
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Mathematical Biosciences 351 (2022) 108885
Contents lists available at ScienceDirect

Mathematical Biosciences

journal homepage: www.elsevier.com/locate/mbs

Original Research Article

Minimising the use of costly control measures in an epidemic elimination
strategy: A simple mathematical model
Michael J. Plank
School of Mathematics and Statistics, University of Canterbury, Christchurch 8140, New Zealand

A R T I C L E I N F O

Keywords:
Branching process
Epidemiological modelling
Infectious disease modelling
Public health

A B S T R A C T

Countries such as New Zealand, Australia and Taiwan responded to the Covid-19 pandemic with an elimination
strategy. This involves a combination of strict border controls with a rapid and effective response to eliminate
border-related re-introductions. An important question for decision makers is, when there is a new re-
introduction, what is the right threshold at which to implement strict control measures designed to reduce
the effective reproduction number below 1. Since it is likely that there will be multiple re-introductions,
responding at too low a threshold may mean repeatedly implementing controls unnecessarily for outbreaks
that would self-eliminate even without control measures. On the other hand, waiting for too high a threshold
to be reached creates a risk that controls will be needed for a longer period of time, or may completely fail
to contain the outbreak. Here, we use a highly idealised branching process model of small border-related
outbreaks to address this question. We identify important factors that affect the choice of threshold in order to
minimise the expect time period for which control measures are in force. We find that the optimal threshold
for introducing controls decreases with the effective reproduction number, and increases with overdispersion
of the offspring distribution and with the effectiveness of control measures. Our results are not intended
as a quantitative decision-making algorithm. However, they may help decision makers understand when a
wait-and-see approach is likely to be preferable over an immediate response.
1. Introduction

In response to the Covid-19 pandemic, several countries adopted an
elimination strategy for varying periods of time, including Australia,
New Zealand, China and Taiwan [1,2]. An elimination strategy requires
a combination of strict border controls to minimise imported cases,
strong surveillance and an early and effective response to stamp out
community transmission [3]. Both Australia and New Zealand experi-
enced numerous border-related re-introductions of SARS-CoV-2 [4,5].
Up until mid 2021, when both countries began to transition away
from the elimination strategy, all of these re-introductions were subse-
quently eliminated. In some instances, this required strict lockdowns,
for example in Victoria in July 2020, Auckland in August 2020, and
Western Australia in February 2021 [4,6]. However, in the majority of
instances, cases were picked up early with a clear link to the border,
and outbreaks contained with intensive testing and contact tracing
without the need for restrictions [5,7].

Mathematical modelling has played a key role in support of elim-
ination strategies. For example, modelling has been used for situa-
tional awareness in conditions of low or zero prevalence [8], to assess
risks associated with various border testing and quarantine policies
[9–11], to estimate the probability of elimination under specific con-
trol measures [6,12], and to inform vaccination and reopening plans
[13–15].

E-mail address: michael.plank@canterbury.ac.nz.

Mathematical models lie on a spectrum of complexity, from simple
models that are highly idealised, through to complex models that aim to
capture underlying processes at a more fine-grained level [16]. Models
with differing levels of complexity are useful in different situations.
Complex models typically require suitable high-quality data to estimate
parameter values and calibrate model output [e.g. 17–19]. Such models
can produce quantitative predictions in a specific situation, but may
not be readily transferable to other situations or different data sources.
Simple models make minimal assumptions about the specifics of the
situation and can generate new qualitative insights which are broadly
if approximately applicable [e.g. 20]. Idealised models have been used
during the Covid-19 pandemic to generate policy-relevant insights [e.g.
21–23].

Branching processes have a long history in infectious disease mod-
elling as a stochastic model that is mathematically tractable [24–26].
Models based around a branching process for transmission dynamics
have been used to inform situational awareness and for policy and
operational advice during the Covid-19 pandemic in New Zealand
[12,27]. Branching processes capture stochastic effects which are im-
portant in the early stages of an outbreak when the total number
of infections is relatively small. In particular, there is a probability
that an outbreak starting from a single seed case will naturally self-
eliminate without control. This probability is a decreasing function
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of the basic reproduction number 𝑅0 but, for a given 𝑅0, is an in-
creasing function of the variance of the distribution of the number of
secondary infections per primary infection (referred to as the offspring
distribution) [26,28,29]. Pathogens whose transmission is characterised
by superspreading, where a minority of cases are responsible for the
majority of transmission, have an offspring distribution with high
variance. This is associated with a higher probability of self-elimination
than pathogens whose offspring distribution has the same mean but
lower variance [28].

There is a large body of literature applying principles of optimal
control to epidemiological models [30]. In most cases, these focus on
finding the optimal time-varying reduction in contacts [e.g. 31,32] or
allocation of vaccines [33,34] that minimises the final epidemic size or
the cost of intervention. In these problems, the system typically ends
in a herd immunity state.

In this paper, we use a highly idealised branching process model to
address the question: what is the optimal trigger condition to introduce
strong but costly control measures to eliminate a new outbreak? An
elimination strategy typically requires a rapid and effective response
to stamp out chains of transmission before they become too large [3].
However, there is a trade off which decision makers face in determining
the appropriate threshold for introducing stringent control measures.
Choosing too low a threshold risks overreacting with numerous lock-
downs, leading to unnecessary cost and disruption, and potentially
endangering public buy-in to the strategy. Importantly, controls may
be imposed unnecessarily for outbreaks that would have naturally
self-eliminated without intervention. On the other hand, choosing too
high a threshold means control measures may be needed for longer,
potentially over a wider geographical area, or may fail to eliminate
the outbreak altogether. We do not aim to produce a decision-making
algorithm and our results should not be interpreted as quantitatively
accurate optima. Rather, we aim to identify qualitative epidemiological
features of the transmission dynamics that influence decisions around
timing of control measures as part of an elimination strategy. From
a control theory perspective, the problem we study assumes that the
intervention takes the form of a bang–bang control [32], i.e. control
measures are either off or maximal at a given point in time. The
problem is different from most epidemic control theory studies as it
concerns the optimal way to maintain an elimination state (assuming
that is determined to be the policy objective), rather than the optimal
way to reach a herd immunity state [31].

2. Idealised discrete branching process model

To obtain a mathematically tractable model in which to analyse
the optimal trigger for implementing control measures, we consider a
Galton–Watson branching process. This provides is a highly idealised
model of infectious disease transmission, with cases assumed to occur in
discrete, non-overlapping generations. We use the generation number
of the branching process as a proxy for time. The number of new cases
in generation 𝑛 is denoted 𝑍𝑛 and the branching process is defined in
the standard way by 𝑍0 = 1 and

𝑍𝑛+1 =
𝑍𝑛
∑

𝑖=1
𝑋𝑖, (1)

where 𝑋𝑖 are independent, identically distributed random variables.
The distribution of 𝑋𝑖 is referred to as the offspring distribution in the
absence of control measures. The basic reproduction number 𝑅0 is
equal to 𝐸(𝑋𝑖). We assume that, without control measures, 𝐸(𝑋𝑖) > 1 so
the branching process is supercritical. This means that the probability
of self-elimination is strictly less than 1, i.e. some realisations of the
process may go extinct without controls but there will be some that do
not.

In Section 3 below, we will focus on the case where the offspring
distribution is negative binomial, a canonical family of distributions
2

that can be heavy-tailed (i.e. captures the possibility of superspreading-
driven transmission dynamics). The negative binomial distribution is
characterised by two parameters – the mean 𝑅0 and the dispersion
parameter 𝜅 – and includes other mathematically relevant distributions,
such as the Geometric distribution (𝜅 = 1) and Poisson distribution
(𝜅 → ∞), as limiting cases. The variance is 𝑅0(1 + 𝑅0∕𝜅) so smaller
values of 𝜅 are associated with larger variance, i.e. more heavy-tailed
offspring distribution, higher probability of zero secondary infections
(𝑃 (𝑋𝑖 = 0)), and higher probability of self-elimination. Other distri-
butions could readily be used within the model framework, however
the two-parameter negative binomial family captures a wide range of
epidemiological transmission characteristics and can provide a good fit
to empirical data from a range of pathogens [28,35]. The parameter 𝜅 is
a standard epidemiological measure of overdispersion in the transmis-
sion dynamics [36] and its value has been estimated empirically from
outbreak data for a range of pathogens including SARS-CoV-2 [28,37–
39].

We use the simple branching process model to address the question
of what is the optimal outbreak size at which to impose control mea-
sures aimed at extinguishing the outbreak. To do this we make several
simplifying assumptions:

1. Control measures are introduced if and when the number of new
cases 𝑍𝑛 is greater than or equal to a pre-defined trigger 𝑘.

2. Control measures take effect immediately, i.e. there is no lag
between infection, detection and response.

3. Control measures reduce the reproduction number to a known
value 𝑅𝑐 that is less than 1.

4. Once implemented, control measures remain in place until the
branching process goes extinct (i.e. 𝑍𝑛 = 0) and are then
immediately lifted.

5. The objective is to choose the trigger 𝜃 in order to minimise
the expected number of generations of the branching process
between the introduction of controls and elimination of the
outbreak. This is assumed to be a proxy for the time spent under
control measures.

This describes a model of an outbreak that starts from a single intro-
duced seed case and which, by definition, always ends in elimination,
whether naturally or after introduction of control measures. In reality,
one would expect multiple introductions to occur sporadically over
time [20]. If the outbreaks caused by these introductions are assumed
to be independent and non-overlapping in time, then minimising the
expected time spent under controls for a single introduction is equiva-
lent to minimising the expected total time spent under controls over an
extended period of time under an elimination strategy. The assumption
of independent and distinct outbreaks is reasonable if outbreaks are
infrequent and typically small enough they do not produce any signif-
icant population immunity, as occurred in New Zealand and Australia
in 2020–21 for example [4,5]. If introductions became so frequent that
outbreaks from different introductions were occurring simultaneously,
the model would no longer apply.

The assumptions listed above are highly idealised, but nevertheless
recapitulate a real problem faced by decision-makers. Implementing
control measures when the number of cases is too small means that
control will be applied unnecessarily to some outbreaks that would
have self-eliminated without intervention. Waiting until the number of
cases is too large before implementing control measures means that the
outbreaks take longer to be eliminated. It is therefore useful to know
the theoretically optimal number of cases to trigger control measures
to minimise the expected amount of time spent under them. We can
calculate this optimum by analysing two distributions: the distribution
of the outbreak size if and when control measure are implemented; and
the distribution of the number of generations under control measures

required to extinguish an outbreak of a given size.
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For a given trigger 𝑘, we define the two-phase branching process by
0 = 1, 𝑅0 = 0 and

𝑍𝑛+1 =

{
∑𝑍𝑛

𝑖=1 𝑋𝑖, if 𝑍𝑚 < 𝑘 for 𝑚 = 1,… , 𝑛,
∑𝑍𝑛

𝑖=1 𝑋
(𝑐)
𝑖 , otherwise,

(2)

where 𝑋𝑖 and 𝑋(𝑐)
𝑖 are independent, identically distributed random

variables for the offspring distribution with and without control respec-
tively. The optimisation problem could be approached by direct Monte
Carlo simulations of the process defined above. However, additional
efficiency and insight can be gained by analysing the growth phase and
the controlled phase of the process separately.

We define the random variable 𝑆 to be the outbreak size when the
control trigger is first met:

𝑆 =
{

0, if 𝑍𝑛 < 𝑘 for 𝑛 = 1, 2,…
𝑍𝑁 , otherwise, (3)

here the random variable 𝑁 is the first generation in which the
ontrol trigger is met, i.e. 𝑁 = min

{

𝑛 ∶ 𝑍𝑛 ≥ 𝑘
}

. We define

𝑃𝑠,𝑘 = 𝑃 (𝑆 = 𝑠 | 𝑘), 𝑠 = 1, 2,… , (4)

i.e. the probability mass function for 𝑆 when the control trigger is 𝑘.
Clearly 𝑃𝑠,𝑘 = 0 for 𝑠 = 1,… , 𝑘 − 1 and ∑∞

𝑠=1 𝑃𝑠,𝑘 is the probability the
branching process will meet the trigger 𝑘 before self-eliminating.

In the second phase of the outbreak, control measures are imple-
mented when 𝑍𝑛 = 𝑠. Define the random variable 𝐶 to be the number
of generations taken for the branching processes to be eliminated. This
is equivalent to extinction of 𝑠 independent Galton–Watson branching
processes 𝑍̂(𝑗), each with 𝑍̂(𝑗)

0 = 1 (𝑗 = 1,… , 𝑠) and offspring dis-
tribution 𝑋(𝑐) with mean 𝑅𝑐 < 1. Therefore 𝐶 may equivalently be
written

𝐶 = min
{

𝑛 ∶ 𝑍̂(𝑗)
𝑛 = 0 for 𝑗 = 1,… , 𝑠

}

(5)

The assumption 𝑅𝑐 < 1 means the 𝑠 branching processes are
subcritical, which guarantees that 𝐶 is finite with probability 1. We
enote the probability mass function for 𝐶 conditional on the initial
utbreak size 𝑠 as

𝑛,𝑠 = 𝑃 (𝐶 = 𝑛 | 𝑆 = 𝑠). (6)

According to the fundamental theorem of branching processes, the
robability that a branching processes starting with 𝑍̂0 = 1 has reached
xtinction by generation 𝑛 is 𝑞𝑛 = 𝐹 (𝑛)(0), where 𝐹 is the probability
enerating function of the offspring distribution under control. By
ndependence of the 𝑠 branching processes, the probability that the
utbreak is eliminated in generation 𝑛 is

𝑛,𝑠 = 𝑞𝑠𝑛 − 𝑞𝑠𝑛−1. (7)

Conditioning over the outbreak size 𝑠 when control measures are
irst introduced, we can now write the probability that exactly 𝑛
enerations are spent under control measures for a given trigger 𝑘 as

𝑛,𝑘 = 𝑃 (𝐶 = 𝑛 | 𝑘) =
∞
∑

𝑠=0
𝑃 (𝐶 = 𝑛 | 𝑆 = 𝑠)𝑃 (𝑆 = 𝑠 | 𝑘) (8)

his may be expressed compactly in matrix form as

= 𝑄𝑃 (9)

his provides an efficient way to calculate 𝜃 for a range of offspring
istributions 𝑋 and 𝑋(𝑐) since 𝑃 depends only on the offspring distri-
ution 𝑋 in the uncontrolled phase, and 𝑄 depends only the offspring
istribution 𝑋(𝑐) in the controlled phase. The objective function for the
ptimisation problem described above is

(𝐶) =
∞
∑

𝑛𝜃𝑛,𝑘 (10)

𝑛=1

n

3

. Numerical results

In this section we use a hybrid numerical–analytical method that
akes use of the conditional probability distributions in the matrices
and 𝑄 derived in Section 2. This is more efficient than full stochastic

simulation of the outbreak during the uncontrolled and controlled
phases because 𝑃 depends only the offspring distribution in the un-
controlled phase and 𝑄 depends only on the offspring distribution in
the controlled phase. We calculate the matrix 𝑃 defined by Eq. (4)
via 𝑁 = 5 × 105 Monte Carlo simulations of the uncontrolled phase
of the branching process to find the distribution of outbreak sizes 𝑠 if
and when a given trigger 𝑘 is first met. 𝑄 can be calculated efficiently
via Eq. (7) by using the probability generating function 𝐹 (𝜉) for the
offspring distribution in the controlled phase. This was approximated
via 𝐹 (𝜉) =

∑𝑗max
𝑗=1 𝑃 (𝑋(𝑐)

𝑖 = 𝑗)𝜉𝑗 where a value 𝑗max = 100 was used in
umerical computations, sufficient to ensure 𝑃 (𝑋(𝑐)

𝑖 > 𝑗max) < 10−6 for
ll parameter combinations investigated. Once the matrices 𝑃 and 𝑄
ave been constructed, the objective function 𝐸(𝐶) can be calculated
ia Eqs. (9) and (10). Matlab code for implementing the numerical
alculations is available as Electronic Supplementary Material.

We assume the offspring distribution is a negative binomial dis-
ribution NegBin(𝜇, 𝜅) with mean 𝜇 and dispersion parameter 𝜅. The
arameter 𝜅 defines the amount of heterogeneity in the offspring dis-
ribution: the variance of the distribution is 𝜇(1+𝜇∕𝜅) so smaller values
f 𝜅 representing increasingly heavy-tailed distributions. This is an
stablished epidemiological model for pathogens with superspreading
ransmission dynamics [28,35]: when 𝜅 is small, a minority of cases
re responsible for the majority of transmission and a relatively high
roportion of cases, 𝑃 (𝑋𝑖 = 0), do not transmit the pathogen at all.
he mean of the distribution 𝜇 is 𝑅0 > 1 in the uncontrolled phase and
𝑐 < 1 in the controlled phase.

Fig. 1 shows the expected time 𝐸(𝐶) spent under control measures,
nd the probability ∑∞

𝑠=1 𝑃𝑠,𝑘 that control measures are introduced at
ll, as a function of the control trigger, for 𝑅0 = 1.6, 𝜅 = 0.25 and a
ange of values of 𝑅𝑐 . This illustrates the trade offs involved in choosing
control trigger: too small a trigger leads to unnecessary introduction

f control measures for outbreaks that would self-eliminate anyway; too
arge a trigger means it takes longer for control measures to drive the
utbreak to elimination.

Fig. 2 shows the optimal trigger for various combinations of the
eproduction number in the uncontrolled and controlled phases, and for
our values of the dispersion parameter 𝜅 = 0.1, 0.25, 0.5 and 1.0. These
alues span a range of empirical estimates of 𝜅 for real pathogens. For
xample, estimates for 𝜅 for SARS-CoV-2 range from 0.1 to 0.7 [37–
9]. Lloyd-Smith et al. [28] analysed empirical offspring distributions
or several pathogens, producing estimates for 𝜅 ranging from 0.16 for
ARS-CoV-1 to 5.1 for Ebola.

The results in Figs. 1 and 2 assume that 𝜅 takes the same value in the
ncontrolled and the controlled phases of the outbreak. However, it is
ossible that control measures, such as gathering restrictions or school
nd business closures, could disproportionately reduce the likelihood
f large superspreading events. This would reduce the variance of the
ffspring distribution (i.e. increase the value of 𝜅). To investigate this
ossibility, we ran a second set of results where 𝜅 was fixed at 𝜅 =
in the controlled phase of the outbreak, representing a relatively

omogeneous offspring distribution (see Supplementary Figure S1).
hese results for the optimum control trigger were almost identical to
hose in Fig. 2, showing that heterogeneity in the offspring distribution
atters less in the controlled phase than in the uncontrolled phase. This

s because the branching process in the controlled phase is subcritical,
eaning that elimination is guaranteed to occur eventually, and the

nitial number of cases is larger than in the uncontrolled phase, which
educes the impact of stochasticity on the time taken to eliminate.

The results in Fig. 2 illustrate three general principles. (1) The
ptimal trigger is a decreasing function of the basic reproduction
umber in the uncontrolled phase 𝑅 . This is because higher values
0
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Fig. 1. (a) Expected number of generations of the branching process spent under control measures for different values of the reproduction number in the controlled phase 𝑅𝑐 , and
(b) probability that the control trigger is met (i.e. that control measures are introduced before the outbreak is eliminated), as a function of the chosen control trigger. Reproduction
number in the uncontrolled phase 𝑅0 = 1.6 and dispersion parameter 𝜅 = 0.25.
Fig. 2. Optimal trigger 𝑘 for implementing control measures for combinations of the reproduction number in the uncontrolled and controlled phases and for three values of the
offspring distribution dispersion parameter 𝜅. Smaller values of 𝜅 correspond to more variance in the offspring distribution. Note different 𝑦-axis scales in (c,d) compared to (a,b).
of 𝑅0 correspond to faster-growing outbreaks with lower probability
of self-elimination without control. Therefore there is less incentive
to take a wait-and-see approach and it is better to implement control
when the outbreak is still relatively small. (2) The optimal trigger is
a decreasing function of the reproduction number in the controlled
phase 𝑅𝑐 . This is because the smaller 𝑅𝑐 is, the more quickly control
measures will extinguish an outbreak of a given size, so outbreaks can
be allowed to grow larger before control measures are necessary. (3)
The optimal trigger is higher when the offspring distribution is more
overdispersed (smaller 𝜅). This is because heterogeneity in individual
transmission increases the probability of the outbreak self-eliminating
4

without control measures [28]. When there is a large degree of su-
perspreading, some outbreaks will initially grow quite large but still
eventually self-eliminate. In contrast, when the offspring distribution is
relatively homogeneous, outbreak growth is more predictable, and once
an outbreak has grown beyond even a relatively small size, it becomes
highly unlikely to self-eliminate without control measures.

4. Discussion

We have shown results from an optimisation problem that is a
highly idealised representation of the decision of when to introduce
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stringent control measures in order to minimise the average time
they are required to eliminate a small infectious disease outbreak.
The advantage of this approach is that, although it makes simplifying
assumptions to reduce the model to a caricature of a real decision-
making problem, it requires minimal assumptions about the specifics
of the pathogen or the population in which it is spreading.

Jurisdictions following an elimination strategy in the early stages
of the Covid-19 pandemic are the clearest example of the model’s
applicability. For example in China, New Zealand and Australia, small
outbreaks triggered strict control measures sufficient to reduce the
reproduction number under 1 until transmission was eliminated. How-
ever, the qualitative model findings are also applicable to future novel
pathogens that may prompt an elimination strategy. The key message
from this is that a wait-and-see approach is more likely to be beneficial
for pathogens with a significant superspreading component but rela-
tively low 𝑅0, and in situations where control measures are known to be
highly effective in rapidly reducing transmission once introduced. On
the other hand, an earlier response is more likely to be favourable when
𝑅0 is larger, there is less heterogeneity in the offspring distribution, or
the effectiveness of the proposed control measures is weaker or more
uncertain.

The insights from this study are primarily qualitative and are not
a quantitative guide on which to base decision making as part of an
elimination strategy. This will always need to take account of specific
details, such as the likelihood of undetected cases and whether the
cases can be linked to known source, for example via forward and
backward contact tracing and whole genome sequencing [4,40,41].
These factors will determine the likelihood of containing the outbreak
with case-targeted measures such as contact tracing and isolation.
The characteristics of the population affected, and epidemiological
properties of the pathogen, such as the generation time and extent
of pre-symptomatic or asymptomatic transmission will also affect this
assessment.

The model makes highly idealised assumptions about the epidemic
transmission dynamics and the effect of control measures on them.
These assumptions will not be met in reality, but it is instructive to
consider how specific assumptions are likely to affect model results.
The model assumes that all cases are detected very quickly after being
infected. In reality, some cases will be missed and there will be a lag
from infection to detection. This means that the uncontrolled phase
of the outbreak is likely to overshoot the control trigger by a greater
amount than the model allows for. These effects could be modelled
by defining an observation process 𝑌𝑛 on the underlying branching
rocess 𝑍𝑛 that incorporates a specified case ascertainment rate and a
istributed delay from infection to detection. Depending on the extent
f under-ascertainment and detection lag, this would make the optimal
rigger smaller than under the base model with perfect information.

The model assumes that control measures operate in a binary on–
ff manner and, when in place, have a fixed effect for an indefinite
eriod of time and this is always sufficient to reduce the reproduction
umber below 1 regardless of the size of the outbreak. This is a crude
odel of control and does not cover more targeted interventions such

s case isolation and contact tracing. In addition, it may be that strin-
ent measures, such as stay-at-home orders or gathering restrictions,
ecome less effective over time as people become fatigued. This could
n principle be modelled via a more general objective function, for
xample 𝐸(𝐶𝛼) with 𝛼 > 1, which penalises long periods of control
easures more strongly. We did not attempt to prove that bang–bang

ontrol is optimal, and there may be
The model assumes that the value of the reproduction number after

ontrols are introduced is known, whereas in reality this could be
ifficult to predict in advance. This would add significant uncertainty
n the value of the optimal trigger. However, in reality, the decision
roblem is likely to be faced not just once, but multiple times for
xample as a result of travel-related re-introductions of the pathogen.
his could allow estimates of the effect of controls, and therefore the

ptimal trigger point, to be refined over time.

5

The model assumes that control measures remain in place until the
outbreak is eliminated and then immediately lifted. In fact, it may be
preferable to lift control measures before elimination, for the same
reason that it may be optimal to delay their introduction at the start the
outbreak: there is a non-zero probability that small outbreaks will self-
eliminate in the absence of controls. The optimal trigger for relaxation
of controls could be analysed using the same model framework. Fur-
thermore, controls may be more nuanced than a simple on–off switch.
We do not claim that such a strategy (known as bang–bang control
in the control theory literature) is necessarily optimal and other more
gradated approaches are possible. For example, one strategy could be to
introduce relatively light controls at a low trigger point, with a higher
threshold use to trigger a more stringent intervention.

The objective function used in this model is extremely simple,
considering only the duration of fixed control measures. Other con-
siderations are likely to factor into the definition of an appropriate
objective function, for example it may be desirable to avoid overly-
frequent changes in control settings, or to reduce the total number of
cases particularly if these are likely to cause a significant health burden.

We have used a simplified mathematical model to investigate epi-
demiological factors affecting the optimal use of costly control mea-
sures as part of an elimination strategy. We have not considered the
circumstances in which such a strategy is or is not feasible or desirable,
which is beyond the scope of this study. Australia’s and New Zealand’s
relative geographic isolation allowed them to impose strict border
controls in March 2020 before there had been too many introductions,
and to maintain such controls for the next 18–24 months [1,2]. This
was clearly beneficial for these countries as it meant domestic control
measures could be almost entirely relaxed during periods without com-
munity transmission, and it allowed the vast majority of the population
to be vaccinated before being exposed to the virus [42]. The feasibility
of such a strategy will depend on the epidemiological characteristics of
the pathogen and an individual country’s circumstances, including its
travel links and the prevalence of infection domestically and interna-
tionally. The results presented here help understand some of the factors
affecting the use of control measures in jurisdictions that are following
an elimination strategy.
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