistent with tendinopathy.41 In an in situ 
rat tail tendon model, Arnoczky and colleagues showed that 
the alteration in cell-matrix interactions secondary to isolated 
tendon fibrillar damage could result in mechanobiological 
understimulation of tendon cells thereby resulting in an 
upregulation of collagenase mRNA expression and protein 
synthesis.12,65-67 This results in an initial degeneration of the 
pericellular matrix, a decrease in the material properties of 
the tendon, risk of further damage or rupture with subsequent 
mechanical loading, and clinical and histological signs of 
tendinopathy eventually.

Alteration in Tenocyte Biochemistry 
and Failure of Healing Response

Ippolito et al49 showed that with aging, rabbit tendon tissue 
extracellular matrix volume increases and the relative number 
of cells per unit of tendon decreases. The tenocytes also 
become longer and thinner and have decreased protein 
synthesis, and the collagen fibers become more disoriented 
with more variations in thickness due to an increase in 
collagen, a decrease in mucopolysaccharies, and a decrease in 
water content.49 Riley et al89 showed a significant decrease in 
total glycomaminoglycan, chondroitin sulphate, and dermatan 
sulphate with age in the supraspinatus tendon.

Tenocyte biology has been a particularly exciting topic of 
research for tendon healing and whether age has an effect 
on the ability of tenocytes to repair the surrounding tissue. 
Gerber et al40 and Rodeo et al90 demonstrated in animal studies 
that tendon to bone healing is a complex process that forms 
biomechanically inferior scar tissue rather than regenerated 
native tendon to bone attachments. Several studies on rotator 
cuff healing have noted that patient age is associated with 
increased healing complications.22,78,97,121 Klatte-Schulz et al60 
showed that tenocyte-like cells from aged donors compared 
with younger donors showed a decreased cell growth and 
stem cell potential including potential for self-renewal and 
osteogenic differentiation, but no differences in cell density. 
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This suggests a slower metabolic rate for aged tenocyte-
like cells and thus, possibly, a weaker tendon to bone 
healing response. Both aged and younger donor tenocyte-
like cells can be stimulated with BMP-2 and BMP-7.60 There 
is significantly increased cell activity, cell proliferation, and 
collagen type I synthesis following BMP-7 treatment in in vivo 
tendon studies.104,120,123 Several in vivo studies have also shown 
improved tendon to bone healing and higher biomechanical 
strength following treatment with BMP-2 and BMP-7.44,72,74,77,91 
Importantly, Klatte-Schulz et al60 showed no differences in 
decorin production based on age, which is an important factor 
given that decorin reduces scar formation and may improve the 
biomechanical properties of tendons.51

The histopathology associated with degeneration of 
rotator cuff tendons and lateral epicondyle tendons includes 
blood vessel wall changes, tenocyte loss, calcification, 
glycosaminoglycan infiltration, and fibrocartilaginous 
transformation.28 These changes were variably and mildly 
present in younger patients (less than 39 years old) with 
only 17% of cadaveric tendons having these changes, but the 
abnormalities occurred in 40% to 50% of patients older than 40 
years of age.28

Biomechanics of Tendon Aging

Tendon microarchitecture is disrupted with tendinopathy.13,71 
Specimens taken from torn tendons show disorientation of 
collagen fibers, thinning of the fibers, myxoid degeneration, 
chondroid metaplasia, calcification, and vascular infiltration.43 
Degeneration of tendons significantly reduces the tensile 
modulus and tensile strength of tendons.65 However, it is 
unclear whether normal aging is always synonymous with 
changes in the biomechanical properties of tendons. Plate 
et al83 demonstrated in rat Achilles tendons that the passive 
biomechanical properties of the muscle-tendon unit were 
altered by normal aging with a decreased relaxation response 
and increased stiffness in the middle-aged tendons as 
compared with the younger tendons.

Aging is associated with a decrease in muscle mass and 
muscle fiber cross-sectional area, which in combination 
with the structural changes in tendon aging such as collagen 
disorganization and decreased collagen content, can alter the 
biomechanical response of tendon tissue.87 The current literature 
is not consistent, however, with Kubo et al62 showing decreased 
Achilles tendon strain in older compared with younger patients, 
Onambele et al81 showing increased strain, and Karamanidis 
and Arampatzis56 showing no strain differences. Mouse 
tibialis anterior tendon modulus increased with age but was 
independent of changes in collagen fibril morphology or force- 
generating capacity of muscle.119 Zhou et al128 further showed 
that tendon self-renewal and differentiation capacity decreased 
with age by showing that progenitor stem cells, while present 
in both the young and old tendons, are reduced by 70% in stem 
cell number, have a lower cell proliferation, and have delayed 
cell cycle progression in older tendons.

Clinical Implications

Tendinopathy is a common clinical problem in patients, 
particularly with increasing age. The most common clinical 
tendon problems for the aging population are in the rotator 
cuff, Achilles, lateral elbow epicondyle, quadriceps, and 
patellar tendon. Yamaguchi et al121 found in his landmark 
ultrasound study on symptomatic and asymptomatic rotator 
cuff tears that there was a high correlation between the 
onset of rotator cuff tears (either partial or full thickness) 
and increasing age. In a group of patients with shoulder pain 
evaluated prior to surgical intervention, patients age 65 years 
and older had a full-thickness rotator cuff tear prevalence of 
22%.34 In addition, for each 10-year age increase, the odds of 
a rotator cuff tear increased 2.69-fold (P = 0.005).34 Patients 
who are more than 60 years old and are exposed to prolonged 
quinolone antibiotics are at increased risk of Achilles tendonitis 
and tendon rupture.116

LigamenT
Ligament Structure

Ligaments connect bone to bone and thus stabilize, guide, and 
restrict joint motions.3,26,36,46,54 Like tendons, ligaments function 
to resist tensile load.46 Ligaments are composed of collagen 
type I (70% dry weight), elastin fibers, proteoglycans, and other 
minor collagens.23 Collagen fibrils within each collagen fiber 
vary in size from 60 nm to 4000 nm in diameter.35 The collagen 
fibers transfer the force within the ligaments.64,84 The multiple 
collagen fiber bundles are interdigitated and function together 
to maintain normal joint motion.

Ligaments can be classified either as intra-articular or extra-
articular. A majority of the research performed on ligaments 
has been on the anterior cruciate ligament (ACL), which is an 
intra-articular ligament. Mesenchymal stem cells have been 
found within the ACL.96,100 The number of stem cells within the 
ligament decreases with age.101 Stem cells have been found in 
both the ACL and the medial collateral ligament (MCL) of the 
knee, which is an extra-articular ligament. Zhang et al127 found 
that the stem cells found in the ACL are intrinsically different 
from those found in the MCL, which may help explain why 
injuries to the MCL are commonly treated conservatively while 
injuries to the ACL require operative reconstruction to restore 
function. This concept of conservative management for extra-
articular ligaments and operative reconstruction for intra-
articular ligaments is related to the healing potential for each of 
the types of ligaments.

Vascular Supply

The microvascular circulation of the ACL and posterior cruciate 
ligament (PCL), intra-articular ligaments, is primarily from the 
infrapatellar fat pad and the synovial membrane, which form a 
vascular envelope with the vascular supply to the PCL greater 
than that of the ACL.11 The ACL has a relatively hypovascular 
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segment in the central portion, which is common in intra-
articular ligaments.11 The ACL has been shown to contain a 
population of vascular-derived stem cells that may contribute 
to ligament regeneration and repair at the site of rupture.76 In 
contrast to the ACL, the MCL is a relatively well-vascularized 
ligament, with high magnification histology revealing 
numerous capillaries in the substance of the MCL while there 
were none in the ACL.109

Biology of Ligament Aging

The ACL is subject to degeneration based on increasing age. 
Hasegawa et al42 reported on the pattern of spontaneous age-
related changes in the ACL in a histologic cadaveric study; ACL 
substance scores and ligament sheath inflammation scores 
increased with age. Collagen fiber disorientation was the most 
prevalent change that occurred earliest. Cadaveric human knee 
joints were evaluated histologically with special emphasis on 
the ACL, PCL, and cartilage.68 The most significant histologic 
change was fiber disorientation, with only 6% of the intra-
articular ligaments classified as normal and 76% showing mild 
degeneration.68 There was a correlation between age and total 
histologic PCL scores and an even stronger correlation between 
age and total histologic ACL scores.68 ACL cell metabolism 
has been previously studied; cell proliferation and migration 
are higher in skeletally immature animals75 and an improved 
biomechanical response to healing was found in skeletally 
immature animals79 possibly due to a decrease in growth factor 
receptor number with age.107 In addition, with ACL cell maturity 
decreases in metabolic activity, collagen production and response 
to platelet-rich plasma occur along with an increase in apoptosis.30

Wang et al110 studied the age-dependent changes in the 
matrix and organization of the ligament to bone insertion 
and found that there were age-dependent structural and 
compositional changes at the insertion site, with the skeletally 
immature group resembling articular cartilage while the 
adult interface resembled fibrocartilaginous tissue. There 
were marked differences in collagen fiber orientation that 
became more pronounced with age. The extracellular matrix 
composition and cellularity were also found to be age-
dependent.110 Normal aging results in decreased numbers 
and altered morphology of mechanoreceptors in the ACL, 
which correlates positively with the deficits in proprioception 
associated with aging.15 Interestingly, the sulfur content in the 
ACL decreases gradually with aging whereas the content of 
calcium, phosphorus, and magnesium increased with aging.103

Biomechanics of Ligament Aging

Ligament biomechanics are also age-dependent. Murray  
et al79 evaluated the biomechanical outcomes of ACL healing 
in skeletally immature and mature minipigs and found that 
immature animals healed the ligament better than mature 
animals. In addition, they found that the structural properties 
of the skeletally immature ligament were significantly better 
than those of the mature animal.79 Woo et al117 evaluated 

the structural properties of the femur-ACL-tibia complex in 
younger (22-35 years), middle aged (40-50 years), and older (60-
97 years) knees and found that linear stiffness, ultimate load, 
and energy absorbed decreased significantly with specimen 
age. This correlates well with the original data from Noyes and 
Grood,80 who found a decreased linear stiffness and ultimate 
load in the ACL with age.

Clinical Implications

ACL tears are a common problem in active patients, including 
both younger and older cohorts. In a recent study of second-
look arthroscopy on double-bundle ACL reconstructions, 
synovial coverage was significantly decreased in elderly 
patients (50 years and older) as compared with either of the 
younger cohorts (29 years and younger; 30 to 49 years).59 This 
alteration in synovial coverage was not reflected in clinical 
outcomes, which were not different between the age groups.59 
In addition, in a study evaluating the use of hamstring autograft, 
no difference in clinical outcome was found when comparing 
patients greater than 40 years old and a younger population.73

ConCLusion

Tendons and ligaments are regularly arranged connective 
tissues with extremely important functions in the maintenance 
of joint stability and joint motion. With increasing age, these 
tissues are subject to vascular and compositional changes that 
alter their mechanotransduction, biology, healing capacity, 
and biomechanical function. Emerging theories, such as 
understimulation changing the mechanotransduction properties 
of the remaining tissue, will provide further information to 
help combat the age-related clinical complications associated 
with the injuries that occur to tendons and ligaments.
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