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Abstract: Efficient solar driven photoelectrochemical (PEC) response by enhancing charge separation
has attracted great interest in the hydrogen generation application. The formation of one-dimensional
ZnO nanorod structure without bundling is essential for high efficiency in PEC response. In this
present research work, ZnO nanorod with an average 500 nm in length and average diameter
of about 75 nm was successfully formed via electrodeposition method in 0.05 mM ZnCl2 and
0.1 M KCl electrolyte at 1 V for 60 min under 70 ◦C condition. Continuous efforts have been exerted
to further improve the solar driven PEC response by incorporating an optimum content of TiO2

into ZnO nanorod using dip-coating technique. It was found that 0.25 at % of TiO2 loaded on ZnO
nanorod film demonstrated a maximum photocurrent density of 19.78 mA/cm2 (with V vs. Ag/AgCl)
under UV illumination and 14.75 mA/cm2 (with V vs. Ag/AgCl) under solar illumination with
photoconversion efficiency ~2.9% (UV illumination) and ~4.3% (solar illumination). This performance
was approximately 3–4 times higher than ZnO film itself. An enhancement of photocurrent density
and photoconversion efficiency occurred due to the sufficient Ti element within TiO2-ZnO nanorod
film, which acted as an effective mediator to trap the photo-induced electrons and minimize the
recombination of charge carriers. Besides, phenomenon of charge-separation effect at type-II band
alignment of Zn and Ti could further enhance the charge carrier transportation during illumination.

Keywords: TiO2-ZnO composite thin film; ZnO nanorod; TiO2 nanoparticles; photocurrent response

1. Introduction

ZnO nanostructure is a rapidly developing metal oxide. The dynamic design and promising
functional properties attract momentous scientific interest. With its vast nano-architecture,
ZnO nanorod shape is the most studied photocatalyst in photoelectrochemical (PEC) response.
As mentioned above, noticeable limitation, specifically its poor solar illumination absorption and rapid
recombination charge carrier losses, hinder further practice in electronic application. In general,
copious researches proved that performance of ZnO nanorod photocatalyst (solar illumination
absorption and recombination of charge carrier losses) could be improved by coupling with another
semiconductor photocatalyst [1,2]. Therefore, the objective of this research work is to study the PEC
system performance from TiO2-ZnO nanocomposite photoelectrode under ultraviolet (UV) and solar
illumination. The novelty lies via the simple combination of electrodeposition and dip-coating that
have not been approached by any other researcher (Table 1).

ZnO nanorods can be formed from sol-gel method [3,4], hydrothermal method [5–10],
solvothermal method [11–14], chemical vapor deposition (CVD) method [15–18], atomic layer
deposition (ALD) method [19–22], electrodeposition method [23–26], and other methods. However,
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due to several advantages, electrodeposition method has been chosen for the formation of ZnO
nanorods in this research work. The advantages of electrodeposition method are that it is simple, quick,
and economic; able to control the crystallization of ZnO nanorods [27]; its low temperature condition
and low equipment cost; and the precise controllability and repeatability of nanostructures [28].
There are a few unique elements in electrodeposition process used in this research work. First, the
rarely-used zinc substrate, which helps improve the electron movement from TiO2-ZnO to external
circuit. Second, it is template-free and seed layer-free. Third, no additional acid was applied in
controlling electrolyte pH during electrodeposition process. This combination brought the difference
of electrodeposition method in this research work from previous work. Further explanation is included
in Section 3.1.

Furthermore, the modification of binary oxide that arises from the enrichment of second
oxide on primary oxide diminishes radiationless transfer of the photon energy absorbed by second
oxide [29]. In addition, Anpo et al. have proven that the enhancement of the photocatalytic activity of
the TiO2 species in the primary oxide have a lower Ti content [29]. The coupling of two semiconductors
with appropriate energy, CB and VB, can reduce the recombination of e−/h+ pairs due to the transfer
of carriers from one semiconductor to the other. Furthermore, depending on the band-gap energy
of the semiconductor used, the composite can be activated in the visible region [30]. The interfacial
potential gradient, corresponding to the energetic position, plays a role by providing better charge
carrier transportation, and charge carrier separation can be achieved by modification of core
photocatalyst [31,32].

When the core photocatalyst coupled with another semiconductor is activated by illumination,
electrons are injected from the semiconductor with a more negative conduction band (CB) level to the
positive one, while holes are transferred from the semiconductor with a more positive valence band
(VB) level to the negative one. Thus, separation of charge carriers could be achieved; consequently,
the lifetime of the charge carriers and the efficiency of the interfacial charge transfer to water increase
significantly [7]. Details of hybrid TiO2-ZnO formation based on different method from past researchers
are summarized in Table 1. Optimum amount of incorporated TiO2-based ZnO formation results
in extended lifetimes of charge carriers and suppression of the recombination losses effectively.
The modification of ZnO could lead to higher photocatalytic activity than ZnO itself. Besides, the
improvement in light absorption occurred from UV region to visible region.
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Table 1. The development of hybrid TiO2-ZnO formation based on different approaches.

Authors Method Findings Reference

Dali Shao et al.
(2014)

• Hydrothermal (ZnO nanowires)
• Atomic layer deposition (TiO2 shell)

• Two steps fabrication ZnO-TiO2 core shell nanowires. For UV
sensing application.

• UV illumination efficiently reduced band-to-band recombination.
• Maximum photoresponsivity with 495 A/W at 373 nm under −10 V.

[33]

Simelys Hernández
et al. (2014)

• Seed layer-assisted hydrothermal route
(ZnO nanowires)

• In situ non-acid sol–gel synthesis
(TiO2 shell)

• Photocurrent densities, values of about 0.7 mA/cm2 under simulated
solar light (AM1.5 G, 100 mW/cm2).

• The core–shell photo-anodes performance was about twice and forty-
times better than the ones with a film of equivalent thickness of bare
ZnO NWs and TiO NPs, respectively.

[34]

Dao et al. (2013)
• Hydrothermal (ZnO nanowires)
• Sol-gel (TiO2 shell)

• UV photodetector.
• Heterojunction is composed of a 5–10 nm thick p-type Cr-doped TiO2

nanoshell and n-type single-crystalline ZnO nanowires (50 nm radius).
• At a moderate reverse bias of −5 V and under UV illumination at

104 µW, it showed a switch current ratio of 140 µW and a responsivity as
large as 250 A/W, while it showed nearly no response to the infrared
and visible light.

[35]

Lin Lin et al. (2012) • Hydrothermal method
• TiO2-ZnO n–p–n heterojunction nanorod with diameter of 30 nm.
• Photodegrading methyl orange has been demonstrated to increase three

times compared to that of wurtzite hexagonal ZnO.
[36]

Shrabani Panigrahi
et al. (2011)

• Aqueous chemical technique
(ZnO nanorod)

• Solution of titanium isopropoxide
[Ti (OC3 H7)4] followed by a heating
to form the shell (TiO2 shell).

• UV sensor application.
• The UV photosensitivity of the nanocomposite becomes four times

larger while the photocurrent decay during steady UV illumination has
been decreased almost by 7 times compared to the as-grown ZnO NRs
indicating high efficiency of these core–shell structures.

[37]
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2. Results and Discussion

2.1. Morphological Studies

After electrodeposition and dip-coating methods, TiO2-ZnO can be found on both sides of
the electrode. Each additional dip-coating cycle produced a small change in TiO2-ZnO thin film
morphology (Figure 1). Meanwhile, Figure 2 shows the schematic diagram of dip-coating method
for the formation of TiO2 loaded-ZnO. Average compositional ratio for ZnO, one-cycle dip-coating
TiO2-ZnO, two-cycle dip-coating TiO2-ZnO, and three-cycle dip-coating TiO2-ZnO are shown in Table 2
using EDX spectroscopy analysis. From here, samples are named after the titanium atomic percentage
(at %). One-cycle dip-coating TiO2-ZnO, two-cycle dip-coating TiO2-ZnO, and three-cycle dip-coating
TiO2-ZnO are named 0.25 at %, 0.50 at %, and 1.0 at %, respectively. FESEM images show that all
samples were very nearly vertically aligned and were of the average length, diameter and aspect
ratio shown in Table 3. In addition, Figure 1a–d shows a decrease in the length and diameter with the
increase in dip-coating cycles. This result is attributed to the etching phenomenon by the TiO2 solution
which was in an acidic (pH 1–3) solution to maintain the dispersion of TiO2. From the HRTEM result,
there was a boundary that split the two different materials (Figure 1e). This was confirmed by the
lattice spacing by each material: 0.27 nm (ZnO (002)) and 0.33 nm (TiO2). In addition, the existence of
the two different materials could be recognized by the arrangement of atoms in different directions.Materials 2016, 9, 937  4 of 21 

 

 

 

Figure 1. FESEM images with 100 k magnification: (a) ZnO; (b) 0.25 at % TiO2-ZnO; (c) 0.50 at % TiO2-
ZnO; and (d) 1.0 at % TiO2-ZnO; (e) HRTEM image for TiO2-ZnO. 
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Figure 2. The schematic diagram of dip-coating method for the formation of TiO2 loaded-ZnO: (a) 
ZnO nanorods; (b) dip-coating process; and (c) TiO2 loaded-ZnO and followed by calcination process 
at 400 °C. 

  

Figure 2. The schematic diagram of dip-coating method for the formation of TiO2 loaded-ZnO: (a) ZnO
nanorods; (b) dip-coating process; and (c) TiO2 loaded-ZnO and followed by calcination process at
400 ◦C.

Table 2. Average compositional ratio for ZnO, one-cycle dip-coating TiO2-ZnO, two-cycle dip-coating
TiO2-ZnO, and three-cycle dip-coating TiO2-ZnO using EDX spectroscopy analysis.

Sample Atomic Percentage (at %)

Zinc Oxygen Titanium

ZnO 44.54 55.46 Nil.
One-cycle dip-coating TiO2-ZnO 52.95 46.80 0.25
Two-cycle dip-coating TiO2-ZnO 53.25 46.29 0.46

Three-cycle dip-coating TiO2-ZnO 61.96 36.98 1.06
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Table 3. The average value of length, diameter and aspect ratio for ZnO, 0.25 at % TiO2-ZnO, 0.50 at %
TiO2-ZnO, and 1.0 at % TiO2-ZnO.

Sample Length (nm) Diameter (nm) Aspect Ratio

ZnO ~500 ~75 6.7
0.25 at % TiO2-ZnO ~500 ~65 7.7
0.50 at % TiO2-ZnO ~350 ~60 5.8
1.0 at % TiO2-ZnO ~350 ~55 6.4

2.2. Crystallinity Studies

Figure 3 shows the XRD pattern for 0.25 at % TiO2-ZnO, 0.5 at % TiO2-ZnO, 1.0 at % TiO2-ZnO
and ZnO thin film. In Figure 3b–d, peaks of TiO2 and ZnO could be observed. TiO2 is denoted by
25.4◦ (101), 37.3◦ (103), 38.2◦ (004), 38.9◦ (112), 48.3◦ (200), 54.0◦ (105), 55.5◦ (211), and 63.2◦ (204)
(ICDD 01-073-1764). Meanwhile, ZnO is denoted by 31.9◦ (100), 34.6◦ (002), 36.2◦ (101), 47.4◦ (102),
56.4◦ (110), 62.9◦ (103), 68.1◦ (112), and 69.0◦ (201) (ICDD 01-080-0074). Increasing the dip-coating
cycle produced a lower intensity of FWHM of ZnO. This is because the TiO2 volume started to increase.
Moreover, TiO2 loaded on ZnO nanorod film showed that no other elements exist. The quantification
0.25 at % TiO2-ZnO, 0.5 at % TiO2-ZnO, and 1.0 at % TiO2-ZnO were noted as 25%–75%, 34%–66%, and
33%–67%, respectively. Meanwhile, ZnO can be indexed to wurtzite ZnO (ICDD 00-036-1451) without
any impurity peaks (Figure 3a). Good crystallinity can be seen from the sharp peaks of ZnO prior to
the dip-coating method for TiO2-ZnO.
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Raman analysis was used to determine and understand the structural changes of ZnO and TiO2

upon increasing the dip-coating cycle. However, Figure 4 shows no signature of the TiO2 substance,
with the Raman peaks mainly belonging to wurtzite ZnO. This might be due to the very small amount
of TiO2 and to the scattering spectra that could be negligible as they were too small to be seen.
These thin films were still weak in stoichiometric ZnO due to the dominance of the E1 (LO) and A1 (LO)
modes (570–585 cm−1) for all samples compared to the E2 (high) mode 438 cm−1. This can be explained
by the oxygen atom deficiency that was represented by these two modes (E1 (LO) and A1 (LO) mode
(570–585 cm−1)) and with the existence of the Zn element from the Zn substrate [38,39]. Increasing the
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dip-coating cycle produced a lower E2 (high) mode, which was attributed to the depreciation of the
perfect crystal structure wurtzite ZnO. Meanwhile, as mentioned above, there was a dominance of the
E1 (LO) and A1 (LO) mode (570–585 cm−1) for all samples compared to the E2 (high) mode 438 cm−1.
However, an increase in the dip-coating cycle produced a slight depreciation in the E1 (LO) and A1

(LO) modes. Increasing the dip-coating cycle decreased the absorption of light, producing slightly
lower Raman spectra. This argument is supported by reflectance spectra under section 2.5 Optical
Properties (Figure 15). The small shift of spectra was probably due to the optical phonon confinement,
a defect or impurity in the nanocrystal, laser irradiation heating, or the tensile strain effect [40,41].
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For a further understanding of the elements and chemical interaction of the TiO2-ZnO interface, a
XPS analysis was carried out for samples ZnO, 0.25 at % TiO2-ZnO and 1.0 at % TiO2-ZnO. XPS survey
spectra confirmed that TiO2 was successfully deposited onto the ZnO film. The elements Zn, Ti, C, and
O existed in the TiO2-ZnO nanorods (Figure 5). The XPS results showed that the Ti peaks increased
with the dip-coating cycle. This is in accordance with the EDX results. One peak of Zn2p3/2 was
detected at binding energy 1021 ± 1.0 eV (Figure 6) and this matched the CAS registry No. 1314-13-2,
referring to National Institute of Standards and Technology (NIST), an agency of the U.S. Department
of Commerce [42]. From this, the sample with the formula ZnO is classed as a catalyst and an oxide
with the line designation 2p3/2 and a related-binding energy of 1021 ± 1.0 eV [43]. With the increase
in the dip-coating cycle, the binding energy of Zn2p3/2 shifted to a lower binding energy (Figure 6).
The difference in binding energies is attributed to the change of charge transfer from Zn2+ to O2−.
In addition, previous research has shown that oxygen deficiency is the main factor in the decrease in
binding energy [44,45]. This argument was supported by the Zn2p and O1s binding energies were
shifted to lower binding energies after the coating method. The XPS results showed a decrease in the
Zn/O ratio for TiO2 loaded on ZnO nanorod film as compared to the ZnO itself.
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Referring to Zhang et al. and Al-Gaashani et al., O1s binding energies at 530.4 eV, 531.4 eV, and
532.4 eV are O2− species in the lattice (OL), oxygen vacancies and defects (Ov), and chemisorbed or
dissociated (Oc) oxygen species, respectively [46,47]. Meanwhile, the O1s binding energies associated
in all samples in this research work are 530.5 eV (ZnO), 529.7 eV and 531.7 eV (1.0 at % TiO2-ZnO),
531.7 eV (0.25 at % TiO2-ZnO), and 530.0 eV (TiO2). It can be clearly seen that all O1s curves were
asymmetric; therefore, both lines were fitted with two Gaussian peaks (I and II) (Figure 7 (1.0 at %
TiO2-ZnO)). Peak I of O1s was located in the lower binding energy, as compared to peak II. Peak I
was assigned for the O2− ions of the Zn-O bonding at the crystal lattice (OL) [46,48]. For peak II
(1.0 at % TiO2-ZnO), the location of 531.7 eV is located in between oxygen vacancies defect (531.4 eV)
and existence of hydroxyl group (532.4 eV). From the EDX result, it was confirmed that O at % is
reduced with the increase in the dip-coating cycle (Table 2). However, the existence of –OH group is
accepted as Zn-OH formed before the formation of ZnO. These hydroxyl groups helped to prevent the
recombination of electron–holes [44,49].
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The XPS spectra for Ti2p showed binding energies at 458.8 and 464.5 eV, demonstrating Ti2p3/2
and Ti2p1/2, respectively [50–55]. The Ti2p spectra indicated that the Ti in TiO2-ZnO were all in a Ti4+

state, but the heterogeneous environments of Ti4+ resulted in the broadening of the Ti4+ 2p in the XPS
spectra. There is a slight decrease in the intensity of the Ti2p3/2 peak and a broadening of the Ti2p1/2
with an increase in the Ti/Zn ratio from 1.0 at % to 0.25 at % (Figure 8). This indicated a decrease in
the Ti4+ state and the heterogeneous environment due to high intensity of ZnO as compared to TiO2.
In addition, we can see that binding energies of TiO2 are shifting to lower binding energies because
it has been coupled with the electron rich material ZnO (Figure 8). The existence of C1s belongs to
containment carbon during calibration. A summary of XPS spectra is presented in Table 4.
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Table 4. Summary of XPS spectra of Zn2p3/2, Ti2p1/2, Ti2p3/2, and O1s for samples TiO2, 0.25 at %
TiO2-ZnO, 1.0 at % TiO2-ZnO, and ZnO.

Sample Zn2p3/2 Ti2p1/2 Ti2p3/2 O1s

TiO2 - 464.5 458.8 530.0
0.25 at % TiO2-ZnO 1021.7 463.7 458.1 531.3
1.0 at % TiO2-ZnO 1021.5 463.9 458.2 529.7, 531.7

ZnO 1021.8 - - 530.5

2.3. Photoluminescence Studies

Figure 9 shows the photoluminescence study for TiO2 loaded on ZnO nanorod film and it mainly
related to some defects; for instance, zinc vacancies, zinc interstitials, oxygen vacancies, oxygen
interstitials, and oxygen anti-sites. The ZnO PL spectra showed the UV emission band centered at 380
nm kept increasing with the increasing of TiO2-ZnO cycles. Theoretically, the refractive index of TiO2

(~2.55–2.9) is higher than wurtzite ZnO (~1.99). Therefore, TiO2 acts as antireflection layer and with the
increasing of TiO2 cycle it may increase the absorption of light due to the oxygen anti-site at TiO2-ZnO
interface increases the adsorption of energy and it could not be transferred to ZnO [12]. The broad
visible emission band (500–800 nm) is determined by the planar defect involving twin boundaries
and stacking faults of Ti and O atoms at TiO2-ZnO interface. The twin boundaries can be seen clearly
from HRTEM image (Figure 1e). The stacking faults defect affects the PL peak at 500–800 nm range
because Ti and O atoms were occupied in HCP ZnO interstices at TiO2-ZnO interface. Therefore, the
PL peak decreased with increasing of TiO2 dip-coating cycle. This explanation can be supported by
photocurrent density response: 0.25 at % TiO2-Zno was higher under solar illumination as compared
to bare ZnO under UV illumination. ZnO is famous for high photo reactivity under UV illumination
compared to under solar illumination. However, with the collaboration of oxygen anti-site defect,
TiO2 adsorbed more energy and it could not be transferred to ZnO and produced lower photocurrent
density and photoconversion efficiency.
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2.4. Photoelectrochemical Response and Photoconversion Efficiency

ZnO, with its excellent electronic properties and interfacial stability, exhibited a great PEC response
for hydrogen generation. The electrical simulation for water electrolysis has been studied using the
PEC response, focusing on the current density analysis (Figures 10 and 11). Meanwhile, Figure 12
shows combination of all photocurrent response under UV and solar illumination for better comparison.
In this research work, TiO2-ZnO can be found on both sides of electrode. During light illumination,
the active area was only 4 cm × 1 cm which was one-sided as the TiO2-ZnO electrode was opaque.
The photoconversion efficiency (η), that is the light energy to chemical energy conversion efficiency,
was subsequently calculated via Equation (1) and plotted in Figures 13 and 14 [56,57], whereby 0.25 at
% TiO2-ZnO presented the highest photocurrent density and photoconversion efficiency, regardless
of whether the PEC process occurred under UV illumination or solar illumination (Figures 10b,
11b, 13b and 14b) as compared to the sample of ZnO and samples with more than one cycle of the
dip-coating process. Loading ZnO with TiO2 produced a photocurrent density of 19.78 mA/cm2

(with V vs. Ag/AgCl), as compared to ZnO 10.94 mA/cm2 (with V vs. Ag/AgCl) (UV illumination),
14.75 mA/cm2 (with V vs. Ag/AgCl) and ZnO 9.06 mA/cm2 (with V vs. Ag/AgCl) (solar illumination).
Table 5 shows the summary of photocurrent density (mA/cm2) (with V vs. Ag/AgCl) for all samples
under UV illumination and solar illumination. The enhancement in photocurrent density for TiO2

loaded on ZnO nanorod film is due to the charge-separation effect that occurred at the type-II
band alignment of ZnO and TiO2, as discussed earlier. Meanwhile, the increase in the dip-coating
cycle produced a higher amount of TiO2, and the electrons produced in TiO2 were trapped by the
oxygen adsorption and could not be transferred to ZnO [37]. From PL analysis, the oxygen anti-site
defect (intrinsic defect) may also give effect to the performance of TiO2-ZnO electrode. In Figure 12,
combination of all samples showed 0.25 at % TiO2-ZnO exhibited highest photocurrent response
regardless of whether it was under UV illumination or solar illumination. This was followed by bare
ZnO, which produced good photocurrent response under both illuminations. These results support
the conclusion that a small amount (0.25 at % Ti) of TiO2 is sufficient to produce excellent photocurrent
response for PEC system. A photoconversion efficiency of ~2.9% (UV illumination) and ~4.3% (solar
illumination), compared to ZnO, resulted from the presence of the Ti element in TiO2 loaded on ZnO
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nanorod film (below 1 at % Ti). Equally important, long nanorods in the presence of TiO2 could harvest
the excited hv better than the ZnO and other TiO2 loaded samples. A high aspect ratio nanorods could
absorb more hv, resulting in an increase in jp and η [58].

η (%) =
Total power output−electrical power output

Light power input × 100%

= jp
E0

rev−|Eapp|
I0

× 100%
(1)

where jp is the photocurrent density in mA·cm−2; E0
rev is the reversible potential (1.43 V Ag/AgCl);

and Eapp = Emeas − Ecounter, where Emeas is the electrical potential (V vs. Ag/AgCl) of the working
electrode under illumination, and Ecounter Is the electrical electrode (V vs. Ag/AgCl) of the working
electrode at open circuit conditions.
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Table 5. The photocurrent density (mA/cm2) (with V vs. Ag/AgCl) of ZnO, 0.25 at % TiO2-ZnO,
0.50 at % TiO2-ZnO, and 1.0 at % TiO2-ZnO under UV illumination and solar illumination.

Sample UV Illumination Solar Illumination

ZnO 10.96 9.06
0.25 at % TiO2-ZnO 19.78 14.75
0.50 at % TiO2-ZnO 10.73 8.92
1.0 at % TiO2-ZnO 9.40 6.52
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2.5. Optical Properties

The reflectance spectra and Tauc plot of TiO2 loaded on ZnO nanorod film photocatalyst based
on the dip-coating cycle are plotted in Figures 15 and 16. From the reflectance spectra, it showed
that an increase in dip-coating cycle produced high reflection of incident light (Figure 15), and,
therefore, produced low incident light absorption with increasing in dip-coating cycle. The band
gap energies for ZnO, 0.25 at % TiO2-ZnO, 0.5 at % TiO2-ZnO, and 1.0 at % TiO2-ZnO are 3.20 eV,
2.85 eV, 2.96 eV, and 2.98 eV, respectively (Figure 16). The band gap increased with an increase in
the dip-coating cycle. However, there was no large difference between the 0.5 at % and 1.0 at %
TiO2 as shown by the photocurrent response readings. Theoretically, three types of semiconductor
heterojunctions are organized by band alignment: straddling gap (type I), staggered gap (type II), and
broken gap (type III). TiO2 loaded on ZnO nanorod film had a staggered gap (type II), as proposed
by previous researchers [33,59]. TiO2-ZnO film exhibited band gap reduction due to the existence of
planar defects [60]. Twin boundaries and stacking faults (planar defects) are correlated in band gap
reduction. Based on Figure 1e, HRTEM image for TiO2-ZnO film, twin boundaries can clearly be seen,
which will affect the heterojunction band alignment at TiO2 and ZnO interfaces. In addition, stacking
faults defect affects band gap reduction by Ti and O atoms occupying interstices in the HCP wurtzite
ZnO crystal structure. Therefore, Eg appears at the close contact of TiO2 and ZnO, and alters the
electronic structure by producing resonant state (delocalized of electrons). The proposed mechanism
is as follows (Figure 17), and the same mechanism has also been proposed by Hernández et al. and
Fan et al. [61,62]. Electrons and holes in semiconductors are at their lowest energy states originally.
Therefore, the energy gradient at the interfaces tends to spatially separate those electrons and holes
that are excited by the UV illumination/solar illumination on different sides of the heterojunction.
The quantum confinement effect appears at the interfaces by electrons feeling the presence of particle
boundaries and responding to changes in particle size by adjusting their energy. Under illumination,
the electrons are transferred from the conduction band (CB) of TiO2 to CB of ZnO due to the present of
potential barrier for electrons (Figure 17). During the same event, the holes are transferred from the
valence band (VB) of ZnO to VB of TiO2 with the presence of potential barriers for holes (Figure 17).
The process isolates active electrons and holes and, hence, accelerates the decrease in the electron–hole
pair recombination and erodes the increase in lifespan. These phenomena directly result in an intense
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emission quenching as revealed by the photoluminescence results (Figure 9). In addition, the high
aspect ratio one-dimensional structure of the ZnO nanorods also helps to decrease the recombination
probability of photogenerated carriers due to an increase in the delocalization of electrons [33,59,63].
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3. Materials and Methods

Most researchers implemented the hydrothermal and aqueous chemical routes for ZnO formation
(Table 1). However, in this research work, electrodeposition technique has been implemented for
formation of ZnO. Electrodeposition technique promised better electronic performance and stronger
ZnO structure [64]. This was followed by dip-coating method, which is very economical and simple.

3.1. The Fabrication of ZnO Nanorods

Chemicals used for the electrodeposition method for ZnO nanorods formation were 0.05 mM
Zinc Chloride (ZnCl2), 0.1 M Potassium Chloride (KCl) and material zinc (Zn) foil (thickness 0.25 mm,
99.9% trace metals basis, Sigma-Aldrich, Saint Louis, MO, USA) under temperature 70 ◦C, as-prepared
pH (5–6), duration 1 h, and 1 V applied potential. The electrodeposition process has been set up as a
closed system of two electrodes, in which Zn foil served as cathode and platinum electrode served
as anode and both electrodes were directly connected to DC power supply. The ZnO nanorods thin
film has been rinsed with EMSURE ACS, 1SO, Reg. Ph Eur acetone for analysis and dried under
atmosphere condition. The difference of electrodeposition method in this research work as compared
to previous researches is the Zn substrate used, whereas previous researches used GaN substrate [23],
Si substrate [24,65–67], steel substrate [25,68], FTO-coated glass [26], ITO-coated glass [6,69], and
F-doped SnO2 coated glass [70–74]. In addition, electrodeposition method in this research work is
template-free as compared to previous researches that used alumina membrane templates or anodic
alumina template (AAM) [75,76]. Another difference of this research work electrodeposition method
was seed layer-free because previous researches reported seeded substrate such as nanosheet-like
Zn seed layers and ZnO seed layer [77,78]. Acid-free is an additional difference of electrodeposition
method in this research work compared to previous researches. Some researchers used organic acid,
for example, benzenetetracarboxylic acid, benzoic acid, and p-toluenesulfonic acid [24]. Meanwhile,
citric acid is quite popular in previous electrodeposition method [27,79].

3.2. The Formation of TiO2 Nanoparticles

Chemicals used for the precipitation-peptization method were titanium (IV) isopropoxide
(Sigma Aldrich, St. Louis, MO, USA, 97.0%), isopropoanol (Merck, Kirkland, QC, Canada, 99.8%),
ethanol (J.Kolin, Seoul, Korea 95%) and nitric acid (merck, 65%). Solutions of nitric acid, isopropanol
and deionized water were maintained in molar ratio 1:34:550 titrated with 250 mL of mixture titanium
(IV) isopropoxide and isopropanol with molar ratio 1:30 under vigorous stirring for 2 h to form a
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white precipitate and continue stirred for another 1 h for complete hydrolyzation. The precipitate was
centrifuged and washed with ethanol and white TiO2 gel was obtained. Subsequently, the gel was
baptized in water bath with the pH 1–3 at 80 ◦C for 8 h until a transparent solution was obtained.

3.3. The Formation of TiO2-ZnO Composite Thin Film

The formation of TiO2-ZnO nanostructures composite film has been done via dip-coating method.
The first step was the immersion of ZnO nanorods into TiO2 solution (jitter-free). Second, the ZnO
nanorods remained in the TiO2 solution for less than five seconds and the deposition of very thin layer
TiO2 nanoparticles occurred while it was pulled out from TiO2 solution. The drainage and evaporation
of excess TiO2 solution was done by drying the dipped thin film in oven at 60 ◦C and calcined at 400 ◦C
for 3 h.

3.4. Characterization Methods

Field Emission Scanning Electron Microscopy (FESEM) JEOL JSM-7600F (Freising, Germany) has
been used to study the morphology (including the surface and cross-sectional) of TiO2-ZnO composite
thin film. Meanwhile, elemental studies have been carried out using Hitachi Energy Dispersive X-ray
Spectroscopy (EDX). The crystallinity, phase transition and photoluminescence spectra studies of
TiO2-ZnO composite thin film were carried out via Renishaw In Via Raman microscope and supported
by Bruker D8 Advance equipped with EVA-Diffract Software (Karlsruhe, Germany) X-ray Dispersive
(XRD) with Cu K radiation and wavelength λ = 1.5418 Å. The photocurrent densities were obtained
from photoelectrochemical cell consisted of three-electrodes (TiO2-ZnO nanostructures composite film
(anode), platinum electrode (cathode), and Ag/AgCl in saturated KCl electrode (reference electrode)).
All electrodes were immersed in 1 vol% ethylene glycol added to 1 M sodium hydroxide (NaOH).
Small amount of ethylene glycol has been used as sacrificial agent during PEC procedure. Ethylene
glycol worked as electron donor during PEC procedure. It supplied electron with the photogenerated
VB holes for increase the electron–holes separation [80]. Light source with AM1.5 filter has been
used for both UV and solar illumination (Newport model 74010) focused on the PEC cell. The light
intensity was 0.652 Wcm−2. Meanwhile, current-applied potential was measured by using Metrohm
Autolab PGSTAT204 (Herisau, Switzerland), with procedure linear sweep voltammetry potentiostatic
(−1 to 1 V potential applied). The illuminated area was one-sided and, therefore, active area was
4 cm × 1 cm.

4. Conclusions

In summary, fine-tuning the content of TiO2 loaded on ZnO nanorod film is important to
develop an efficient solar driven PEC system through dip-coating technique. An improvement in the
photocurrent density and photoconversion efficiency was observed in the 0.25 at % TiO2 loaded on
ZnO nanorod film with maximum value photocurrent density of 19.78 mA/cm2 (with V vs. Ag/AgCl)
(UV illumination) and 14.75 mA/cm2 (with V vs. Ag/AgCl) (solar illumination) with photoconversion
efficiency of ~2.9% (UV illumination) and ~4.3% (solar illumination). This finding is attributed to
the excellent performance by promoting an impurity level in the binary system. In this case, the
optimum 0.25 at % of TiO2 content acted as an electron acceptor, which was beneficial for the effective
separation of the photo-induced charge carriers. However, the excessive TiO2 content (>0.50 at % Ti)
loaded on ZnO nanorod film resulted in poor PEC performance. A suggestion for future research
work is to prepare a mild TiO2 solution, with simple coating process in order to study the effectiveness
TiO2-ZnO properties.

Acknowledgments: The authors would like to thank University of Malaya for funding this research work
under Postgraduate Research Fund Scheme (PPP; PG058-2014B), Fundamental Research Grant Scheme
(FP008-2015A), Nippon Sheet Glass Foundation for Materials Science and Engineering (IF001-2015), Grand
Challenge Grant (GC002A-15SBS), and COMSTECH-TWAS Joint Research Grants Programme for Young Scientists
(14-316 RG/MSN/AS_C).



Materials 2016, 9, 937 18 of 21

Author Contributions: N.A.A.S. and C.W.L. conceived and designed the experiments; N.A.A.S. and K.S.L.
performed the experiments; N.A.A.S., K.S.L., C.W.L., and S.B.A.H. analyzed the data; C.W.L. and S.B.A.H.
contributed reagents/materials/analysis tools; and N.A.A.S., K.S.L., C.W.L., and S.B.A.H. wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Navarro Yerga, R.M.; Alvarez Galván, M.C.; del Valle, F.; Villoria de la Mano, J.A.; Fierro, J.L. Water Splitting
on Semiconductor Catalysts under Visible-Light Irradiation. ChemSusChem 2009, 2, 471–485. [CrossRef]
[PubMed]

2. Kim, Y.K.; Park, H. Light-harvesting multi-walled carbon nanotubes and CdS hybrids: Application to
photocatalytic hydrogen production from water. Energy Environ. Sci. 2011, 4, 685–694. [CrossRef]

3. Bahadur, H.; Srivastava, A.K.; Sharma, R.K.; Chandra, S. Morphologies of sol-gel derived thin films of ZnO
using different precursor materials and their nanostructures. Nanoscale Res. Lett. 2007, 2, 469–475. [CrossRef]

4. Bornand, V.; Mezy, A. An alternative approach for the oriented growth of ZnO nanostructures. Mater. Lett.
2011, 65, 1363–1366. [CrossRef]

5. Aziz, N.S.; Mahmood, M.R.; Yasui, K.; Hashim, A.M. Seed/catalyst-free vertical growth of high-density
electrodeposited zinc oxide nanostructures on a single-layer graphene. Nanoscale Res. Lett. 2014, 9, 1–7.
[CrossRef] [PubMed]

6. Dai, S.; Li, Y.; Du, Z.; Carter, K.R. Electrochemical deposition of ZnO hierarchical nanostructures from
hydrogel coated electrodes. J. Electrochem. Soc. 2013, 160, D156–D162. [CrossRef]

7. Kim, Y.J.; Hadiyawarman; Yoon, A.; Kim, M.; Yi, G.C.; Liu, C. Hydrothermally grown ZnO nanostructures
on few-layer graphene sheets. Nanotechnology 2011, 22. [CrossRef] [PubMed]

8. Du, J.; Liu, Z.; Huang, Y.; Gao, Y.; Han, B.; Li, W.; Yang, G. Control of ZnO morphologies via surfactants
assisted route in the subcritical water. J. Cryst. Growth 2005, 280, 126–134. [CrossRef]

9. Lepot, N.; van Bael, M.K.; van den Rul, H.; D’Haen, J.; Peeters, R.; Franco, D.; Mullens, J. Synthesis of ZnO
nanorods from aqueous solution. Mater. Lett. 2007, 61, 2624–2627. [CrossRef]

10. Park, W.I.; Kim, D.H.; Jung, S.-W.; Yi, G. Metalorganic vapor-phase epitaxial growth of vertically well-aligned
ZnO nanorods. Appl. Phys. Lett. 2002, 80, 4232–4234. [CrossRef]

11. Oliveira, M.M.; Schnitzler, D.C.; Zarbin, A.J. (Ti, Sn) O2 Mixed Oxides Nanoparticles Obtained by the Sol-Gel
Route. Chem. Mater. 2003, 15, 1903–1909. [CrossRef]

12. Andersson, M.; Österlund, L.; Ljungström, S.; Palmqvist, A. Preparation of nanosize anatase and rutile TiO2

by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol.
J. Phys. Chem. B 2002, 106, 10674–10679. [CrossRef]

13. Varghese, N.; Panchakarla, L.S.; Hanapi, M.; Govindaraj, A.; Rao, C.N.R. Solvothermal synthesis of nanorods
of ZnO, N-doped ZnO and CdO. Mater. Res. Bull. 2007, 42, 2117–2124. [CrossRef]

14. Yiamsawas, D.; Boonpavanitchakul, K.; Kangwansupamonkon, W. Preparation of ZnO nanostructures by
solvothermal method. J. Microsc. Soc. Thail. 2009, 23, 75–78.

15. Lee, H.K.; Yu, J.S. Growth Parameter Dependent Structural and Optical Properties of ZnO Nanostructures on
Si Substrate by a Two-Zone Thermal CVD. J. Nanosci. Nanotechnol. 2012, 12, 3123–3129. [CrossRef] [PubMed]

16. Khranovskyy, V.; Yakimova, R. Morphology engineering of ZnO nanostructures. Phys. B Condens. Matter
2012, 407, 1533–1537. [CrossRef]

17. Kim, K.-S.; Kim, H.W. Synthesis of ZnO nanorod on bare Si substrate using metal organic chemical vapor
deposition. Phys. B Condens. Matter 2003, 328, 368–371. [CrossRef]

18. Saitoh, H.; Satoh, M.; Tanaka, N.; Ueda, Y.; Ohshio, S. Homogeneous growth of zinc oxide whiskers. Jpn. J.
Appl. Phys. 1999, 38, 6873. [CrossRef]

19. Clavel, G.; Marichy, C.; Willinger, M.; Ravaine, S.; Zitoun, D.; Pinna, N. CoFe2O4-TiO2 and CoFe2O4-ZnO
Thin Film Nanostructures Elaborated from Colloidal Chemistry and Atomic Layer Deposition. Langmuir
2010, 26, 18400–18407. [CrossRef] [PubMed]

20. Leskelä, M.; Ritala, M. Atomic layer deposition (ALD): From precursors to thin film structures.
Thin Solid Films 2002, 409, 138–146. [CrossRef]

21. Solís-Pomar, F.; Martínez, E.; Meléndrez, M.F.; Pérez-Tijerina, E. Growth of vertically aligned ZnO nanorods
using textured ZnO films. Nanoscale Res. Lett. 2011, 6, 1–11. [CrossRef] [PubMed]

http://dx.doi.org/10.1002/cssc.200900018
http://www.ncbi.nlm.nih.gov/pubmed/19536754
http://dx.doi.org/10.1039/C0EE00330A
http://dx.doi.org/10.1007/s11671-007-9089-x
http://dx.doi.org/10.1016/j.matlet.2011.01.083
http://dx.doi.org/10.1186/1556-276X-9-95
http://www.ncbi.nlm.nih.gov/pubmed/24568668
http://dx.doi.org/10.1149/2.064304jes
http://dx.doi.org/10.1088/0957-4484/22/24/245603
http://www.ncbi.nlm.nih.gov/pubmed/21508449
http://dx.doi.org/10.1016/j.jcrysgro.2005.03.006
http://dx.doi.org/10.1016/j.matlet.2006.10.025
http://dx.doi.org/10.1063/1.1482800
http://dx.doi.org/10.1021/cm0210344
http://dx.doi.org/10.1021/jp025715y
http://dx.doi.org/10.1016/j.materresbull.2007.01.017
http://dx.doi.org/10.1166/jnn.2012.5827
http://www.ncbi.nlm.nih.gov/pubmed/22849074
http://dx.doi.org/10.1016/j.physb.2011.09.079
http://dx.doi.org/10.1016/S0921-4526(02)01954-3
http://dx.doi.org/10.1143/JJAP.38.6873
http://dx.doi.org/10.1021/la103364y
http://www.ncbi.nlm.nih.gov/pubmed/21067161
http://dx.doi.org/10.1016/S0040-6090(02)00117-7
http://dx.doi.org/10.1186/1556-276X-6-524
http://www.ncbi.nlm.nih.gov/pubmed/21899743


Materials 2016, 9, 937 19 of 21

22. Wu, M.-K.; Chen, M.; Tsai, F.; Yang, J.; Shiojiri, M. Fabrication of ZnO nanopillars by atomic layer deposition.
Mater. Trans. 2010, 51, 253–255. [CrossRef]

23. Rousset, J.; Lincot, D. Low Temperature Electrodeposition of Zinc Oxide Layers as Transparent Conducting
Oxide Window Layers for Cigs Solar Cells. In Proceedings of the 2009 34th IEEE Photovoltaic Specialists
Conference, Philadelphia, PA, USA, 7–12 June 2009; Volumes 1–3, pp. 698–703.

24. Liu, W.L.; Chang, Y.C.; Hsieh, S.H.; Chen, W.J. Effects of Anions in electrodeposition baths on morphologies
of Zinc Oxide Thin Films. Int. J. Electrochem. Sci. 2013, 8, 983–990.
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