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Simple Summary: Aberrant fusion of somatic cells or fusion of neoplastic cells may represent one
fundamental process among others eventually promoting tumor development. Fusion events are rare,
and cancer hybrid cells are further processed in a post-hybrid selection process (PHSP). Although
the PHSP-surviving cancer hybrid cells represent a small minority within the tumor tissue, their
changed properties may provide a proliferation advantage, eventually overgrowing other cancer cells.
These new properties can include cancer stem-cell features such as self-renewal, immune escape, and
chemotherapy/necroptosis resistance. Moreover, PHSP-derived cancer hybrid cells can undergo
tumor dormancy or contribute to epithelial-mesenchymal transition and enhanced formation of distal
organ or tissue metastases. Accordingly, detection of cancer-cell fusions in vivo in a patient’s tumor
tissues is challenging, and subsequent therapeutic interventions against these processes remain to
be elucidated.

Abstract: Fusion of cancer cells either with other cancer cells (homotypic fusion) in local vicinity of
the tumor tissue or with other cell types (e.g., macrophages, cancer-associated fibroblasts (CAFs), mes-
enchymal stromal-/stem-like cells (MSC)) (heterotypic fusion) represents a rare event. Accordingly,
the clinical relevance of cancer-cell fusion events appears questionable. However, enhanced tumor
growth and/or development of certain metastases can originate from cancer-cell fusion. Formation
of hybrid cells after cancer-cell fusion requires a post-hybrid selection process (PHSP) to cope with
genomic instability of the parental nuclei and reorganize survival and metabolic functionality. The
present review dissects mechanisms that contribute to a PHSP and resulting functional alterations
of the cancer hybrids. Based upon new properties of cancer hybrid cells, the arising clinical conse-
quences of the subsequent tumor heterogeneity after cancer-cell fusion represent a major therapeutic
challenge. However, cellular partners during cancer-cell fusion such as MSC within the tumor
microenvironment or MSC-derived exosomes may provide a suitable vehicle to specifically address
and deliver anti-tumor cargo to cancer cells.

Keywords: cell fusion; aneuploidy; mesenchymal stroma-/stem-like cells; hybrid cell formation;
gene transfer; post-hybrid selection process; tumor plasticity; cancer stem/initiating cell

1. Introduction

Even though the morphological process of cell–cell fusion appears to be simple in
opposite of a cell division during telophase, the biology behind hybridization of two
cells (including cancer cells) is complex, tightly regulated and still far from being fully
understood [1]. This applies not only to factors and conditions that prepare, mediate
and execute cancer-cell fusion, but also to post-fusion programs, such as heterokaryon-
to-synkaryon transition/ploidy-reductions (HST/PR), as part of a post-hybrid selection
process (PHSP). Thus, stabilization of chromosomal imbalances during a PHSP plays a
crucial role and determines malignancy of cancer hybrid cells.
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Prerequisites for cancer-cell fusions include cytoskeletal reorganization in orchestra-
tion with fusogens [2,3] and a potential involvement of inflammatory cytokines. Cancer
hybrid cells are detectable in vitro and in vivo due to overlapping fusion markers, such
as fluorescent reporter genes, antibiotic resistance or lineage markers in common with
parental cells. Accordingly, initially formed cancer hybrid cells display DNA instabilities
due to altered regulatory functions by the parental nuclei. Alternative mechanisms that re-
semble cancer-cell fusion are mediated by cell cannibalism, entosis, and emperipolesis that
form so-called cell-in-cell structures with the exchange of DNA [4–10]. Moreover, genes
and mRNAs of fusion markers could be transferred by horizontal/lateral gene transfer or
via extracellular vesicles, thereby altering the phenotype of recipient cells [11–14].

In addition to common strategies to identify cancer hybrids in vitro and in vivo, some
human studies provide evidence for the existence of cancer hybrids in primary tumors,
within the circulation and in distal metastases [15–20]. Cancer-cell fusion has been associ-
ated with novel properties of the originating cancer hybrids such as certain cancer stem-cell
characteristics with increased metastatic capacity and enhanced drug resistance [21–33].
The reasons for such development can be attributed to aneuploidy and genomic instability
after cell fusion and a subsequent PHSP [34–38]. During this selection process, however,
most hybrid cells die. In association with the newly acquired properties of surviving
hybrids, questions arise with respect to the clinical relevance of cancer hybrid cells due
to the low frequency and probability of cancer-cell fusions followed by clonal conver-
gence during the PHSP. As a consequence, the emerging cancer hybrid cells eventually
develop growth advantages over the parental cancer cells, providing diversification and
an increased intratumoral heterogeneity. This cancer-cell plasticity worsens successful
therapeutic approaches and patients’ prognoses [34]. Thus, cancer-cell fusion and some
new properties of cancer hybrid cells can be associated in part with an increased drug resis-
tance and escape from tumor therapy. Moreover, cell-fusion-mediated polyploidization can
contribute to an altered therapeutic responsiveness that fits the cancer stem/initiating cell
(CS/IC) hypothesis. Acquisition of CS/IC properties in cancer hybrid cells is commonly
associated with a more malignant phenotype. Unfortunately, the still-limited knowledge
on cancer-cell fusion mechanisms hampers direct molecular interventions.

2. Cancer-Cell Fusion and Genomic Instability

One characteristic of most physiological cell-fusion-derived cell types, including
syncytiotrophoblasts, myofibers and osteoclasts, is represented by stable multinucleated
heterokaryons. In contrast, the two discrete nuclei within the oocyte fuse with each other
immediately after fertilization, thereby resulting in a synkaryontic mononucleated cell.
During cell fusion of other cell types including cancer cells, bi- or multinucleated hybrid
cells could also give rise to mononucleated daughter cells via HST/PR.

2.1. Frequencies of Cell–Cell Fusion within the Tumor Tissue in Animal Studies and in Humans

Although the frequency of fusion processes varies among different tumor models, pro-
liferative advantages and acquisition of new properties by the subsequently formed cancer
hybrid cells via a PHSP can significantly alter further tumor development, metastatic behav-
ior, and chemotherapeutic responsiveness. Quantification of the real amount of cancer-cell
fusion is accompanied by several technical difficulties [39]. For example, homotypic tumor
fusions could not be detected in vivo due to an identical genetic background of the cells.
Genomic instability with loss of fusion markers can mask the detection of heterotypic
cancer-cell fusions. Thus, only a certain number of cancer hybrids are clearly visible as
documented by fusion processes during co-culture of human MDA-MB-231 breast-cancer
cells with the human MSC544 cell line [40].

In vivo studies by Fortuna et al. suggested that the cell fusion rate in experimental
tumors was about 1% [41]. More recent data by Gast et al. demonstrated the identification
of about 0.5% cancer hybrid cells in animal studies of melanomas [18]. This is in agreement
with in vivo studies of a breast-cancer model demonstrating about 0.35% initially formed
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breast-cancer hybrid cells after fusion with MSC [42]. In contrast, a rather low in vivo
fusion frequency of about 0.0066% was observed by Miroshnychenko and colleagues [21],
whereas up to 6.5% hybrids derived from GFP and mCherry-labeled SKBR 3 breast-cancer
cells were observed in animal studies [43]. In addition, Yan and colleagues presented
cell-fusion rates of about 6.5% in control animals and up to 12.2% in mice treated with
chemotherapy [43], which is similar to a fusion rate of about 4% observed in an ovarian
carcinoma animal model [44]. Whereas genetically modified cancer cells expressing suitable
reporter genes can be used to visualize and quantify homotypic and heterotypic cancer-cell
fusion events in animal models, these approaches are not feasible in human cancers, which
limits these estimations (Figure 1).

Figure 1. Cancer-cell fusion in vitro. Cancer-cell fusion of cherry-labeled human MDA-MB-231 breast-cancer cells (left panel)
with the GFP-labeled human MSC544 cell line in P34 (middle panel) was detectable following a 4 day co-culture similar to
previous experimental approaches [45]. Two evolving breast-cancer hybrid cells became detectable after spontaneous fusion
(white arrows), which simultaneously expressed the cherry (left panel) and GFP genes (middle panel) in a fluorescence
overlay by displaying a yellow color (right panel). Bars represent 200 µm using a BZ-X800 Keyence fluorescence microscope.

Assuming that expression of epithelial or hematopoietic antigens in cancer cells is
attributed to previous cell-fusion events as considered by several studies [19,20,44,46–48],
the amount of cancer hybrid cells within a primary tumor could be high. Data of Shabo and
colleagues revealed that in approximately 48% of breast cancer patients the expression of
the macrophage antigen CD163 was found in more than 25% of the cancer cells [48]. Similar
findings were presented for colorectal tumors, whereby CD163 expression was found in
23% of the patient cancer cells [47]. In breast tumor patients, macrophage antigen DAP12
expression was detectable in 66% of the cancer cells [46]. Ramakrishnan and colleagues
further demonstrated that 16.4% to 23.9% of human epithelial ovarian carcinoma cells
expressed the pan-hematopoietic marker CD45 [44]. However, all of these findings in
patient tumor tissues or blood samples reflect endpoint data and not after origination of
corresponding cancer hybrid cells. This leaves the frequency of initial fusion events within
human tumor tissues unclear, which may underlie different mechanisms.

2.2. Fusogens and Cellular Processes Contributing to Tumor Hybridizations

As mentioned above, cell fusion is a tightly regulated process that involves the inter-
play of different proteins, including chemokines, cell adhesion molecules, actin cytoskeletal
components [49], signal transduction molecules, fusogens, and proteases, in combina-
tion with thermodynamic and further biochemical processes that are not fully understood
yet [50]. For example, the differences in fusogenic capability and frequency among different
cancer-cell populations remains unresolved and suggests a unique portfolio of cell-fusion
relevant factors. These effects also strongly depend on the type of interacting cell partners,
e.g., cancer cells and MSC with long-term stroma-/stem cell-like characteristics [51,52].
Supportive evidence indicating a different fusogenic capacity was obtained from sponta-
neous fusions of human U87 and U373 glioblastoma cells with human MSC, whereby more
hybrids were derived from U87 cells than from U373 cells [53]. U87 cells expressed higher
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levels of the kinin receptor 1 (B1R), and invasion was greatly enhanced by a B1R agonist in
U87/MSC 3D co-cultures concomitant with significantly more cell–cell interactions [53]. In
contrast, U373 cells expressed low levels of B1R, which was associated with a lower inva-
sion capacity and a reduced number of fusion-required cell–cell interactions in U373/MSC
co-cultures [53]. Likewise, a comparison of different breast cancer cell lines revealed that
MCF-7 cells were more fusogenic (~0.4%) than MDA-MB-231 cells (~0.1%) and SUM159
cells (~0.05%) [21]. Interestingly, the frequency of heterotypic hybrids derived from MDA-
MB-231 (Figure 1) and SUM159 cells was higher (~0.6%) as compared to homotypic MCF-7
hybrids [21].

Expression of fusogens such as syncytins has also been investigated in human tumor
tissues with controversial results. For instance, Bjerregard and colleagues showed that hu-
man breast-cancer cell lines and about 38% of breast-tumor specimens expressed syncytin-1,
which facilitated the fusion with endothelial cells [54]. Further studies hypothesized that
the degree of syncytin-1 expression in breast tumors represents a positive prognostic
indicator for recurrence-free survival [55]. In contrast, overexpression of syncyctin-1 in
immortalized human uroepithelial cells was correlated with an increased proliferation,
viability, and cell fusion frequency [56]. While syncytin-1 was also overexpressed in 75.6%
of urothelial cell carcinoma tissues of the bladder, multinucleated cancer cells were found
in tumors induced by syncytin-1 expressing human uroepithelial cells [56]. Since wild-type
immortalized human uroepithelial cells were non-tumorigenic, the authors concluded
that syncytin-1-induced cell fusion may contribute to malignant transformation of these
cells [56].

Significantly increased syncytin-1 mRNA and protein levels were also observed in
endometrial carcinomas and pre-stages, which was correlated to higher numbers of cell fu-
sions in endometrial carcinoma biopsies [57]. Corresponding in vitro studies demonstrated
that syncytin-1 expression levels were directly associated with fusion frequency, prolifera-
tion and anchorage-independent colony growth of endometrial cancer cells [57]. Likewise,
syncytin-1, CD9 and CD47 might play a role in the formation of polyploid giant cancer
cells (PGCCs) in colorectal cancer since higher levels of these fusion-relevant proteins were
observed in PGCCs than in control cells [58]. In contrast, neither double knockdown of
syncytin-1 and the corresponding receptor ASCT2 nor double knockdown of syncytin-2 and
MFSD2A demonstrated any significant effect on cell fusion of human neoplastic MCF10A
breast epithelial cells with human MSC, indicating that syncytins played a minor role in the
hybrid formation of these cellular partners [45]. Yan and colleagues showed that syncytin-1
expression was induced by and contributed to the TNF-α-enhanced fusion between human
umbilical-vein endothelial cells (HUVECs) and oral squamous-cell carcinoma cells [59].
In addition to a possible supportive fusogenic role of syncytin-1 in this tumor model,
cancer-cell hybridization might be also triggered by inflammation/inflammatory cytokines,
hypoxia and apoptosis [60–63]. Thus, a higher fusion frequency between MSC and human
breast-cancer cells was observed during hypoxic co-culture [60]. Co-cultivation of oral
squamous carcinoma cells and epithelial cells under hypoxic conditions was also correlated
with an enhanced fusion frequency [61]. It is well-known that epithelial-to-mesenchymal
transition (EMT) can be induced by hypoxia [64] and, indeed, the fusion rate was sig-
nificantly reduced by the EMT blocker DAPT [61], suggesting that a hypoxia-induced
EMT phenotype may contribute to a more fusogenic state in epithelial cells. Likewise, a
higher fusion frequency by TNF-α-induction and apoptosis was observed in human breast-
epithelial cells and human breast-cancer cells when cells were cultured under hypoxic
conditions as compared to normoxia [62,63], further supporting a correlation between
hypoxia, apoptosis and cell fusion.

Supportive evidence was obtained by inhibition of apoptosis using a caspase inhibitor
that was associated with diminished cell fusion, whereas addition of apoptotic cells en-
hanced the fusion rate and even elevated fusion events previously inhibited by the caspase
inhibitor [60]. Noubissi and colleagues assumed that the PS receptor BAI1 might be in-
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volved in MSC/breast cancer-cell hybridization since apoptotic cells could induce fusion
via this signaling process [60], which also plays a role in myoblast fusion [65].

Together, various fusogens and cellular processes such as pro-inflammatory stimula-
tion, hypoxia and apoptosis could trigger cell fusion, although mechanisms that are more
precise are still under investigation.

2.3. Aneuploidy and Clonal Convergence during the PHSP

In contrast to chromosomal recombination after the fusion of two haploid nuclei in the
fertilized oocyte, the process of HST/PR in diploid or aneuploidy cancer cells is much more
complex since two discrete diploid nuclei in the fused cancer hybrid cells do not simply
merge to a newly formed tetraploid nucleus. Instead, HST/PR is rather a mitosis-like
process indicating preceding active cell cycle [36,38,66]. The formation of a stabilized and
clonally converged new phenotype from fused cancer hybrid cells requires a PHSP as a
multi-step program.

Chromosomal segregation during HST/PR, however, as a proposed first step of
a PHSP is differentially controlled due to the presence of additional centrosomes as
a consequence of the former cell-fusion step. Consequently, HST/PR is accompanied
by chromosomal missegregation during ploidy reduction (PR), leading to aneuploidy
and even micronuclei formation and chromothripsis (Figure 2). These processes are at-
tributed to centrosome dyslocalizations followed by bipolar, tripolar or even multipolar-
like divisions due to chromosomal attachment of spindle fibers during metaphase and
anaphase [36–38,66–69].

Figure 2. Different pathways within a PHSP are suggested to include subsequent intermediate steps: 1. regulation of
aneuploidy; 2. HST/PR; 3. autocatalytic karyotype evolution; 4a. induction of senescence or apoptosis/necroptosis in a
majority of hybrid cells that are unable to survive due to uncoordinated HST/PR; 4b. proliferation of new cancer cells, some
of which can carry potential stem-cell properties including radio-/chemoresistance.

However, HST/PR is not cell-fusion specific since it also occurs by extra centrosomes
during cytokinesis failure, mitotic slippage or endoreduplication (for review see [36]) and
may even play a role in physiological processes. For instance, different HST/PR-related
mitoses were observed in tetraploid hepatocytes resulting in diverse daughter cells [38]. If
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multiple centrosomes were localized in a bipolar manner in metaphase, chromosomes were
equally segregated during anaphase, observed in about 70% hepatocytes [38]. Conversely,
in about 1–3% of hepatocytes, centrosomes were orientated in a tripolar manner, causing
a tripolar division and generation of three daughter cells [38]. Supportive data were
provided by Zhou et al., demonstrating that a hybrid cell containing one nucleus with
green-labeled chromosomes and one nucleus with red-labeled chromosomes underwent
a tripolar HST/PR, thereby giving rise to three daughter cells with mixed green and red
chromosomes, indicating a differential segregation of parental chromosomes [70]. Highly
polyploid and aneuploid hepatocytes harboring several chromosomal gains and losses
derived from aberrant HST/PR were found in mice [38]. Thereby, the degree of aneuploid
hepatocytes was increased by age, ranging from 25% in young mice to about 70% in adult
and aged animals [38]. Likewise, a frequent aneuploidy concomitant with gains and losses
of whole chromosomes has also been found in human hepatocytes [71]. While aneuploidy
was not associated with malignant liver transformation, it was suggested as a mechanism
for liver cells to adapt to chronic liver injury [72].

Aneuploidy and PR could also support cell populations in lower organisms to cope
with severe conditions, as demonstrated in some studies. For instance, Yang and colleagues
showed that Candida albicans acquired the ability to survive chemotherapeutics and anti-
fungal drugs due to aneuploidy [73]. Moreover, aneuploidy-driven adaptation processes
to the anticancer drug hydroxyurea were correlated to a cross-adaptation to the first-line
antifungal compound caspofungin, which was attributed to a chromosomal trisomy [73].
Likewise, it was shown in yeast that aneuploidy was correlated with surviving of telom-
erase insufficiency [74] and adaptation to ER stress resistance [75]. In accordance to these
rather beneficial effects of aneuploidy, further studies revealed that aneuploidy was associ-
ated with induction of senescence and/or apoptosis in cells [76–80]. Previous work in a
leukemia model demonstrated that senescence, differentiation or apoptosis can be relayed
via protein kinase C activation in a dual signaling pathway [81]. These effects suggested
that the appearance of aneuploidy can start a protective cellular program to remove cells
with chromosomal imbalances and an impaired homeostasis from the population.

In contrast, after cancer-cell fusion HST/PR has been associated with chromosome
missegregation and induction of aneuploidy [36–38,66–69,82], which has also been corre-
lated to genomic instability and tumorigenesis [36,37,77,80,83–87], pointing to a fatal side
of aneuploidy with induction of senescence or apoptosis/necroptosis (Figure 2).

Here, cell fusion and subsequent HST/PR appears as a random process and it cannot
be predicted, which of the mixed parental chromosomes will be segregated to daughter cells,
particularly during tripolar and multipolar divisions. Likewise, lagging chromosomes and
chromothripsis further contribute to chromosomal aberrations and an overall genomically
altered and instable aneuploidy phenotype of cancer hybrid cells. In this context, it is
well documented that the vast majority of aneuploid cells eventually die or will become
senescent (for review see: [37]). Accordingly, only a very few cancer hybrid cells will
survive a PHSP which applies both to homotypic and heterotypic cancer-cell fusion events
(Figure 2).

In addition to an uneven distribution of whole chromosomes during multipolar
cell divisions of cancer hybrid cells, aneuploidy could be further induced by the occur-
rence of merotelic attachments due to centrosome clustering resulting in lagging chromo-
somes [36,37,82,88–90]. Lagging chromosomes remain at the spindle equator and are not
enclosed in the newly formed nucleus, rather generating individual micronuclei [88,91].
These micronuclei differ from the normal cell nucleus, e.g., by an asynchronic cell cycle,
which is attributed to the ruptured micronuclei membrane causing an influx of exo- and
endonucleases from the cytoplasm and an efflux of polymerases, nucleotides and other
proteins [91,92]. As a consequence, DNA structural intermediates, rather than intact chro-
mosomes, are generated, which are additionally more susceptible to DNA double-strand
breaks due to the influx of cytoplasmic exo- and endonucleases. Subsequently, the DNA
double-strand breaks are randomly repaired through error-prone nonhomologous end
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joining [91–93]. These events represent characteristics of chromothripsis, which is the
catastrophic pulverization of spatially isolated chromosomes into up to 1000 fragments that
are subsequently reassembled in random order [91–94]. Thereby, non-integrated DNA frag-
ments could either self-ligate and form circular DNA structures or could become inevitably
lost [91–94]. Moreover, such emerging chromothriptic DNA fragments are randomly dis-
tributed to the daughter cells during mitosis [91]. These unidentifiable chromosome-like
structures have also been identified in fusion-derived cancer hybrid cells [32,95–98].

Consequently, aneuploid daughter cells of fusion-derived cancer hybrid cells lacking
chromosomes, e.g., which harbor genes for crucial cellular processes such as metabolism,
proliferation, DNA replication and signaling, etc., are eliminated through PHSP and
undergo senescence or in most cases apoptosis/necroptosis (Figure 2). Indeed, aneuploidy-
related genotoxic and proteotoxic stress responses including DNA damage, cell-cycle
arrest, autophagy, protein misfolding and aggregation commonly resulted in apoptosis or
senescence [37,69,86,99–106]. Aneuploidy was much more tolerated in p53 mutated and
p53 null cells concomitant with an increased tumorigenicity as compared to p53 wildtype
cells [107–109]. Likewise, p19/ARF−/−, CNEP+/− mice developed more malignant sarco-
mas and lymphomas, indicating that aneuploidy can enhance tumorigenicity caused by
the loss of the p19/ARF tumor suppressor, which is involved in cell-cycle regulation [79].
Silk and colleagues demonstrated that the chromosome missegregation rate might be a
predictor of whether cells will survive or die due to aneuploidy as part of a PHSP [110].

Even though cancer hybrid cells may have successfully finished the first cell divisions,
this is no guarantee for further survival. Aneuploidy compared with an overall genomic
instability is a rather fragile cellular setting, and cancer hybrid cells have to undergo several
rounds of selection until a rather stable, but still aneuploid, karyotype has evolved. This
process as further part of a PHSP has been named “autocatalytic karyotype evolution” [111].
It runs in a unique manner in each evolving cancer hybrid cell, and neither the final
karyotype nor the final phenotype can be predicted. This is supported by single-cell
RNAseq analysis, with hybrid cells not only being distinct from parental cells, but also early
and later passage hybrids differing from each other [21], suggesting a continuously ongoing
PHSP. This selection process includes cell-death-induced elimination and convergence of
the initial hybrid cell population to a final chromosomal-stabilized subclone with additional
diversifications and the ability to survive (Figure 2).

In any case, the key questions in the context “cell fusion in human cancer” are still
whether both the frequency of cell-fusion events and the number of surviving tumor
hybrids would be high enough that they would really have an impact on tumor progression.
Overlapping donor and recipient alleles were found in metastases in melanoma cancer
patients with a bone-marrow transplantation (BMT) history, suggesting that both the fusion
and survival rates of tumor hybrids would be high enough for metastatic spreading [15,16].
Likewise, Y-chromosome positive/CD45+/CK+ circulating tumor hybrid cells were found
in the circulation of female pancreatic-ductal adenocarcinoma patients (with a former BMT
history), which were associated with a statistically significant increased risk of death [18].
Again, these data also indicate that both the frequency of fusion events and the number
of surviving hybrids would be high enough to display a significant impact on tumor
progression. Accordingly, cancer hybrid cells carrying a selection advantage can eventually
overgrow existing cancer-cell populations and contribute to tumor diversity by worsening
patient prognoses.

Thus, Miroshnychenko and colleagues recently demonstrated that fusion-mediated
recombination in tumors could enhance diversification and clonal richness (groups of can-
cer cells defined by unique mutational combinations) while also increasing the maximum
number of mutations observed within a single lineage [21]. Using mathematical models
and assuming a median fusion probability of 6.6 × 10−3 in vitro and 6.6 × 10−5 in vivo
concomitant with a genetic mutation rate of 10−6 to 10−3, the authors demonstrated that
fusion-mediated recombination together with mutations could have a profound impact
on somatic evolution. The resulting increase in tumor-tissue plasticity is accelerated by
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diversification of cancer-cell populations and the generation of rare mutational variants
capable of exploring larger swathes of adaptive landscapes [21]. Upon further in vivo
validation, these calculations suggested that despite a low probability of cancer-cell fusions
followed by significant reduction during a PHSP, the selection advantage of remaining
cancer hybrid cells could develop a significant impact on tumor progression and distal
metastases.

3. Therapeutic and Clinical Consequences of Cancer-Cell Fusion

In most cases investigated cancer-cell fusion has been associated with altered tumor
progression, with the assumption that cancer hybrids are more metastatic and resistant to
cancer therapy than the parental cells (for review see [112–119]). Moreover, fused cancer
cells can display tumor dormancy [120].

3.1. Therapy-Induced Polyploidization

Several studies suggested that cancer cells could escape from chemotherapeutic- or
radiation-induced DNA damage by developing therapy-induced senescence (TIS). This
could be further associated with therapy-induced polyploidization (TIP) resulting in the
formation of multinucleated polyploid giant cells carrying ten or more subnuclei and mi-
cronuclei [121–130]. Kaur and colleagues observed the origin of senescent multinucleated
and giant cells after radiation and assumed that such polyploid cells were formed through
radiation-induced homotypic cell fusions [130]. It was postulated that TIS/TIP cancer
cells could gain stemness properties, such as an enhanced DNA repair capacity, which
would be beneficial to survive therapy-induced DNA damages [124]. TIP is most likely
attributed to endoreplication [123,126,129], whereby the underlying mechanisms of how
endoreplication is induced and controlled in therapy-treated cancer cells remain unclear.

Even though most TIS/TIP cells remain senescent for several weeks or ultimately
die, several studies indicated that this process is reversible and that polyploid can-
cer cells could depolyploidize (also termed “neosis” [129,131]). The reversibility of
TIS/TIP-mediated senescence leads to regained proliferative capacity of mononucleated
progenies [123,126,128,129,132] similar to previously described rejuvenation by retrodif-
ferentiation [133–135].

Depolyploidization/ Neosis of multinucleated polyploid giant cancer cells appears
different from the mitosis-like process of HST/PR [36,38,66]. Instead, proliferating mononu-
clear cells were rather derived from giant multinucleated polyploid cancer cells via nuclear
budding [123,129], whereby recent data of Bojko et al. suggested that doxorubicin-induced
senescent/polyploid MDA-MB-231 breast-cancer cells could also undergo asymmetric
cell divisions [128]. Likewise, some findings further indicated a possible link between
depolyploidization/ neosis and autophagy, whereby induction of autophagy might be a
cellular response to eliminate damaged DNA [128,136]. It remains to be elucidated whether
TIP cells could also enter an HST/PR pathway concomitant with possible induction of
aneuploidy and genomic instability (Figure 2).

3.2. Altered Tumor Functions with Cancer Stem/Initiating Cell-like Properties

Since fusion processes with reproducible fusogens and associated mechanisms ap-
pear limited and vary among distinct tumor types, cancer-cell fusion and a subsequent
PHSP reflect a random process. Due to HST/PR concomitant with optional induction of
aneuploidy, chromothripsis or an overall increased genomic instability, neither the sur-
vivability of the evolving cancer hybrids nor their ultimate phenotype can be predicted.
Accordingly, a PHSP also determines the functional outcome of surviving cancer hybrid
cells with respect to tumorigenicity. Despite most studies indicating increased malignancy
of hybrids compared to the parental cancer cells, multiple findings revealed that cancer
hybrid cells could also be less malignant or even non-malignant [21,137–140], which would
be a favorable outcome for tumor patients.
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Differential tumorigenicity has been observed in melanoma fusion, whereby two-
thirds of the cancer hybrid cells were more aggressive than the parental melanoma cells,
producing metastases sooner and in more mice. About one-third were less aggressive, and
some melanoma hybrid cells failed to initiate metastases [137]. Likewise, a significantly
reduced tumorigenicity of ovarian-cancer cells after fusion with MSC was observed [140].
Further in vivo studies revealed that spontaneous fusion events between neu+ breast cancer
cells and murine macrophages occurred without increased metastatic capabilities of cancer
hybrid cells [138]. In a human cell model, relatively high rates of cell fusions were observed
between human breast-cancer cells and cancer-associated fibroblasts. However, heterotypic
hybrids were not viable, which might be attributed to a dominant impact of CAFs’ intact
tumor-suppressor genes that would limit the proliferation of polyploid cells [21].

Nevertheless, a majority of cancer hybrid cells are more tumorigenic and more
metastatic than the parental cells, as demonstrated in a plethora of in vivo animal stud-
ies [18,21,24,26–29,32,45,70,97,137,141–154]. Gene-expression analysis of cancer hybrids
derived from murine macrophages and murine-transformed intestinal cells revealed that
hybrids retained transcriptome characteristics from both parental lineages while also de-
veloping an additional novel transcriptome profile, uniquely different from either parental
lineage [155] and known to be modulated in metastasis [155]. Spontaneous fusion of
transformed and tumorigenic, but not metastatic, IMR90 E6E7 RST fibroblasts with non-
transformed and neither tumorigenic nor metastatic IMR90 E6E7 fibroblasts developed
hybrids exhibiting metastatic capacities [32]. These findings further indicated that cell
fusion could change cancer-cell properties from non-metastatic to highly metastatic po-
tency. Hybrids from homotypic fusion of B16-F10 melanoma cells exhibited a significantly
enhanced lung metastasis capacity compared to parental B16-F10 melanoma cells [147],
suggesting that not only heterotypic but also homotypic cancer-cell fusion events could
have an impact on tumor progression and metastasis formation.

While these data show that cancer hybrid cells acquired new metastatic capacities
through cell fusion, it remains unclear how these findings can be matched to the cancer
stem/initiating cell (CS/IC) hypothesis. The underlying theory is based on the hierarchical
model of CS/IC within the tumor organization [156–158], assuming that only cancer cells
exhibiting CS/IC properties are capable of inducing primary tumor formation [159–161].
This also applies to metastatic lesions and recurrences, whereby only metastatic CS/IC
cells would be able to induce metastases [159] and recurrence CS/IC would cause cancer
relapses [113], respectively. According to this hypothesis, cancer hybrids must exhibit
CS/ICs properties.

An increased population of ALDH1+ stem-like cells was found in hybrids derived
from partially transformed non-tumorigenic human E6E7 IMR fetal lung fibroblasts and
fully transformed and tumorigenic RST IMR fetal lung fibroblasts, suggesting that the
hybrids contained a higher proportion of CS/ICs [152]. Likewise, it cannot be ruled out
that non-CS/ICs have fused with normal cells and that evolved hybrids have gained
stemness properties as a consequence of HST/PR concomitant with aneuploidy and
an overall genomic instability. This assumption would be in agreement with data re-
vealing that fusion of non-transformed cells could give rise to transformed and tumori-
genic hybrids exhibiting CS/IC properties [70,97,142]. Moreover, cancer cells could
also acquire CS/IC properties by fusion with stem cells as demonstrated in several
studies [22,26,29,44,143,144,162,163]. In more detail, gene expression analysis of hybrids
after fusion of lung-cancer cells with MSC revealed markedly increased expression lev-
els of the cancer stem-cell markers CD44 and CD133 and the overall stemness markers
Oct4, Nanog, Sox2, Kif4 and Bmi1, which supports the assumption that cancer cells may
acquire CS/IC properties through fusion with stem cells [26]. These lung cancer/MSC
hybrid cells exhibited a fibroblast-like appearance with an elongated shape, suggesting
that they may have undergone epithelial-to-mesenchymal transition (EMT) [26]. Several
studies proposed that partial EMT or a mixed epithelial/mesenchymal (E/H) phenotype
is associated with CS/IC properties [143,164–168]. In this context, Xu and colleagues
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demonstrated that hybrids derived from spontaneous fusion events between MSC and
human non-small-cell lung cancer (NSCLC) cell lines possessed an EMT phenotype and
stem-cell-like properties [29]. These hybrids were characterized by down-modulation of
E-Cadherin and up-regulation of Vimentin, α-smooth muscle actin and fibronectin as well
as elevated expression levels of the stem-cell marker CD133 and the overall stemness mark-
ers Oct4, Nanog, Bmi1, Notch1, Sox2 and ALDH1 [29]. In further studies, all hybrids that
were derived from human-breast epithelial cells exhibiting stem-cell properties and human
breast-cancer cells co-expressed Snail and Zeb1 as evaluated by Western blot analyses [22].
Both transcription factors are well-known EMT transcription factors [169] and could induce
and maintain a mixed E/M phenotype if co-expressed at a certain ratio [170].

In sum, an increasing body of evidence indicates that cancer hybrid cells could be more
tumorigenic and metastatogenic than the parental cells, suggesting cell fusion-mediated
acquisition of CS/IC properties. However, this does not address the findings for why, e.g.,
fusion of a cancer cell with a macrophage can result in a more metastatic cancer hybrid
cell. Possible explanations require a view beyond the CS/IC hypothesis, i.e., that part
of the remaining macrophage genome in the cancer hybrid cells likely enables them to
disseminate from the primary tumor or to extravasate to distant organ sites. Alternatively,
this phenomenon reflects rather an overall cell-fusion-induced genomic instability in cancer
hybrid cells concomitant with a PHSP-regulated formation of multiple individual cancer
hybrid clones, each exhibiting a unique phenotype with unique properties.

3.3. Altered Therapeutic Responsiveness of Cancer Hybrid Cells

In accordance with a more metastatic phenotype, cell fusion has also been associ-
ated with increased drug resistance, suggesting that cancer hybrid cells could be less
sensitive or can even survive therapeutic approaches [23,30,33,130,171–177]. Despite the
above-mentioned CS/IC hypothesis limitations, these findings support that cancer hybrid
cells could gain CS/IC properties via cell fusion. Indeed, co-cultivation of prostate cancer
cells with skeletal or smooth muscle cells developed cancer hybrids with some CS/IC
characteristics, such as an anchorage-independent growth, elevated CD133 expression,
and drug resistance to doxorubicin and cisplatin [33]. Stem-cell-like cancer hybrid cells
derived from human breast-cancer cells after fusion with human-breast epithelial cells or
from murine bone-marrow-derived cells after fusion with mouse-mammary carcinoma
cells, respectively, exhibited a markedly increased chemoresistance [174,176]. Moreover,
hybrids from SSC25 squamous cell carcinoma with MSC were highly tumorigenic and
demonstrated elevated resistance to paclitaxel compared to the parental SSC25 cells [175].
Likewise, hybrids of M2-macrophage fusion with human MCF-7 breast cancer cells were
more resistant to radiation than parental MCF-7 cells [23]. These radiation-treated hybrids
developed an increased survival fraction concomitant with an enhanced colony-formation
ability. Moreover, these hybrids exhibited less DNA-damage, suggesting that a PHSP gener-
ated a subpopulation of radioresistant cells with enhanced DNA-repair capacity [23]. Yang
and colleagues demonstrated that doxorubicin was capable of promoting homotypic cell
fusion that was accompanied by doxorubicin resistance of MCF-7 breast-cancer cells [172].
This indicates that certain anti-cancer strategies themselves can be a trigger for cell fusion
and generation of resistant hybrids. This assumption is in agreement with findings that
senescent multinucleated giant cells were formed via radiation-induced homotypic cell
fusions and expressed high levels of senescence-associated proteins and pro-survival sig-
nals [130]. These radiation-induced homotypic hybrids escaped senescence and instead
of building multiple spindle poles during mitosis, they overcame mitotic catastrophe.
Accordingly, these multinucleated giant cells underwent normal cytokinesis by forming a
mononucleated relapse population [130], which is in accordance with the above-described
phenomenon of therapy-induced polyploidization.

Together, these data indicate that fusion-derived cancer hybrid cells could develop
more resistance to radiation and chemotherapy, suggesting adapted survival strategies
representing the seeds for tumor recurrences. It remains unclear whether a more resis-
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tant cancer-hybrid phenotype is either attributed to acquisition of CS/IC properties or
due to cell-fusion-induced aneuploidy. However, these processes may not be mutually
exclusive. As discussed above, some studies suggested that cancer cells could acquire
CS/ICs properties via cell fusion [22,26,29,44,143,144,162,163]. If so, cell-fusion-derived
CS/ICs would not only be more tumorigenic and metastatogenic, but should also acquire
an increased resistance against radiation and cytotoxic compounds according to the de-
fined characteristics of cancer stem cells [160,161,178–180]. Likewise, aneuploidy/genomic
instability has been assumed as a mechanism for stress-induced adaptation processes of
cells [73,75,181–184], suggesting that therapy-resistant cell-fusion-derived cancer hybrids
are related to this phenomenon. At the least, there is a clear correlation between cell fusion,
aneuploidy/genomic instability and therapy resistance of cancer hybrid cells.

4. Perspectives of Cancer-Cell Fusion—Early Detection of Potential Fusion Markers

An increasing body of evidence indicates that cell-fusion events in human tumors
have an impact on tumor progression. Hence, detection of fusion markers in cancer
biopsies/blood samples might be helpful for determining fusion rates. A progressively
increasing number of circulating cancer hybrid cells can serve as an indication for their
putative impact on disease progression and overall outcome of the patients. Likewise,
inhibition of cell fusion could be a means to reduce tumor-tissue diversity and acquired
radio-/chemoresistance, thereby increasing tumor susceptibility to focused therapeutic
approaches. Due to the heterogeneity of intra-tumoral fusion mechanisms, however,
knowledge about common fusogenic factors and required physico–biochemical conditions
remain scarce.

Only a few human fusogens including syncytin-1 and TNF-α have been identi-
fied so far to be associated with cell fusion in certain human tumors and cancer cell
lines [54,56,57,59], while their impact on tumor progression is different. For example, data
from Strick et al. and Yu et al. suggested that syncytin-1-induced fusion promotes tumor
progression [56,57], whereas Larsson et al. demonstrated that syncytin-1 expression in
breast tumors was associated with a better prognosis [55]. This necessitates the identifica-
tion of further reliable fusion markers and their putative role in the overall prognosis of
cancer patients.

Expression of pan-hematopoietic markers, such as CD45, and/or macrophage epitopes
on cancer cells has also been suggested as putative cell-fusion markers [18–20,44,46–48].
However, hematopoietic lineage epitopes on cancer cells can be attributed to genomic
instability, raising concerns about concluding that such cells were exclusively derived from
cancer-cell fusions. Thus, detection of potential fusion markers in human cancers would be
helpful for a more thorough tumor characterization and suitable for patient outcomes.

5. Conclusions

Intra-tumoral cell fusion and the generation of cancer hybrid cells represent a com-
plicated multistep program that predominantly appears to be tumor-type- and fusion
partner-specific. Thus, an overall selective therapeutic targeting does not appear realistic
to date given the still-limited knowledge about this multifactorial process. An alternative
idea considers the potential use of cancer-cell fusion partners as a Trojan horse to deliver
anticancer cargo to the tumor tissue.

For example, it is well recognized that MSC are recruited to tumor tissues and closely
interact with cancer cells, eventually leading to fusion, which influences tumor progression,
metastatic behavior and drug resistance [35,51,185–190]. Because of these special character-
istics and the ability to hybridize with cancer cells [26,146,153,154,175,191] MSC or their
modified products such as drug-loaded MSC-derived exosomes [192–197] could be used to
preferentially and directly target primary and metastatic tumor tissues [198–200]. While pre-
liminary in vitro and in vivo studies represent a promising therapeutic approach [192,193],
a sustainable success of this option for future anti-tumor treatment strategies remains to be
elucidated.
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BMT bone marrow transplantation
CS/IC cancer stem/initiating cell
EMT epithelial-to-mesenchymal transition
HGT/LGT horizontal gene transfer/lateral gene transfer
HST heterokaryon-to-synkaryon transition
MSC mesenchymal stroma-/stem-like cells
PHPP pre-hybrid preparation process
PHSP post-hybrid selection process
PR ploidy reductions
PGCCs polyploid giant cancer cells
TNF-α tumor necrosis factor-α
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