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Abstract: Heart rate variability, which is the fluctuation of the R-R interval (RRI) in electrocardio-
grams (ECG), has been widely adopted for autonomous evaluation. Since the HRV features that are
extracted from RRI data easily fluctuate when arrhythmia occurs, RRI data with arrhythmia need to
be modified appropriately before HRV analysis. In this study, we consider two types of extrasystoles—
premature ventricular contraction (PVC) and premature atrial contraction (PAC)—which are types of
extrasystoles that occur every day, even in healthy persons who have no cardiovascular diseases. A
unified framework for ectopic RRI detection and a modification algorithm that utilizes an autoen-
coder (AE) type of neural network is proposed. The proposed framework consists of extrasystole
occurrence detection from the RRI data and modification, whose targets are PVC and PAC. The
RRI data are monitored by means of the AE in real time in the detection phase, and a denoising
autoencoder (DAE) modifies the ectopic RRI caused by the detected extrasystole. These are referred
to as AE-based extrasystole detection (AED) and DAE-based extrasystole modification (DAEM),
respectively. The proposed framework was applied to real RRI data with PVC and PAC. The result
showed that AED achieved a sensitivity of 93% and a false positive rate of 0.08 times per hour. The
root mean squared error of the modified RRI decreased to 31% in PVC and 73% in PAC from the
original RRI data by DAEM. In addition, the proposed framework was validated through application
to a clinical epileptic seizure problem, which showed that it correctly suppressed the false positives
caused by PVC. Thus, the proposed framework can contribute to realizing accurate HRV-based health
monitoring and medical sensing systems.

Keywords: heart rate variability analysis; extrasystole; RRI data; machine learning; autoencoder

1. Introduction

The autonomous nerve system (ANS) regulates various physiological functions, such
as circulation, respiration, digestion, sweating, thermoregulation, and metabolism, and is
associated with various types of diseases [1]. Thus, disease diagnosis or symptom detection
for clinical purposes in daily life would be possible with the realization of if real-time ANS
activity monitoring.

A candidate solution is to use the heart rate variability (HRV), which is derived from
an electrocardiogram (ECG). An ECG signal consists of peaks, such as the P, T waves and
QRS complex, of which the highest peak is an R wave, and the interval between adjacent
R waves is defined as an R-R interval (RRI) (ms). The heart rate variability (HRV) is a
phenomenon in which there is fluctuation in the RRI, reflecting the activities of the ANS [2].

Although HRV analysis has been traditionally used in the cardiovascular field [3,4]
and HRV analysis software have been developed [5,6], various new types of real-time
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health monitoring services have been developed based on HRV analysis. Drowsiness
detection algorithms, which utilize the fact that HRV is altered due to the sleep stage
transition [7], have been proposed [8–11]. Sleep apnea contributes to the development of
cardiovascular events, which greatly affect HRV [12,13]. Research reported that apnea can
be screened by monitoring HRV during sleep [14,15]. Epileptic seizures can be detected
by means of HRV [16], since HRV changes during preictal phases [17,18]. In addition,
an epileptic seizure prediction system was proposed, which combines HRV analysis and
an anomaly detection algorithm [19].

To realize real-time health monitoring utilizing HRV, robust HRV feature extraction is
essential; however, HRV features easily fluctuate when the raw data contains ectopic RRIs.
For example, since the SDNN should be calculated from the RRI data measured during
normal sinus states according to a clinical guideline for HRV analysis [2]. Ectopic RRIs
must be detected and modified in real-time to calculate the SDNN. This problem should be
solved on the software side after the ECG measurement; the RRI data collected from ECG
sensors must be checked and appropriately treated by software before extracting the HRV
when there is the possibility that ectopic RRIs are contained.

There are two major causes of an ectopic RRI: arrhythmia and R wave detection error
due to ECG measurement failure or motion artifact contamination. Regarding the latter,
electrode contact failure or sensor failure may cause long-term detection errors, as well
as the inability to extract HRV features, as such failures inhibit the measurement of reli-
able RRI information. Although hazardous arrhythmia, such as long QT syndrome, may
cause sudden cardiac death, persons without cardiovascular diseases also have certain
types of nonhazardous arrhythmia that occur every day; for example, premature ven-
tricular contraction (PVC) and premature atrial contraction (PAC) are the most common
extrasystoles [20,21] in healthy persons.

This study focuses on only extrasystole treatment to improve the HRV analysis quality
although there are various causes of ectopic RRI. In general, it is difficult to solve any type
of problem by just one algorithm, which is sometimes known as the ‘no-free-lunch theorem’
in computer science [22]. Therefore, we adopted a ‘divide and conquer’ approach. In this
study, extrasystoles are considered as they occur with low frequency in persons without
any cardiovascular diseases because a person might have cardiovascular diseases when
they have many extrasystoles [23].

Extrasystoles in the RRI data significantly affect the HRV analysis, causing perfor-
mance deterioration of the ANS activity monitoring. Ectopic RRIs should be detected and
modified appropriately before HRV analysis in order to improve the accuracy. Preferably,
this ectopic RRI treatment is performed in real-time because drowsiness detection and
epileptic seizure prediction are real-time applications. The simplest method for detecting
extrasystoles may be the use of a threshold; however, such a strategy is not easily adopted.
The heart rates of healthy adults typically range between about 50 to 90 bpm, that is,
the range of RRI is about 650–1200 ms. On the other hand, the alternation width of the RRI
by an extrasystole is about 300 ms. Thus, it is difficult to set an appropriate threshold for
ectopic RRI detection that is applicable to all people.

Various ECG signal quality assessment methods have been proposed [24]. Kalkstein et al.
proposed an erroneous signal detection method based on machine learning for ECG
signals [25]. Jung and Kim proposed an extrasystole detection method from ECG signals
using wavelet analysis [26]. Extrasystole detection based on ECG signals using a hidden
Markov model (HMM) has been developed [27]. In addition, fuzzy neural networks or
convolutional neural networks have been utilized for extrasystole detection from ECG
signals [28,29].

However, it is desirable that extrasystoles are not detected from raw ECG signals but
from the RRI data because dealing with ECG signals requires a much heavier computation
burden compared with RRI data, although all of these methods analyze raw ECG signals.
In fact, some wearable sensors do not measure the raw ECG signals but detect and collect
only the RRIs for energy and computation savings for the embedded microcomputers [30].
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Thus, we did not consider raw ECG signals but the RRI data for extrasystole treatment for
precise HRV analysis in real-time.

The simplest treatment of ectopic RRI is to remove or ignore it [31]. The use of the
Lomb–Scargle (LS) periodogram after ectopic RRI removal is recommended for frequency-
domain HRV feature extraction [32]. However, such treatment is not preferable since it
produces gaps in time relative to the real time, which is intolerant of real-time applications,
such as epileptic seizure prediction systems or drowsiness detection. Mateo et al. analyzed
the effect of ectopic beats on HRV [33] based on their proposed heart timing signal [34].
Kamata et al. proposed the use of locally-weighted partial least squares (LWPLS) for the
interpolation of missing RRI caused by detection errors [35]. Their study showed that
LWPLS could adequately interpolate missing RRIs and that it was difficult to modify more
than two successive missing RRIs; however, Kamata’s method is unsatisfactory for our
purposes because it does not mention extrasystoles.

To realize precise HRV analysis, we propose a new framework of nonhazardous
extrasystole treatment utilizing an autoencoder (AE) [36] and a denoising autoencoder
(DAE) [37], which are types of neural networks. The proposed framework consists of
extrasystole occurrence detection from the RRI data and modification, where the targets
are PVC and PAC. The RRI data are monitored by means of the AE in real-time in the
detection phase, and the DAE modifies the ectopic RRI caused by the detected extrasystole.
These are referred to as AE-based extrasystole detection (AED) and DAE-based extrasystole
modification (DAEM).

The usefulness of the proposed framework was validated through its application to
RRI data with artificial PVCs and PACs. The proposed framework performance cannot
be evaluated by using real RRI data with extrasystoles since the “true” RRI values are
unknown before the extrasystole occurs. Extrasystole detection by visual observation
is burdensome, and errors may occur even when cardiologists check real data, which
makes it difficult to evaluate the precise performance of the proposed AED. In addition,
the proposed framework was applied to a clinical epileptic seizure problem [19].

Although a preliminary version of this work was reported in [38], which proposed a
PVC modification algorithm using DAEM, the detection of extrasystoles by AED, the modi-
fication of PAC using DAEM, and application to the real problem were not discussed therein.

2. Methods
2.1. Extrasystole

In this study, we consider PVC and PAC as these are the most common nonhazardous
extrasystoles that occur even in healthy persons every day [20,21]. Other types of arrhyth-
mia can be omitted because they rarely occur in healthy persons. This section introduces
PVC and PVA and discusses their effects on HRV features. The HRV analysis method that
is considered as an example in this work is described in the Appendix A.

2.1.1. Premature Ventricular Contraction (PVC)

PVC is a common type of monostotic extrasystole, in which usually a heartbeat
is skipped, as shown in Figure 1. A normal sinus rhythm is generated from the sinus
nodes; however, cardiac activation sometimes originates from the ventricle, which causes a
premature contraction [20].

Although PVC itself does not become a direct cause of death, PVC may induce
ventricular fibrillation and lead to sudden death when PVC occurs in a patient with
cardiovascular disease. Brodsky et al. also reported that at least one PVC occurred in
25 out of 50 men within 24 h of ECG monitoring [39]. According to a survey conducted
by Kostis et al., 39 out of 101 healthy adults had a PVC at least once within 24 h [40].
These reports indicate that PVC is a common type of arrhythmia—occurring even in
healthy persons. In particular, age plays a major role in the PVC occurrence throughout the
population: under 1% of those affected are under the age of eleven years, and 6% are over
75 years old [41].
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PVC

Time [s]0 5

short long

Figure 1. Example of an ECG with a PVC. The RRIs both before and after are altered in most
PVC occurrences: RRIs before the PVC become short, and the RRIs after the PVC become long to
compensate for the heartbeat rhythm. This phenomenon is called a compensatory pause.

The occurrence of PVC alters the RRI and affects the HRV features. Figure 2 is a
comparison of the SDNN and LH/HF derived from original RRI data and RRI data with
an artificial PVC. These HRV features were significantly altered shortly after the PVC
occurrence, and that the influence lasted for three minutes in this case, which is the window
size of HRV calculation (three minutes). Since such discontinuous changes in signals can be
regarded as very high-frequency components, the power of the HF region of the RRI data
dramatically increases while that of the LF region does not greatly change. Accordingly,
the LF/HF abruptly changes as shown in Figure 2.
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0 200
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Figure 2. Influence of PVC on HRV features: SDNN (left) and LF/HF (right): The blue and red lines
show the features extracted from the RRI data without PVC and with PVC, respectively. The vertical
dashed line denotes the point of the PVC occurrence.

2.1.2. Premature Atrial Contraction (PAC)

PAC is also a common type of monostotic extrasystole characterized by premature
heartbeats, as shown in Figure 3. Although the sinoatrial node regulates the heartbeat dur-
ing the normal sinus rhythm, depolarization from other atrial regions before the sinoatrial
node causes PAC [20].

PAC occurs even in healthy persons and usually does not require any attention. How-
ever, Jensen et al. reported that PAC preceded all cases of atrial fibrillation in patients [42].
Conen et al. reported that 99% of 1742 subjects aged 50 years or older without heart disease
had at least one PAC during one-hour ECG monitoring [43]. They reported that the number
of PAC occurrence increased with age. As with PVC, PAC affects HRV features.
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Time [s]0 5

PAC

short normal

Figure 3. Example of an ECG with PAC. As the sinus rhythm resets after the PAC occurrence, only
one RRI before PAC becomes short. That is, PAC does not have a compensatory pause.

2.2. Extrasystole Detection and Modification

This study proposes a new framework for detecting and modifying ectopic RRIs
caused by extrasystoles for robust HRV analysis. The proposed extrasystole treatment
framework utilizes an autoencoder (AE) and a denoising autoencoder (DAE), which are
variations of neural networks.

2.2.1. Autoencoder (AE) and Denoising Autoencoder (DAE)

An autoencoder (AE) is a type of neural network trained to output values as close as
possible to the input variables, originally proposed as a method of dimensionality reduction
and feature extraction [36,44]. The structure of an AE is illustrated in Figure 4.

…
…

…
…

input layer

…
…

hidden layer output layer

M M

…
…

Figure 4. Structure of an AE. An AE consists of an input layer, a hidden layer, and an output
layer. x1, · · · , xM and x̂1, · · · , x̂M are the input variables and output variables of the AE, respectively.
Circles denote units that express activation functions.

In the training phase of AE, the cost function must decrease as the output variables
become close to the input variables. In this work, we adopted an adjusted mean squared
error function, which is expressed as follows:

J =
1
N

N

∑
n=1
‖xn − x̂n‖2 + λ×ΩL2 (1)

where N is the number of samples, xn is an input vector of the nth (1 ≤ n ≤ N) sample,
and x̂n is an output vector of the nth sample. λ is the coefficient for the L2 regulariza-
tion ΩL2.

AE can also be used for anomaly detection by using its reconstruction error RE:

RE = ||x− x̂|| (2)

where x and x̂ are the input variables and the output variables of the AE, respectively.
To utilize an AE for anomaly detection, it has to be trained with only normal data. Since
the AE is trained so that the output variables become close to the input variables in the
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normal condition, a small RE means that the input sample is normal. Thus, an anomaly
is detected when the RE becomes large. Anomalous data can be detected when the RE
exceeds a predefined threshold RE [45,46].

The input data and the output data are the same in standard AE training; however,
by adding artificial noise only to the input data in the training phase, the output of the
AE is expected to reproduce the denoised inputs. That is, the AE can be used for noise
reduction, in which case, it is called a denoising autoencoder (DAE) [47].

2.2.2. AE-Based Extrasystole Detection (AED)

Extrasystoles in the RRI data can be detected by using AE-based anomaly detection.
This method is referred to as AE-based extrasystole detection (AED).

To train an AE for anomaly detection, a sufficient amount of normal RRI data with no
extrasystoles has to be collected. The normal RRI data collected from the ith person Pi is
expressed as

x[i] =
[
r[i]1 , r[i]2 , · · · , r[i]j , · · · , r[i]Ji

]T
(3)

where r[i]j denotes the jth RRI of Pi, and Ji is the number of RRIs collected from Pi. The ith

normal RRI data matrix, X[i] is constructed as follows:

X[i] =


r[i]1 r[i]2 r[i]3 r[i]4

r[i]2 r[i]3 r[i]4 r[i]L+1
...

...
...

...
r[i]Ji−3 r[i]Ji−2 r[i]Ji−1 r[i]Ji

. (4)

This type of matrix is called a Hankel matrix. The number of columns of X[i] was fixed
to four in this study, which means that the number of input RRIs of the proposed AED was
four. The reason for this setting is described in the following Section 2.2.3.

When normal RRI data from I persons P1, · · · , PI are collected, the normal RRI data
matrix can be written as

X =


X [1]

X [2]

...
X [I]

. (5)

As preprocessing, each column in the normal RRI data matrix X is centered with a zero
means. The AE is trained from the centered X by using the objective function Equation (1).

Since the trained AE detects any type of ectopic RRI data, the proposed AED classifies
their types using conditional branches. The flowchart of the proposed AED is described in
Figure 5.

We assumed that the AE was already trained from X. Before the AED starts, input
RRI data with a window size of four RRIs have to be prepared in step (2). The tth piece of
RRI data is described as follows:

xt = [rt−3, rt−2, rt−1, rt]. (6)

In step (3), the process waits for the next (t + 1)th RRI measurement because the
(t + 1)th RRI is needed to discriminate between PVA and PAC, as the difference between
the two is the length of the RRI after arrhythmia occurrence. In step (4), the reconstruction
error RE is calculated by using the trained AE. In step (5), rt is regarded as a normal sinus
if the RE is less than its threshold RE.
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The conditional expressions in steps (6) and (7) are for evaluating whether rt is a PVC
or R wave detection error since the pre-PVC RRI becomes short; the post-PVC RRI becomes
long in PVC, and just one RRI becomes about double in length in a detection error. Here, r̄1
and r̄2 are the thresholds of rt. If rt does not satisfy the conditional expression in step (8),
short RRIs may occur successively. Such RRIs are neither PVC, PAC, nor R wave detection
error and, thus, are categorized in this study as “other arrhythmias,” such as long QT
syndrome, which healthy persons do not have. Step (9) checks the next (t + 1)th RRI rt+1
to discriminate between PVC and PAC. After the RRI classification ends, t = t + 1 and the
process returns to step (1).

In this procedure, the three thresholds RE, r1, and r2 need to be defined for adequate
extrasystole detection. RE is defined as the maximum RE of the normal RRI data that were
not used for training. r1 and r2 are tuning parameters; however, they can be determined as
α% confidence limits. In other words, they are set so that α% of the samples representing
the normal RRIs are below the control limits, and the other (100− α)% are above them.
The control limits become large as α becomes large. Usually, the 99% confidence limit is
adopted in anomaly detection techniques [48,49].

Construct the input:

Wait            th RRI

measurment 

Apply AE to       and 

normal sinus

yes

yes

no

PVC

other

arrhythmia

no

yes

no

no

yesyes

no
PAC

PVC(＊)

(＊)
start

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

R wave 

detection error

Figure 5. Flowchart of AED. This procedure can classify the RRI data into normal sinus, PVC, PAC,
R wave detection error, or another type of arrhythmia.

2.2.3. DAE-Based Extrasystole Modification (DAEM)

The detected extrasystole is modified using DAE, which is referred to as DAE-based
extrasystole modification (DAEM). We assumed that more than two successive extrasystoles
do not occur because such successive extrasystoles rarely occur in healthy people [20].
Thus, we considered isolated extrasystoles.

In DAEM, multiple DAE models need to be trained to cope with different types
of ectopic RRIs. In this research, two DAE models were constructed for PVC and PAC.
To construct the training data for these DAE models, the normal RRI data have to be
contaminated with artificial PVC or PAC since the DAE training requires both the normal
RRI data X before containing PVC or PAC.

Thus, RRI data with real PVC or PAC are not used for DAE training.
The RRI data X with artificial PVC or PAC are denoted as X′PVC, X′PAC, respectively,

and the training data consist of the output: X and the input: X′PVC or X′PAC. The method
for DAE training is the same as for AE except for the training data. These DAE models are
referred to as DAEPVC and DAEPAC.

With PVC, modifying only one RRI is not possible because PVC also changes the next
RRI to a PVC occurrence. In PAC, the next several RRIs after the PAC occurrence need
to be modified to compensate for the time gap between the real-time and the modified
RRIs. In addition, since DAE requires inputs for precise noise reduction, RRIs other than
the extrasystole may be slightly altered. The number of input RRIs of DAE should be small
to prevent unnecessary RRI changes. Thus, the appropriate number of input RRIs should
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be determined for extrasystole modification. By considering these factors, the following
input RRIs were used in any type of extrasystole modification:

x = [rt−1, rt, rt+1, rt+2] (7)

where rt is an ectopic RRI detected by DAEM. Thus, the number of input RRIs in AED was
determined as four.

The procedure of the proposed DAEM is described in Algorithm 1. We assumed that
each of the three DAE models was already trained. In step (3), the newly measured tth
RRI rt is applied to AE-ERD to classify it as normal, PVC, PAC, R wave detection error,
or another type of arrhythmia. If rt is PVC or PAC, the process needs to wait for the
(t + 1)th and (t + 2)th RRI to construct the input RRIs of DAE, x, in steps (13) and (14),
and x is centered in step 15. In steps 16 and 17, the DAE model is loaded according to the
classification result by means of AED and applied to the centered input x′ in order to attain
the output x̂′. In step 18, the output x̂′ is restored to x̂ by adding the mean x̄. There may
be a difference in the time length between the original input RRI data x and the modified
RRI x̂ because the sum of the RRIs modified by DAE may not correspond with that of the
original input RRIs. Thus, such a time length difference has to be compensated in steps 19
and 20.

Algorithm 1 DAEM

1: while do

2: Measure the tth RRI rt.

3: Apply AED to rt.

4: if rt is normal. then

5: t = t + 1 and return to step 2.

6: else if rt is other types of arrhythmia. then

7: Display “other types of arrhythmia.”

8: t = t + 1 and return to step 2.

9: else if rt is R wave detection error. then

10: Display “R wave detection error.”

11: t = t + 1 and return to step 2.

12: else

13: Wait measurement of the t + 1 and t + 2 RRI rt+1 and rt+2.

14: Configure the input RRIs: x = [rt−1 rt rt+1 rt+2].

15: x′ = x− x̄ where x̄ is the mean of x.

16: Load either of DAE models: DAEPVC or DAEPAC according to the discriminated

type of extrasystole by AED.

17: Input x′ to the loaded DAE model and get the output x̂′.

18: x̂ = x̂′ + x̄.

19: d = ∑ x̂−∑ x.

20: x̃ = x̂− (d/4)1.

21: Output x̃ as the modified RRI.

22: t = t + 1 and return to step 2.

23: end if

24: end while
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2.3. Data Description

Since the true RRI data before extrasystole occurs are unknown when real RRI data
are used for evaluation, RRI data with artificial extrasystoles were used instead. This study
used the MIT-BIH normal sinus rhythm database (NSRDB) [50,51] instead of the MIT-BIH
Arrhythmia Database [52] because the ‘true’ RRI values were needed for modification
performance evaluation

The NSRDB consists of the ECG and RRI data of eighteen healthy adult subjects
A–R [50,51]. The subjects were five men aged 26–45 years (mean: 33.8 years, SD: 7.7 years)
and thirteen women aged 20–50 years (mean: 35.8 years, SD: 7.7 years) who were diag-
nosed as healthy and did not have significant arrhythmias. A total of 166 datasets were
constructed from eighteen subjects, and their total recorded length is about 375 h.

In this research, the subject data were organized into the following subgroups:

• Subject A : training data for AED.
• Subject B: training data for DAEM.
• Subjects C and D: parameter tuning data for AED.
• Subjects E and F: parameter tuning data for DAEM.
• Subjects G–L: test data without any ectopic RRIs.
• Subjects M–R: test data with ectopic RRIs.

The artificial extrasystole generation procedure assuming healthy persons is as follows:

• PVC: PVC alters both the pre-PVC RRI and the post-PVC RRI but usually does not
affect other RRIs; the former RRI becomes short, and the latter RRI becomes long to
compensate the heartbeat timing. To simulate a compensatory pause of PVC, artificial
noise was added at random points, as shown in Figure 6 (left). The peak height of H
was randomly set as 100 ms < H < 370 ms so that the QT interval did not become
shorter than the healthy QT interval [53]. In this research, we assumed that PVC on a
T wave and successive PVCs did not occur because the target was a healthy person
who rarely had successive extrasystoles.

P
V

C
 a

rt
if
a

c
t 
[m

s
]

#Beats

H

－H

0

1 2 3 4 5 6

P
A

C
 a

rt
if
a

c
t 
[m

s
]

#Beats

－H

0

1 2 3 4 5 6

Figure 6. Artificial noise for generating PVC (left) and PAC (right), which was added at random
points in the RRI data. The peak height of H was randomly set as 100 ms < H < 370 in this study.

• PAC: In PAC occurrence, only the former RRI becomes short, and heartbeat timing is
not compensated. To simulate these characteristics, artificial noise was added at ran-
dom points, which is shown in Figure 6 (right). The peak height of the artifact−H was
randomly set between as 100 ms < H < 370 ms so that the QT interval did not become
shorter than the healthy QT interval [53]. We assumed that successive PACs did not
occur because the target was a healthy person who rarely had successive extrasystoles.

These extrasystoles were generated at a rate of one per about 1200 beats, which means
that an extrasystole occurred about 70–80 times per day since even healthy persons may
have about ten to one hundred extrasystoles a day. The points where artifacts were added
were recorded for the evaluation of extrasystole detection.

For AED training, 500 samples were randomly clipped from the RRI data of subjects
A and B, and their total length was about 23 min and 33 min, respectively.
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3. Results
3.1. Performance Evaluation

This study adopted the sensitivity (SEN) [%] and false positive (FR) rate [times/hour]
to evaluate the performance of the extrasystole detection of AED. In addition, the root mean
squared error (RMSE) and its decrement rate CRMSE were used to evaluate the extrasystole
modification performance, which are defined as follows:

RMSE =

√√√√ 1
N

N

∑
k=1

(yi − ŷi)
2 (8)

CRMSE =
RMSEmodified
RMSEectopic

× 100 [%] (9)

where N is the number of samples, and yi and ŷi denote the ith reference and estimate.
RMSEextrasystole and RMSEmodified are the RMSE between the original RRI data and the
artificial extrasystole RRI data, and the RMSE between the artificial extrasystole RRI data
and the RRI data modified by the proposed DAEM.

The simulation procedure—artificial extrasystole data generation, AE and DAE train-
ing, and extrasystole detection and modification by AED and DAEM—was repeated ten
times independently for precise performance evaluation.

3.2. Extrasystole Detection

The datasets of subject A for AED training were used and those of subjects C and D
were used for parameter tuning. The number of units in the hidden layer in the AE model
was three. A sigmoid function and an identity function were adopted as the activation
functions in the hidden and output layers.

The RRI data collected from subjects G–R were used to test the extrasystole detection
of the proposed AED. The application result of AED showed that no FP occurred in
subjects G–L whose data did not include any extrasystoles, as well as showing a sensitivity
of 93% and an FP rate of 0.08 [times/hour] in the subjects M–R who had extrasystoles.
The accuracy of the ectopic type classification was 96%. This result clearly shows that the
proposed AED functioned successfully.

3.3. PVC Modification

In DAEPVC training, the datasets of subject B and those of subjects E and F were used
for training and parameter tuning. The number of units in the hidden layer was two.
The activation functions in the hidden layer and the output layer were a rectified linear
unit (ReLU) and an identity function.

Figure 7 shows an example of an application result of the proposed DAEM to the RRI
data with artificial PVC. The average decrement rate of the RMSE was 31%.

Figure 8 illustrates the HRV features that were extracted from the RRI data with PVC
and the RRI data modified by DAEM shown in Figure 7. Their average decrement rates of
RMSE are summarized in Table 1 suggests the usefulness of the proposed DAEM for the
RRI modification when PVC occurs.
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Figure 7. The RRI modification result of PVC (top) and its enlarged display (bottom). The blue, red,
and green lines represent the original RRI data, the RRI data with artificial PVC data, and the RRI
data modified by the proposed DAEM, respectively. The modified data (the blue line) overlapped
almost entirely with the original data (the green line) due to the high modification performance.
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Figure 8. The HRV features extracted from the RRI data with and without PVC modification. The blue,
red, and green lines represent the original HRV data, the HRV data extracted from the RRI with
artificial PVC data, and the HRV data extracted from the RRI data modified by the proposed DAEM,
respectively. The modified data (the blue line) overlapped almost entirely with the original data (the
green line).

Table 1. The average decrement rates [%] of RMSE by DAEM.

PVC PAC

RRI 31 73
meanNN 45 90

SDNN 12 45
Total Power 13 77

RMSSD 4 29
NN50 20 66

LF 31 77
HF 26 72

LF/HF 27 70
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3.4. PAC Modification

The datasets of subject B used for the training of DAEPAC and those of subjects E and
F were used for parameter tuning so that the reconstruction performance of DAEPAC was
maximized. The number of units in the hidden layer was two. The activation functions in
the hidden and output layers were a ReLU and an identity function, respectively.

Figure 9 shows the results of applying the proposed DAEM to the RRI data with
artificial PAC, and the average decrement rate of RMSE was 73%.

HRV features were extracted from the RRI data with PAC, and the modified RRI data
shown in Figure 9 are illustrated in Figure 10. Their average decrement rates of RMSE are
summarized in Table 1. Thus, the influence of PAC on the HRV analysis was suppressed
by the proposed DAEM.
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Figure 9. The RRI modification result of PAC. The blue, red, and green lines represent the original
RRI data, the RRI data with artificial PVC data, and the RRI data modified by DAEM, respectively.
This figure shows that the modified RRI was very close to the original RRI data.
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Figure 10. The HRV features extracted from the RRI data with and without PAC modification.
The blue, red, and green lines represent the original HRV data, the HRV data extracted from the RRI
with artificial PAC data, and the HRV data extracted from the RRI data modified by the proposed
DAEM, respectively. This figure shows that the HRV data extracted from the modified RRI became
close to the HRV data extracted from the original RRI data.
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4. Discussion

The sensitivity and FP rate of the proposed AED were 93% and 0.08 times/hour,
and the ectopic type classification accuracy was 96%. These results indicate that the AED
functioned well and that the RRI data collected from only one healthy person were enough
for the AE training since the ectopic RRIs caused by extrasystoles are entirely different
from normal RRIs.

Although previous studies used ECG signals for extrasystole detection, the proposed
method does not analyze the ECG signals but the RRI data. Thus, the proposed AED
was compared with another anomaly detection method, singular spectrum analysis (SSA),
which is an anomaly detection method used for time series data [54]. The anomaly detection
model of SSA is derived through the singular value decomposition (SVD) of a Hankel
matrix Equation (4), which means that SSA is a liner model. SSA achieved a sensitivity of
95% and an FP rate of 1.2 times/hour, which is worse than the AE. Since the AE was based
on a neural network that could express nonlinearity, and HRV is essentially a nonlinear
phenomenon [2], AE was more appropriate than SSA for extrasystole detection. On the
other hand, this study did not compare the extrasystole detection methods mentioned in
Section 1 [26–28] since they analyzed raw ECG signals.

The RMSE decrement rate of PVC modification was 31%, and that of PAC modification
was 73%, which indicates that it was more difficult for PAC to be modified adequately
than PVC. As PAC does not have a compensatory pause, unlike PVC, PAC modification
is required for synchronization with real-time data. Some RRIs around the PAC must be
modified as well as the RRI directly affected by PAC so that the time gap is compensated.
Thus, the PAC modification performance did not reach that of PVC modification.

The effect of DAEM on the normal RRI data was checked. It is possible that the normal
RRI data were incorrectly modified since a few false positives occurred in the extrasystole
detection, although the rate was only 0.08 times/hour. The result of applying DAEM to the
normal RRI data showed that the average alternation width of RRI was less than 2.4 ms.
This value is acceptable for HRV analysis because ECG should be measured with at least
200 Hz for precise HRV analysis according to the HRV analysis guideline [2]. Thus, the RRI
measurement error of within 5 ms is acceptable for the clinical application of HRV analysis.

The modification performance of the DAE was compared with regression methods;
partial least squares (PLS) and locally weighted PLS (LWPLS) were considered here because
Kamata et al. attemtped R wave detection error modification using PLS and LWPLS that
did not use ECG signals but RRI data [35]. PLS is a widely-used linear regression method
that can build an accurate model with a small number of latent variables. LWPLS is an
expansion of PLS based on the framework of Just-In-Time (JIT) [55] modeling for dealing
with nonlinearity and system characteristics change [56,57]. In LWPLS, a local PLS model
is built using weighted samples stored in a database according to the similarity between
the query and the weighted samples only when an estimate is requested. The constructed
local model represents a nonlinear relationship between the input and the output around
the query because a nonlinear relationship can be approximated as a linear relationship in
a small region. The local model is purged after being used for estimation. Figure 11 shows
the RMSE decrement rates of the RRI in PVC modification by DAE, PLS, and LWPLS as
evaluated through ten independent calculations. These box plots show that DAE achieved
the best performance among the three methods. The same tendency was confirmed in the
PAC modification.

The RRI fluctuations caused by PVC or PAC are a highly nonlinear phenomenon
because the RRI fluctuation width is random. Since PLS and LWPLS are linear methods, it
is difficult to recover RRI fluctuations sufficiently. On the other hand, the proposed method
adopted DAE, which can cope with nonlinearity well, and improved the RRI modification
performance in comparison with PLS and LWPLS.
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Figure 11. The RMSE decrement rates of the RRI data with PVC by DAE, PLS, and LWPLS. The pro-
posed DAE achieved the best performance among the three methods.

In addition, the proposed DAEM was trained with R wave detection error modification.
The artificial ectopic RRI that occurred due to the R wave detection error was generated as

rj = r̃j + r̃j+1 (10)

where rj is the measured jth RRI [ms] and r̃j denotes the jth “true” RRI measurement if both
the jth and (j+ 1)th R waves were detected properly. We assumed that successive detection
errors did not occur [35]. The DAE model for the R wave detection error modification
DAERDE was trained using the datasets of subject B, and its parameters were tuned with
the datasets of subjects E and F. The number of units in the hidden layer became eight.
A sigmoid function and an identity function were adopted as the activation functions in
the hidden and output layers.

The application result of DAEM to R wave detection error was compared with PLS
and LWPLS, which is shown in Figure 12. The RMSE decrement rate of RRI could not be
calculated since the number of RRIs was altered before and after the modification. Thus,
we evaluated the RMSE between the original RRI data before the artificial detection error
and modified RRI data. Figure 12 shows that the average RRI improvements were almost
the same among the three methods; however, the deviation of DAE was smaller than that
of the other two, which means that it was possible to construct a stable model with DAE.
Although a single detection error was considered in this work, Kamata et al. described
a method for dealing with successive detection errors [35], which modified successive
detection errors step by step. This method can also be used for the proposed DAEM when
successive detection errors are modified.

DAE PLS LWPLS
0

2

4

6

8

R
R

I 
e

rr
o

r 
[m

s
]

Figure 12. The RRI errors in the R wave detection error modification. Although the average RRI
improvements were almost the same, the deviation of DAE was smaller than that of the other two.

This study applied the proposed methodologies to another type of arrhythmia that
healthy persons never have. In this research, artificial RRI data containing atrial fibrillation
(AF) was considered. In AF, rapid and irregular beating of the atrial chambers of the heart
occurs [58]. One-minute AF data were generated by adding random numbers following
a uniform distribution between −50 ms and 50 ms to the constant RRI values. Figure 13
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shows an example of RRI data containing AF. AED did not detect almost any AF. Since
the variation width of the RRIs in AF is smaller than in PVC and PAC, the proposed
AED might not detect AF. However, this study can adopt existing RRI-based AF detection
methods [59,60] when patients with an AF risk are monitored.
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Figure 13. An example of artificial RRI data containing AF.

The proposed extrasystole treatment framework was applied to a real health mon-
itoring problem. Fujiwara et al. developed an epileptic seizure prediction algorithm by
combining HRV analysis and an anomaly detection algorithm referred to as multivariate
statistical process control (MSPC). Since extrasystole occurrences may affect HRV and cause
false positives in seizure prediction, they should be detected and modified appropriately.
Figure 14 (top) shows interictal RRI data with PVC measured from a patient with left
mesial temporal lobe epilepsy (female, 31 y.o.), and the enlarged ECG data around the PVC
occurrence is shown in Figure 14 (bottom), in which R waves were detected by means of a
first derivative-based peak detection algorithm. This data was collected from the Tokyo
Medical and Dental University (TMDU) hospital. The retrospective evaluation of clinically
acquired data was approved by the Medical Research Ethics Committee of the TMDU
hospital. The details of the clinical data used in this research are described in [19].
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Figure 14. An interictal episode collected from an epileptic patient: RRI data with PVC (top) and the
ECG data enlarged around the PVC (bottom). The arrow symbol denotes the PVC occurrence.

In the seizure prediction algorithm, the abnormality indexes and the T2 and Q statistics
are calculated by MSPC, and seizures are predicted when either the T2 or Q statistic exceeds
the predefined control limits for ten seconds [19]. The blue lines in Figure 15 are the T2 and
Q statistics derived from the original RRI data with PVC, and the horizontal lines denote
the control limits. This figure shows that a false positive occurred around 350 s in the Q
statistic, which corresponded with the PVC occurrence in Figure 14. We confirmed that
this false positive did not reflect any epileptic EEG discharge according to the EEG data
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and that it was only caused by the PVC. Thus, the PVC had to be detected and modified
appropriately to suppress false positives.
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Figure 15. The epileptic prediction result of an interictal episode by the T2 (top) and Q (bottom)
statistics: the original RRI data (blue) and modified RRI data (red). The false positive caused by PVC
was successfully suppressed using the proposed DAEM.

This study attempted PVC detection and modification using the proposed extrasystole
treatment framework. AED correctly detected the PVC, and the DAEM modified the
detected PVC, the result of which is shown in Figure 14 as the red line. The T2 and Q
statistics were derived from the modified RRI data. The red line in Figure 15 (bottom)
indicates that the false positive in the Q statistic did not occur by modifying the PVC.
This result clearly shows that the proposed method correctly prevented the false positive
caused by PVC, which is of importance for the quality of life improvement of patients
with epilepsy.

Therefore, the proposed extrasystole treatment framework contributes to realizing
highly-adequate HRV-based health monitoring services.

5. Conclusions

In this study, we proposed an extrasystole treatment framework based on neural
networks, in which extrasystole occurrences are detected with AE (AED) and are modified
with DAE (DAEM). The proposed framework can deal with ectopic RRIs caused by PVC
and PAC. The case study showed that the sensitivity and the FP rate of extrasystole detec-
tion were 93% and 0.08 times per hour, and the accuracy of the ectopic type classification
was 96%. The extrasystole modification performances of the proposed DAEM were RRI
improvement rates of 31% and 73% in PVC and PAC, respectively. The usefulness of the
proposed framework was demonstrated through its application to the real health moni-
toring problem: the proposed extrasystole treatment framework was able to improve the
epileptic seizure prediction performance. Thus, the proposed framework can contribute to
realizing accurate HRV-based health monitoring and medical sensing systems.

The limitations of this study include the assumption that only PVC or PAC occurring
in healthy persons were considered and that frequent morbid extrasystoles do not occur.
In healthy persons, this assumption is correct, and the proposed methodologies cover the
majority. The RRI data with real extrasystoles could not be used; rather, RRI data with
artificial extrasystoles was used for quantitative evaluation. In future work, other types
of arrhythmia and successive arrhythmia will be included to expand the target of the
proposed methodologies.

Embedded software with the proposed framework is being developed for the micro-
computer of a wearable heart rate sensor. The sensor under development may contribute
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to realizing precise HRV-based health monitoring services since it would allow robust
HRV analysis.
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Appendix A. Heart Rate Variability Analysis

The standard HRV features are classified into time-domain features and frequency-
domain features [2]. The time domain features are obtained from the original RRI data.

• meanNN:Mean of RRI.
• SDNN: Standard deviation of RRI.
• Total Power (TP): Variance of RRI.
• RMSSD: Root means square of the difference of adjacent RRI.
• NN50: Number of pairs of adjacent RRI, whose difference is more than 50 ms.

Frequency-domain features are defined based on the power spectrum density (PSD)
of the resampled RRI data.

• LF: Power of the low-frequency band (0.04–0.15Hz) in PSD. LF reflects the activity of
both the sympathetic and parasympathetic nervous systems.

• HF: Power of the high-frequency band (0.15–0.4Hz) in PSD. HF reflects the parasym-
pathetic nervous system activity.

• LF/HF: Ratio of LF to HF. LF/HF expresses the balance between the sympathetic
nervous system activity and the parasympathetic nervous system activity.

In the HRV feature extraction, a rectangular moving window was used, the window
size was three minutes, and the window moved every RRI measurement.

The time domain features were extracted directly from the raw RRI data. For fre-
quency domain feature extraction, the RRI data needed to be resampled to arrange its
sampling points at equal intervals. In this work, the third-order spline was used for RRI
interpolation, and the sampling rate was 4 Hz. An AR model was estimated by using
the Yule–Walker equation. The order of the AR model was 40 to calculate the frequency
domain features [10,14,19] because it was confirmed that the PSD calculation became stable
when the order of the AR models was over approximately 35.

R waves can be detected by using a derivative-based peak detection algorithm [61].
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