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Abstract

Motivation: Experimental techniques for measuring chromatin accessibility are expensive and

time consuming, appealing for the development of computational approaches to predict open

chromatin regions from DNA sequences. Along this direction, existing methods fall into two

classes: one based on handcrafted k-mer features and the other based on convolutional neural net-

works. Although both categories have shown good performance in specific applications thus far,

there still lacks a comprehensive framework to integrate useful k-mer co-occurrence information

with recent advances in deep learning.

Results: We fill this gap by addressing the problem of chromatin accessibility prediction with a con-

volutional Long Short-Term Memory (LSTM) network with k-mer embedding. We first split DNA se-

quences into k-mers and pre-train k-mer embedding vectors based on the co-occurrence matrix of

k-mers by using an unsupervised representation learning approach. We then construct a super-

vised deep learning architecture comprised of an embedding layer, three convolutional layers and

a Bidirectional LSTM (BLSTM) layer for feature learning and classification. We demonstrate that

our method gains high-quality fixed-length features from variable-length sequences and consist-

ently outperforms baseline methods. We show that k-mer embedding can effectively enhance

model performance by exploring different embedding strategies. We also prove the efficacy of

both the convolution and the BLSTM layers by comparing two variations of the network architec-

ture. We confirm the robustness of our model to hyper-parameters by performing sensitivity ana-

lysis. We hope our method can eventually reinforce our understanding of employing deep learning

in genomic studies and shed light on research regarding mechanisms of chromatin accessibility.

Availability and implementation: The source code can be downloaded from https://github.com/min

xueric/ismb2017_lstm.

Contact: tingchen@tsinghua.edu.cn or ruijiang@tsinghua.edu.cn

Supplementary information: Supplementary materials are available at Bioinformatics online.

1 Introduction

In every human cell, genetic and regulatory information is stored in

chromatin, where DNA is tightly packed and wrapped around his-

tone proteins. The chromatin structure affects gene expression, pro-

tein expression, biological pathway and eventually complex

phenotypes. Concretely, some regions of the genome are accessible

to transcription factors (TFs), RNA polymerases (RNAPs) and other

cellular machines involved in gene expression, while others are com-

pactly wrapped, sequestered and unavailable to most cellular ma-

chinery. These two kinds of regions on the genome are known as

open regions and closed regions (Wang et al., 2016; Niwa, 2007).

Recent high-throughput genome-wide methods invented several bio-

logical experiment techniques for measuring the accessibility of

chromatin to cellular machines related to gene expression, such as
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DNase-seq, FAIRE-seq and ATAC-seq. For example, DNase-seq

takes advantage of DNase I, a DNA-digestion enzyme, to degrade

accessible chromatin while leaving the closed regions largely intact.

This assay allows systematic identification of hundreds of thousands

of DNase I-hypersensitive sites (DHS) per cell type, and this in turn

helps to delineate genomic regulatory compartments (Crawford

et al., 2006; Vierstra et al., 2014). Still, biological experiments are

expensive and time consuming, making large scale assay impractical

and motivating development of computational methods.

In recent years, several sequence-based computational methods

have been proposed to identify functional regions, which mainly fall

into two classes. One class is the kmer-based methods, where k-mers

are defined as oligomers of length k. For example, kmer-SVM pro-

vided a support vector machine (SVM) framework for mammalian

enhancers discrimination based on k-mer features (Lee et al., 2011).

Shortly after kmer-SVM was proposed, gkm-SVM introduced an al-

ternative feature sets named gapped k-mer features, which presented

robustness to estimate k-mer frequencies, and consistently improved

performance of kmer-SVM (Ghandi et al., 2014). The other class is

deep learning-based methods which are mainly established upon

convolutional neural networks (CNNs). Indeed, deep learning algo-

rithms are attractive solutions for such sequence modeling problems.

DeepBind (Alipanahi et al., 2015) and DeepSEA (Zhou and

Troyanskaya, 2015) successfully applied CNNs to modeling the se-

quence specificity of protein binding with a performance superior to

the conventional SVM-based methods. Instead of crafting feature

sets like k-mers, CNNs can adaptively capture informative sequence

features with aid of convolution operations. Zeng et al. (2016) pre-

sented us a systematic exploration of CNN architectures for predict-

ing DNA sequence binding, and showed the benefits of adding more

convolutional kernels in learning higher-order sequence features.

Moreover, there also exist many other deep learning-based

approaches, such as Basset (Kelley et al., 2016) and DeepEnhancer

(Min et al., 2016), suggesting us that CNNs have strong power in se-

quence representation and classification.

Although having been successfully used, both the above two

classes of approaches have their own advantages and disadvantages.

On one hand, k-mers are an unbiased, general, complete set of se-

quence features, which can be defined on arbitrary-length sequences.

However, k-mers can merely capture local motif patterns without

ability to learn long-distance dependencies of DNA sequences. On

the other hand, CNNs can detect sequence motifs automatically and

yield superior performance in classification tasks. Despite this, one

biggest disadvantage for CNNs is that they usually require fixed-

length sequences as input, which may limit their application.

Besides, almost without exception, current deep learning-based

methods simply transform DNA sequences composed of four bases

into images with four channels corresponding to A, C, G and T,

using one-hot encoding. With such representation, these methods ac-

tually execute one-dimensional convolution operations on binary

images with only two possible values for each pixel rather than on

real continuous-valued images in computer vision field (Krizhevsky

et al., 2012), which may impose restrictive effects on their

performance.

In fact, it is more natural to regard one DNA sequence as a sen-

tence with four types of characters, namely A, C, G and T, rather

than an image, and thus related research work in natural language

processing has offered valuable experience for DNA sequence mod-

eling. To address the sentence classification task, Kim (2014) trained

CNNs with one layer of convolution on top of word vectors ob-

tained from an unsupervised neural language model. Word vectors,

wherein words are projected from a sparse, one-hot encoding onto a

lower dimensional vector space via language models such as well-

known Skip-gram (Mikolov et al., 2013) and GloVe (Pennington

et al., 2014), are essentially semantic features that encode contextual

information of words. In this work, the author used word vectors

trained by Mikolov et al. (2013) on a corpus of Google News which

are publicly available and achieved excellent results on multiple

benchmarks, suggesting that the pre-trained vectors are useful fea-

ture extractors that can be utilized for various classification tasks. In

addition, due to their capability for processing arbitrary-length se-

quences, the recurrent neural network (RNN) is a natural choice for

sentence modeling tasks. Especially, RNNs with Long Short-Term

Memory (LSTM) units (Hochreiter and Schmidhuber, 1997) have

re-emerged as a popular architecture because of their representa-

tional power and effectiveness at capturing long-term dependencies.

For instance, Tai et al. (2015) successfully generalized the standard

LSTM to tree-structured network topologies and showed their su-

periority for representing sentence meaning.

With the above consideration, we address the problem of pre-

dicting chromatin accessibility from DNA sequence, by proposing

an innovative computational approach, namely convolutional long

short-term memory networks with k-mer embedding, as shown in

Figure 1. We overcome the drawbacks of current DNA sequence

modeling approaches in two aspects: (i) we fuse the informative

k-mer features into a deep neural network by embedding k-mers

into a low dimension vector space; (ii) we are able to handle

variable-length DNA sequences as input and capture long-distance

dependencies thanks to LSTM units. Specifically, we first cut ori-

ginal DNA sequences with varying lengths into k-mers in a sliding

window fashion. Based on the co-occurrence information of k-mers

contained in the resulted corpus, we train an unsupervised GloVe

model to obtain embedding vectors of all k-mers. In our supervised

deep learning architecture, the first embedding layer is designed to

turn an original DNA sequence, i.e. a sequence of k-mer indexes,

into dense vectors according to the embedding matrix pre-trained by

GloVe. The convolutional layers are intended to scan on the

sequence of vectors through one-dimensional filtering operations,

together with dropout layers and max-pooling layers. The max-

pooling layer is followed by a Bidirectional LSTM (BLSTM) layer,

which is capable of learning complex high-level grammar-like rela-

tionships and handling variable-length input sequences. The last

layers are fully-connected dense layers of rectified linear units

(ReLU) with dropout to avoid overfitting, and a two-way softmax

output layer to generate the final classification probabilities.

To verify the efficacy of our approach, we carry out chromatin

accessibility prediction experiments on datasets collected from the

Encyclopedia of DNA Elements (ENCODE) project (Consortium

et al., 2004). We demonstrate that our framework consistently sur-

passes other methods on binary classification of DNA sequences.

We show that it is beneficial to incorporate the k-mer contextual in-

formation into the deep learning framework by learning the low-

dimensional real-valued dense embedding vectors. We illustrate that

the Bidirectional LSTM units are well-suited for DNA sequence

modeling. We expect that our approach could provide insights into

general DNA sequence modeling and contribute to understanding of

DNA regulatory mechanisms.

2 Materials and methods

In this section, we describe our framework for performing effective

deep learning algorithms on DNA sequences data. We begin by con-

structing the general network architecture that we use. Then we
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discuss in detail k-mer embedding, which aims to encode the co-

occurrence information of k-mers into a low-dimensional vector

space by unsupervised learning. In addition, we describe

Bidirectional LSTMs, which we applied in order to capture long-

range dependencies and form fixed-length feature representation of

arbitrary-length DNA sequences.

2.1 General network architecture
Given a DNA sequence of L0 base pairs (bps), we first split it into

k-mers using the sliding window approach. We extract all subse-

quences of length k with stride s, resulting in a k-mer sequence with

length L ¼ bðL0 � kÞ=sc þ 1, wherein all these k-mers are indexed

by positive integers in set C ¼ ½1;2; . . . ;4k�. We will investigate how

to do feature learning for such sequence data x 2 C
L with varying

length L, i.e. how to learn a feature map g : CL 7!R
d that maps x

2 C
L into a vector of features h 2 R

d useful for machine learning

tasks.

Suppose that we have N variable-length DNA sequences, each

with a binary label representing whether it is a chromatin accessible

region in a specific cell type. Thus, we have N labeled instances

fxi; yigN
i¼1, where xi 2 C

L; yi 2 f0; 1g. Notice again, length L is vary-

ing across samples. Our goal is to learn a function which can be

used to assign the label to each instance xi. We use a convolutional

long short-term memory network with k-mer embedding as shown

in Figure 1. We can decompose the feature learning function

g : CL 7!R
d into three stages:

h ¼ gðxÞ ¼ glstmðgconvðgembedðxÞÞÞ: (1)

The embedding stage computes the co-occurrence statistics of

k-mers, and learns to project them into a D-dimensional space R
D.

The convolution stage scans on the embedding representation of se-

quences using a set of one-dimensional convolution filters in order

to capture sequence patterns or motifs. The BLSTM stage performs

a Bidirectional LSTM network on the input to learn long-term

dependencies, and finally yields a fixed-length feature vector in R
d.

Eventually, in the supervised training stage, we treat the binary

classification as a logistic regression on the feature representations.

The conditional likelihood of yi given xi and model parameters H
can be written as:

log pðyijxi;HÞ ¼ yi log rðbThiÞ þ ð1� yi log ð1� rðbThiÞÞÞ; (2)

where b 2 R
d is the prediction parameters, hi 2 R

d is the learned

fixed-length feature for xi, and rðzÞ ¼ 1=ð1þ exp ð�zÞÞ is the logis-

tic sigmoid function. We train our deep neural network by minimiz-

ing the following loss function:

‘ ¼ �
XN
i¼1

log pðyijxi;HÞ: (3)

2.2 k-mer embedding with GloVe
This section explains why and how we embed k-mers into a low-

dimensional vector space. As mentioned above, traditional kmer-

based methods simply calculate the vector of k-mer frequencies

without utilizing the co-occurrence relationship of k-mers. The

k-mer feature is an analogy of the ‘Bag-of-Words’ feature (Harris,

1954) widely used in natural language processing and information

retrieval, which is an orderless document representation.

Meanwhile, the co-occurrence matrix contains global statistical in-

formation, which may assist us to construct better feature represen-

tations. Here, we apply the popular GloVe (Pennington et al., 2014)

model for k-mer embedding, where GloVe stands for ‘Global

Vectors’ for word representation based on factorizing a matrix of

word co-occurrence statistics. The superiority of GloVe over other

methods for learning vector space representations lies in that it com-

bines the advantages of both global matrix factorization and local

context window methods.

The statistics of k-mer occurrences are the primary source of in-

formation available for learning embedding representations. Let us

denote the matrix of kmer-kmer co-occurrence counts by X, whose

entry Xij tabulates the number of times that k-mer j occurs in the

context window of k-mer i. i, j 2 [1, V] are two k-mer indexes,

where V¼4k is the vocabulary size. According to the GloVe model,

the cost function to be minimized is,

J ¼
XV

i; j ¼ 1
Xij 6¼ 0

f ðXijÞðwT
i ~wj þ bi þ ~bj � log XijÞ2; (4)

Fig. 1. A graphical illustration of our computational framework. We first split

every input DNA sequence into k-mers. We use an unsupervised learning

method, namely GloVe, to learn the embedding vectors of all the k-mers

based on the corpus of k-mer sequences. The embedding layer will embed

each k-mer into a vector space based on the GloVe k-mer vectors, which turns

the k-mer sequence into a dense real-valued matrix. Then three convolution

layers with dropout and max-pooling will scan on the matrix using multiple

convolutional filters to detect spatial motifs. The following BLSTM layer con-

tains two LSTMs run in parallel to capture long-range dependencies on the

previous output and yield a fixed-length feature representation. The final

fully-connected layer and the softmax layer will serve as a classifier to gener-

ate probability predictions to be compared with the true target labels via a

loss function. For a more detailed description of data shape in each layer, see

Supplementary Table S1
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where w 2 R
D are expected k-mer vectors, ~w 2 R

D are separate con-

text vectors for auxiliary purpose, and b; ~b 2 R are biases. The non-

decreasing weighting function f can be parameterized as,

f ðxÞ ¼
ðx=xmaxÞa if x < xmax

1 otherwise
;

(
(5)

where xmax is a cutoff value and a controls the fractional power scal-

ing which is usually set to 3/4.

As can been seen from Equation (4), the computational complex-

ity depends on the number of nonzero entries in the co-occurrence

matrix X. We minimize the cost function in Equation (4) using

AdaGrad (Duchi et al., 2011) to obtain our embedding vector repre-

sentations w1;w2; . . . ;wV 2 R
D for all k-mers. Given these vectors,

we can fulfill the embedding stage of feature learning gembed : CL 7!
R

D�L by embedding every k-mer into the vector space RD:

gembedðxÞ ¼ ½wx1
;wx2

; . . . ;wxL
�; (6)

where x ¼ ½x1; x2; . . . ; xL� 2 C
L. Based on the output D�L matrix,

we proceed with the convolution stage, which further extracts spa-

tial features using convolutional layers and max-pooling layers.

2.3 Bidirectional LSTM
This section introduces the LSTM unit and explains how a

Bidirectional LSTM network can produce a fixed-length output re-

gardless of input sequence lengths. RNNs are able to process input

sequences of arbitrary length by means of the recursive application

of a transition function on a hidden state vector ht 2 R
d. At each

time step t, the hidden state vector ht is the function of the input vec-

tor xt received at time t and its previous hidden state ht–1.

Commonly, the RNN transition function is an affine transformation

followed by a point-wise nonlinearity such as the hyperbolic tangent

function:

ht ¼ tanhðWxt þUht�1 þ bÞ: (7)

Unfortunately, a problem with transition functions of this form is

that components of the gradient vector can grow or degrade expo-

nentially over long sequences during training (Hochreiter, 1998;

Bengio et al., 1994). Hence, the LSTM architecture (Hochreiter and

Schmidhuber, 1997) is designed to remedy this exploding or vanish-

ing gradients problem in RNNs by introducing a memory cell which

can choose to retain their memory over arbitrary periods of time

and also forget if necessary. While various LSTM variants have been

described, here we present the transition equations in Equations (8)–

(13) stating the forward recursions for a single LSTM layer.

We define the LSTM unit at each time step t to be a collection of

vectors in R
d: an input gate it, a forget gate ft, an output gate ot, an

input modulation gate gt, a memory cell ct and a hidden state ht. The

entries of the gating vectors it, ft and ot are in [0, 1]. The LSTM tran-

sition equations are the following:

it ¼ rðWðiÞxt þUðiÞht�1 þ bðiÞÞ; (8)

ft ¼ rðWðf Þxt þUðf Þht�1 þ bðf ÞÞ; (9)

ot ¼ rðWðoÞxt þUðoÞht�1 þ bðoÞÞ; (10)

gt ¼ tanhðWðgÞxt þUðgÞht�1 þ bðgÞÞ; (11)

ct ¼ it � gt þ ft � ct�1; (12)

ht ¼ ot � tanhðctÞ; (13)

where xt denotes the input from the previous layer at the current

time step, r denotes the logistic sigmoid function and � denotes

element-wise multiplication (Fig. 2).

Intuitively, the hidden state vector in an LSTM unit is a gated,

partial view of the state of the unit’s internal memory cell. Since the

value of the gating variables varies for each vector element, the

model can learn the long-range information over multiple time

scales. In our application, we only output the hidden state vector of

LSTM at the last time step, which remembers the whole sequence in-

formation and keeps a fixed-length representation for variable-

length input sequences. Besides, a common-used variant of the basic

LSTM is the Bidirectional LSTM, which consists of two LSTMs run

in parallel: one on the input sequence and the other on the reverse of

the input sequence. We concatenate the outputs of two parallel

LSTMs to obtain our final feature representation containing both

the forward and backward information of a DNA sequence.

3 Results and discussion

To verify our framework, we run a series of classification experi-

ments using datasets collected from the ENCODE project. First, in

Section 3.1, we give an introduction to the datasets prepared for

classification tasks and some details about model training proced-

ure. Then in Section 3.2, we evaluate our method and compare its

performance with gkmSVM and DeepSEA. Next in Section 3.3, we

analyze k-mer embedding by probing into the k-mer statistics and

visualizing the embedding vectors. Additionally in Section 3.4, we

prove the effectiveness of k-mer embedding by exploring different

embedding strategies in our network architecture. In Section 3.5 and

3.6, we prove the efficacy of both the convolution and BLSTM

stages, by proposing two variant deep learning architectures. Finally

in Section 3.7, we perform sensitivity analysis to show the robust-

ness of our model.

3.1 Experiment setup
To benchmark the performance of our deep learning framework, we

selected DNase-seq experiments of six typical cell lines, including

GM12878, K562, MCF-7, HeLa-S3, H1-hESC and HepG2.

GM12878 is a lymphoblastoid cell line produced from the blood of

Fig. 2. Elaborate description of the LSTM unit. i: input gate, f: forget gate, o:

output gate, g: input modulation gate, c: memory cell, h: hidden state. The

blue arrowhead refers to ct–1, namely the memory cell at the previous time

step. The notations correspond to Equations (8) - (13) such that W(� ) denotes

weights for xt to the output gate, and U(f) denotes weights for ht–1 to the forget

gate, etc. Adapted from Sønderby et al. (2015)
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a female donor with northern and western European ancestry by

EBV transformation. K562 is an immortalized cell line produced

from a female patient with chronic myelogenous leukemia (CML).

MCF-7 is a breast cancer cell line isolated in 1970 from a 69-year-

old Caucasian woman. HeLa-S3 is an immortalized cell line that

was derived from a cervical cancer patient. H1-hESC is a human em-

bryonic stem cell (ESC) line. HepG2 is a cell line derived from a

male patient with liver carcinoma.

For each cell type, we downloaded raw sequencing data from

website of ENCODE, mapped reads to human reference genome

(hg19) using the tool bowtie, and identified chromatin accessible re-

gions (peaks) using the tool HOTSPOT (John et al., 2011). We re-

garded these variable-length sequences as positive samples, and

additionally generated the negative samples by cropping an equal

number of sequences randomly from the whole genome with the

same length distribution as the positive samples. In this way, we

constructed six chromatin accessibility datasets as described in

Table 1. Each dataset has 244–504k samples whose lengths present

a long-tailed distribution. We then split at random each dataset into

strictly non-overlapping training, validation and test sets with pro-

portion 0.85:0.05:0.10. The training set was used to adjust the

weights on the neural network. The validation set was used to avoid

overfitting. The test set was used for testing the final solution in

order to confirm the actual predictive power of the network.

For the unsupervised training of k-mer embedding, we generated

the corpus of k-mer sequences by setting k to 6, and the stride s to 2.

Consequently, the k-mer vocabulary size is V¼46¼4096. We used

the C implementation of GloVe model published on website https://

github.com/stanfordnlp/GloVe, which is multi-thread and ultra-fast,

to obtain the k-mer embedding vectors. With regard to hyper-

parameters of GloVe, we set the window size to 15 in computing co-

occurrence matrix, the vector size, i.e. the embedding dimension to

100, the cutoff value xmax to 30 000 and the maximum number of it-

erations to 300.

We implemented our supervised deep neural network by Keras

(Chollet, 2015) which is a deep learning library for Theano and

Tensorflow. We chose Theano as backend of Keras, while the

Tensorflow backend also generated very close results through our

testing. The high-performance NVIDIA Tesla K80 GPU was used

for model training. During training process, we applied the

RMSprop algorithm (Tieleman and Hinton, 2012) for the stochastic

optimization of the objective loss function, with the initial learning

rate set to 0.001, and batch size set to 3000. We also applied the

early stopping strategy with the maximum number of iterations set

to 60, and it would stop training after 5 epochs of unimproved loss

on the validation set.

3.2 Model evaluation
To begin with, we reported accuracy and cross-entropy loss on

training, validation and test sets for our method on six different

datasets as described in Table 2. The performance on the test set is

fairly close to that on the training set, indicating that our method

avoided overfitting due to the usage of validation set and early stop

strategy. Among the six datasets, we achieved the best prediction on

the MCF-7 dataset with 0.8411 accuracy on its test set. With regard

to the model efficiency, our model took around 26-41 training

epochs until convergence. The training time for each epoch was be-

tween 350 and 699s which was roughly proportional to the size of

dataset, while the whole training period consumed about 2.5–7.9h.

Next, we compared the performance of our proposed method

and several baseline methods, including the gapped k-mer SVM

(gkmSVM) (Ghandi et al., 2014), DeepSEA (Zhou and

Troyanskaya, 2015). For gkmSVM, we used the source code pub-

lished on website http://www.beerlab.org/gkmsvm/. For DeepSEA,

we implemented it ourselves using Keras. We slightly modified the

network structure of DeepSEA to make it suitable for our task.

Besides, to directly prove the effectiveness of k-mer embedding, we

also propose a new variant network named ‘one hot’, which is

mainly comprised of an embedding layer (embedding A, C, G, T

using one-hot encoding), three convolutional layers, and a BLSTM

layer. For evaluation purpose, we computed two often-used meas-

ures, the area under the receiver operating characteristic curve

(auROC) and the area under the precision-recall curve (auPRC), on

the test set.

We reported the classification performance measured in auROC

and auPRC on the six datasets in Table 3. The results of two

Table 1. Description of six cell type-specific datasets for chromatin

accessibility prediction

Cell type Code Size l_max l_min l_mean l_median

GM12878 ENCSR000EMT 244692 11481 36 610.95 381

K562 ENCSR000EPC 418624 13307 36 675.21 423

MCF-7 ENCSR000EPH 503816 12041 36 471.86 361

HeLa-S3 ENCSR000ENO 264264 11557 36 615.85 420

H1-hESC ENCSR000EMU 266868 7795 36 430.26 320

HepG2 ENCSR000ENP 283148 14425 36 652.73 406

Note: Code denotes the corresponding code in ENCODE project, size de-

notes the number of sequences the dataset contains, and l_max, l_min,

l_mean and l_median denote the maximum, minimum, mean and median

value of sequence lengths in bps, respectively. Note that in our datasets we

removed regions shorter than 36 bps, so l_min is always 36 bps.

Table 2. Training details for our method on each dataset, including

accuracy and cross-entropy loss on training, validation and test

sets, number of epochs, average training time for each epoch and

total training time

GM12878 K562 MCF-7 HeLa-S3 H1-hESC HepG2

Train loss 0.4194 0.4161 0.3377 0.3818 0.3800 0.4336

Val loss 0.4346 0.4397 0.3634 0.3976 0.3813 0.4514

Test loss 0.4352 0.4342 0.3595 0.4012 0.3748 0.4440

Train acc 0.8080 0.8105 0.8562 0.8333 0.8302 0.8030

Val acc 0.7940 0.7962 0.8397 0.8203 0.8223 0.7841

test acc 0.7947 0.7959 0.8411 0.8180 0.8252 0.7871

# epochs 34 35 41 36 26 33

Time 350 s 559 s 699 s 374 s 357 s 392 s

Total 3.3 h 5.4 h 7.9 h 3.7 h 2.5 h 3.5 h

Table 3. Classification performance for three different methods in

chromatin accessibility prediction experiments

GM12878 K562 MCF-7 HeLa-S3 H1-hESC HepG2

(a) auROC

gkmSVM 0.8528 0.8203 0.8967 0.8648 0.8983 0.8359

DeepSEA 0.8788 0.8629 0.9200 0.8903 0.8827 0.8609

One hot 0.8711 0.8634 0.9045 0.8909 0.9081 0.8510

our method 0.8830 0.8809 0.9212 0.9016 0.9097 0.8722

(b) auPRC

gkmSVM 0.8442 0.8081 0.8860 0.8627 0.8823 0.8123

DeepSEA 0.8758 0.8551 0.9146 0.8888 0.8705 0.8508

One hot 0.8679 0.8567 0.8997 0.8900 0.8960 0.8418

our method 0.8774 0.8732 0.9156 0.8992 0.8968 0.8630

Note: The top table records auROC values while the bottom one records

auPRC values. Best results are shown in bold.
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measures are consistent with each other. As we can see, with the

help of k-mer embedding, our method consistently surpasses the

other three baseline methods. On average, our method shows an

auROC score 3.9% higher than gkmSVM, and 1.4% higher than

DeepSEA. On the MCF-7 dataset, our method yields the best per-

formance with auROC of 0.9212 and auPRC of 0.9156. On the

K562 dataset, our method obtains the most significant improvement

compared to gkmSVM, with auROC increasing by 7.4% and

auPRC increasing by 8.1%. Besides, our method always outper-

forms the one hot method on six datasets, with 0.013 higher

auROC score and 0.012 higher auPRC score on average. This obser-

vation enlightens us that the straightforward one-hot encoding is

perhaps not the optimal strategy for representation of DNA se-

quences. In contrast, k-mer embedding integrates the contextual in-

formation of k-mers and accordingly improves the feature

representation. In addition, gkmSVM shows worse performance

than DeepSEA except for the H1-hESC dataset, convincing us that

deep learning, which can automatically learn feature representation,

is more powerful than SVMs with handcrafted k-mer features. To

make our results more solid, we additionally carry out 10-fold cross

validation experiments on the six datasets, showing that our model

significantly outperforms DeepSEA (Supplementary Tables S2–S7).

We also run our model several times with different random seeds,

showing stability of our model (Supplementary Table S8).

It is also noteworthy that our method gained superiority of

running-time owing to GPU usage. For the H1-hESC dataset, our

method consumed only 2.5 h as shown in Table 2. Meanwhile

gkmSVM allocated with sixteen threads costed 23.8 h before con-

vergence, meaning that our method is nearly 10 times faster than

gkmSVM. Thus benefitting by computer hardware, our approach

allows researchers to obtain models of high accuracy within a short

time.

For the sake of implementation efficiency, we used the common-

used zero-padding and truncating strategy in LSTM networks,

which is to pad zeros on the right of short sequences and truncate

long sequences to a maximum length, and then adopt the standard

batch gradient descent (Wilson and Martinez, 2003). Given the

length distributions shown in Figure 3, we set the maximum length

to 2000 bps in our experiments. To explore the effect of this hyper-

parameter, we changed the maximum length in range of 2000,

1500, 1000 and 500 bps, and re-trained our model on the

GM12878 dataset. We reported the our model performance with

different maximum length in Table 4. We find that when we de-

crease the maximum length, the auROC and auPRC scores will de-

crease slightly, except for a fixed length of 500 bps that leads to

significant drop in performance, since some input sequences are

truncated leading to information loss. We also find that small max-

imum length will decrease training time remarkably, because the re-

duction of input dimension directly decreases computational

complexity.

3.3 Visualization of k-mer embedding
In order to make our model more interpretable, we proceed with a

thorough investigation about k-mer embedding in this subsection.

The primary specialty discriminating our method from other state-

of-the-art deep learning methods in genomic analysis is that we util-

ize the k-mer embedding vectors trained by GloVe, an unsupervised

learning algorithm, as the representation of DNA sequences.

Training is based on aggregated global kmer-kmer co-occurrence

statistics from a corpus of k-mer sequences, and the resulting repre-

sentations showcase linear substructures of the k-mer vector space,

which benefit subsequent classification tasks.

Take the MCF-7 dataset, for example, we first split its positive

samples, i.e. chromatin accessible regions, into k-mer sequences.

Thus, taking each k-mer as a word and each k-mer sequence as a

sentence, we have a corpus with vocabulary of size V¼4096. We

list the top five most frequent k-mers with frequency appended,

(aaaaaa, 106157), (tttttt, 104409), (gggagg, 50694), (tgtgtg, 50605)

and (cctccc, 50593). The least frequent k-mer is cgtacg occurring

only 607 times in total. The overall distribution of k-mer frequencies

is depicted in Figure 4a with k-mers ranked by frequency. The sym-

metric co-occurrence matrix in Figure 4b is normalized via a loga-

rithm function log10 to make patterns more visible. Entries with

value <1.0 exist because we applied a distance-weighted function in

calculating co-occurrence matrix in practice. There are also 25 823

zero entries displayed in white color which are often found in the

right bottom corner.

Intuitively, we can see the co-occurrence matrix contains com-

plex patterns and wealthy information of k-mer dependencies on

DNA sequences. The 100-dimensional embedding vectors of k-mers

learned by GloVe are exhibited in Figure 4c. Statistically, the embed-

ding matrix has a mean value of 0.0016, a maximum value of

1.9883 and a minimum value of –1.9419. We find the weights have

a recognizable distribution, i.e. Gaussian distribution with P-value

1.7e-16. Thereby information is relatively decentralized on each di-

mension which is a good property for feature representation. To

visualize the learned k-mer vectors, we show the dimension reduc-

tion results using two techniques, Principal Component Analysis

(PCA) and t-Distributed Stochastic Neighbor Embedding (t-SNE)

(Maaten and Hinton, 2008) in Figure 4d. We put all k-mers as col-

ored circle points in the plot, and we use a continuous colormap to

represent their frequency order. Interestingly, although the two

Fig. 3. Violin plot for length distribution of DNA sequences in six chromatin

accessibility datasets. The width of each violin indicates the dataset size, and

the middle red line shows the mean values of sequence lengths

Table 4. Our model performance on the GM12878 dataset with dif-

ferent maximum length of input sequences

Length (bps) auROC auPRC Time (s/epoch) # epochs Total (h)

2000 0.8830 0.8774 350 34 3.3

1500 0.8793 0.8745 249 32 2.2

1000 0.8747 0.8682 165 37 1.7

500 0.8528 0.8444 71 30 0.6

Note: The auROC scores, auPRC scores, average training time for each

epoch, number of epochs and total training time are shown.
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methods generate different results, they both declare that k-mers

with close frequencies tend to be also adjacent in the embedding vec-

tor space.

To further interpret k-mer vectors, we explore how the cosine

distance between k-mer vectors is related to the edit distance be-

tween k-mers themselves. There are totally 4096�4095/

2¼8386560 pairs of k-mers, and we compute the pairwise cosine

distance of k-mer vectors and the pairwise edit distance of k-mers.

Since there are only six characters in one k-mer, the edit distance has

only six possible values, i.e. (1, 2, 3, 4, 5, 6). Thus, we split all the

pairs into six groups according to the edit distance. We try to look

at each group to see the distribution of their corresponding k-mer

vector distances. We summarize the statistics in Table 5 and visual-

ize the distribution of vector distances in Figure 5. In general, we

find that the cosine distance between k-mer vectors is monotonically

increasing with the edit distance between k-mers. This phenomenon

declares the rationality of our k-mer embedding in that the more un-

like the two k-mers are, the more faraway they are in the embedding

space. For more details, see Supplementary Fig S1, Tables S9 and

S10. Besides, we also attempt to investigate the association between

the enriched k-mers and the location of these k-mers in chromatin

accessible regions, and further the relationship between the enriched

k-mers and the DNase-seq signal strength, in Supplementary Fig. S2

and S3. Moreover, we try to find the most specific k-mers corres-

ponding to each cell line, in Supplementary Tables S11 and S12.

3.4 Efficacy of k-mer embedding
In our method, the embedding layer is fed with sequences of inte-

gers, i.e. k-mer indexes, and then map them to vectors found at

the corresponding index in the GloVe embedding matrix. The pre-

trained k-mer vectors provide a decent initialization and they will

be further fine-tuned during training process. To prove the effi-

cacy of our k-mer embedding, we here put forward two other dif-

ferent embedding strategies. One is to keep the embedding layer

fixed during training. The other is that we instead initialize our

embedding layer from scratch and learn its weights through

training.

We demonstrate auROC scores for the above three embedding

strategies on the six datasets in Figure 6. The average auROC

scores for ‘-init -train’, ‘-init -notrain’ and ‘-noinit’ strategies are

0.8948, 0.8756 and 0.8726, respectively. We observe that our ori-

ginal strategy brings the best performance as expected. In fact, the

combination of unsupervised pre-training and supervised fine-

tuning has been proved to be successful in deep learning (Hinton

and Salakhutdinov, 2006; Bengio et al., 2007). Moreover, the

model reaches a relatively high accuracy just using k-mer embed-

ding vectors without any fine-tuning, consistently outperforming

the strategy not using pre-trained vectors. This tells us that, in gen-

eral, the pre-trained k-mer embedding vectors definitely buy us

something of substantial value, and do help improve the model ac-

curacy. For more details, see Supplementary Table S13.

(a)

(c)

(d)

(b)

Fig. 4. Visualization of k-mer statistics and k-mer embedding vectors in MCF-7

dataset. The top left figure shows the frequency of k-mers. The top right fig-

ure illustrates the co-occurrence matrix of k-mers with a log-normalized color-

map. The middle figure demonstrates the k-mer vectors produced by GloVe.

In the bottom figure, we visualize all the k-mers by projecting their vectors

into a plane using PCA and t-SNE

Fig. 5. k-mer edit distance versus k-mer vector cosine distance. Each violin de-

scribes the distribution of the k-mer vector cosine distances in each group of

k-mer pairs, where the intermediate line represents the mean value while the

lines on two ends represent extreme values

Table 5. k-mer pairs are divided into six groups according to their

edit distance

Edit distance # pairs Cosine distance

Mean Std Dev

1 36 864 0.5272 0.1466

2 355 494 0.8157 0.1695

3 1 602 378 0.9434 0.1414

4 3 272 994 1.0006 0.1485

5 2 560 482 1.0470 0.1320

6 558 348 1.0822 0.1352

Note: For each group, we list the number of pairs it contains, and the mean

value and the standard deviation of their cosine distances between k-mer

vectors.
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3.5 Efficacy of convolution
In our experiment, the convolution stage contains three convolu-

tional layers with 100, 100 and 80 one-dimensional filtering kernels

of length 10, 8 and 8, each followed by a max-pooling layer with

pooling length 4, 2 and 2, respectively. In this subsection, we prove

the efficacy of the convolution stage by proposing a variant deep

architecture getting rid of the convolutional layers and max-pooling

layers from the full model. We directly use the output of the embed-

ding layer as the input of the BLSTM layer instead.

We report the auROC scores and running time of this variant

model and compare them against the original full model in Table 6.

We discover that removing convolutional layers can obviously injure

the auROC score, leading to a 0.0120 decrease on average. This

proves the effectiveness of convolutional operations in detecting spa-

tial motifs. With regard to the running time, we find the variant

architecture takes almost twice the time to train the network than

the full architecture. The reason lies in that the max-pooling layers

which down-sample the input representation, play an important role

in reducing dimensionality and allowing huge decrease in

computation complexity. In view of the above two aspects, we add

in the convolution stage in our deep learning framework. For more

details, see Supplementary Tables S14 and S15.

3.6 Efficacy of BLSTM
BLSTM is critical to the processing of variable-length input se-

quences, and also effective in capturing long-term dependencies. In

our method, we have a BLSTM layer with dimension d set to 80. To

confirm the efficacy of the BLSTM stage, we construct another vari-

ant of our deep learning architecture by retraining the embedding

layer and convolutional layers and removing the BLSTM layer. We

directly use the flattened output of the convolutional layers instead

as our final feature vector for classification.

The auROC scores and the running time for each epoch of this

variant architecture and our original full architecture are recorded

in Table 6. As expected, the full model always performs better than

this variant not using BLSTM, with a 0.0055 improvement in

auROC score on average. The running time for the two architectures

is quite close to each other, meaning that BLSTM does not increase

the computation amount significantly. Note that only the convolu-

tional layers with max-pooling are incapable of dealing with vari-

able length sequences, unless we adopt the aforementioned zero-

padding strategy to truncate each sample into the same shape, or we

use global pooling (He et al., 2014) instead of max-pooling which

extract fixed-dimensional features for temporal data while lose lots

of information unfortunately. The results in Table 6a are generated

using the former strategy, while the latter one will surely demon-

strate even worse performance. Therefore, the BLSTM stage is indis-

pensable in our deep learning architecture for its ability to cope with

variable-length sequences and to capture the rich long-term depend-

encies. For more details, see Supplementary Tables S14–S16.

3.7 Sensitivity analysis
To finish our discussion, we carry out sensitivity analysis to check

the robustness of our model. We focus on the following three hyper-

parameters: the k-mer length k, the embedding dimension D, and

the splitting stride s. Without loss of generality, we use the

GM12878 dataset for sensitivity analysis experiments.

According to Figure 7, our model is insensitive to the choice of k

and D. Too large k will bring explosive growth of the vocabulary,

Fig. 6. Model performance for different embedding strategies. ‘-init -train’

means that we initialize the embedding layer using the GloVe k-mer vectors,

which is adopted in our proposed model. ‘-init -notrain’ means that we initial-

ize the embedding layer using the GloVe k-mer vectors, but prevent the

weights from being updated during training. ‘-noinit’ means that we ran-

domly initialize the embedding layer using uniform distribution and allow the

neural network to adjust the embedding weights in supervised learning

Table 6. auROC scores and running time of two variant deep learn-

ing architectures and our original model

GM12878 K562 MCF-7 HeLa-S3 H1-hESC HepG2 �D

(a) auROC scores

full 0.8830 0.8809 0.9212 0.9016 0.9097 0.8722

no conv 0.8746 0.8677 0.9008 0.8878 0.9049 0.8608 –0.0120

no lstm 0.8746 0.8741 0.9156 0.8954 0.9087 0.8672 –0.0050

(b) running time for each epoch

full 350s 559s 699s 374s 357s 392s

no conv 693s 1173s 1399s 739s 755s 797s 465.8s

no lstm 331s 577s 690s 368s 350s 384s –11.8s

Note: ‘Full’ represents the original architecture comprised of three stages,

including a embedding stage, a convolution stage and a BLSTM stage; ‘no

conv’ represents the variant architecture removing the convolution stage; ‘no

lstm’ represents the variant architecture removing the BLSTM layer, which is

substituted by a flatten layer. �D computes the average difference of auROC

scores and running time between the two variants and the full model.

(a) (b)

(c)

Fig. 7. Sensitivity analysis of hyper-parameters k, the embedding dimension

D, and the splitting stride s, performed on the GM12878 dataset. The auROC

scores on the test set are reported
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while too small k may give us too little useful information on the

small co-occurrence matrix. We tried three appropriate values of k

from 5 to 7, retrained the k-mer embedding vectors, and obtained

extremely close performance in classification. Similarly, we also

tried four different values of the embedding dimension D, including

50, 100, 150 and 200. A larger D results in more weight parameters

to learn in the embedding layer, which will increase the model com-

plexity. Despite this, our model demonstrates quite stable perform-

ance, reflecting its ability to avoid overfitting.

The splitting stride s will affect the number of k-mers trans-

formed from one DNA sequence by

L ¼ bðL0 � kÞ=sc þ 1: (14)

We find that the auROC score decreases from 0.8830 to 0.8143

when we increase the stride s from 2 to 6. A larger s will decrease

the corpus size as Equation (14) said, making part of co-occurrence

information lost, and thereby possibly damaging the embedding rep-

resentation. We do not use the smallest s¼1, since it may cause a

too large k-mer corpus and too large overlap between adjacent

k-mers, also perhaps harming the embedding algorithm.

Considering the above facts, we here recommend a proper splitting

stride s¼2 to make full use of k-mer co-occurrence information.

4 Conclusion

In this paper, we propose a convolutional long short-term memory

neural network with the pre-trained k-mer embedding vectors to

predict chromatin accessible regions from mere sequence informa-

tion. Our major contributions can be summarized as bellow. First of

all, we innovatively introduce an effective embedding representation

of input DNA sequences using the unsupervised learning algorithm

GloVe in the deep learning framework. Instead of using one-hot

encoding, we use the k-mer embedding vectors which have absorbed

the statistical information of k-mer co-occurrence relationship and

are conducive to following classification tasks, for feature represen-

tation. Secondly, we are capable of handling variable-length se-

quences as input by exploiting the BLSTM network. One big

obstacle that hinders the application of CNNs in DNA sequence

modeling is the variation in sequence lengths. We utilize the BLSTM

networks, not only to make our model appropriate for variable-

length input sequences, but also to capture complex long-term

dependencies on them. Moreover, we prove our model produces

state-of-the-art performance in sequence classification tasks, com-

pared to other baseline methods. We visualize the embedding vec-

tors obtained by GloVe and demonstrate the effectiveness of k-mer

embedding. We provide an in-depth understanding of our deep

learning architecture, by showing the efficacy of both the convolu-

tion and BLSTM stages in feature learning, and showing the robust-

ness of our model to hyper-parameters.

Certainly, our work can possibly be further improved in several

aspects. First, the attention mechanism has been successfully intro-

duced to LSTM and improved the performance of neural machine

translation (NMT) (Luong et al., 2015). Attention mechanism can

selectively focus on parts of sentences during training, and maybe

this can be used in our DNA modeling to help detect and visualize

the important motifs on sequences. Second, we learn k-mer vectors

to embed a DNA sequence into a sequence of dense vectors which is

still in variable length, and then extract the fixed-length features

through BLSTM. In fact, there exist methods to directly learn dis-

tributed representations of sentences and documents, such as

Paragraph Vector (Le and Mikolov, 2014), which motivate us to

design a more elegant embedding algorithm for vector representa-

tion of variable-length sequences. Last but not the least, large-scale

experiments of using our model to analyze various kinds of gen-

omics and epigenomics sequencing data is highly encouraged.

Eventually, we hope our deep learning method can allow us achieve

excellent performance in DNA sequence analysis and help boost our

understanding of chromatin accessibility mechanism.
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