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Abstract

Introduction Spontaneous reports of suspected adverse

drug reactions (ADRs) can be analyzed to yield additional

drug safety evidence for the pediatric population. Signal

detection algorithms (SDAs) are required for these analy-

ses; however, the performance of SDAs in the pediatric

population specifically is unknown. We tested the perfor-

mance of two SDAs on pediatric data from the US FDA

Adverse Event Reporting System (FAERS) and investi-

gated the impact of age stratification and age adjustment on

the performance of SDAs.

Methods We tested the performance of two established

SDAs: the proportional reporting ratio (PRR) and the

empirical Bayes geometric mean (EBGM) on a pediatric

dataset from FAERS (2004–2012). We compared the per-

formance of the SDAs with a published pediatric-specific

reference set by calculating diagnostic test-related statis-

tics, including the area under the curve (AUC) of receiver

operating characteristics. Impact of age stratification and

age-adjustment on the performance of the SDAs was

assessed. Age adjustment was performed by pooling

(Mantel-Hanszel) stratum-specific estimates.

Results A total of 115,674 pediatric reports (patients aged

0–18 years) comprising 893,587 drug–event combinations

(DECs) were analysed. Crude values of the AUC were

similar for both SDAs: 0.731 (PRR) and 0.745 (EBGM).

Stratification unmasked four DECs, e.g., ‘ibuprofen and

thrombocytopenia’. Age adjustment did not improve

performance.

Conclusion The performance of the two tested SDAs was

similar in the pediatric population. Age adjustment does not

improve performance and is therefore not recommended to

be performed routinely. Stratification can reveal new asso-

ciations, and therefore is recommendedwhen either drug use

is age-specific or when an age-specific risk is suspected.

Key Points

Detection of drug safety signals in children, who

represent a heterogeneous population, where age

may be a confounder or effect modifier, is an area in

which only limited research has been carried out.

The signal detection algorithms (SDAs) showed

good performance on pediatric data and can be

utilized for pediatric signal detection.

Age adjustment did not improve the performance of

the SDAs.

Age stratification showed that some signals may be

detected only in specific pediatric age groups. For

routine surveillance, checking for effect modification

across age strata may generate useful information.

Osemeke U. Osokogu and Caitlin Dodd contributed equally to this

article.

Electronic supplementary material The online version of this
article (doi:10.1007/s40264-016-0433-x) contains supplementary
material, which is available to authorized users.

& Caitlin Dodd

c.dodd@erasmusmc.nl

1 Department of Medical Informatics, Erasmus University

Medical Center, Rotterdam 3015 CN, The Netherlands

2 Department of Pediatric Pharmacology and
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1 Introduction

Spontaneous reports of suspected adverse drug reactions

(ADRs) can yield important information regarding the

safety of drugs [1]. Usually, such reports are screened for

emerging safety issues by applying statistical methods

called signal detection algorithms (SDAs). Current SDAs

compare the reporting rate of a drug–event combination

(DEC) of interest with the expected count calculated from

the overall reporting rate of that reaction in the entire

database [1, 2]. Although SDAs are routinely applied to

reports pertaining to the general population, the perfor-

mance of SDAs in the pediatric population specifically has

not been investigated to date. Compared with adults, the

pattern of drug use and occurrence of ADRs in pediatric

patients may differ [3–5] since the latter population com-

prises a heterogeneous group of subjects at various stages

of development with age-dependent organ maturation and

hormonal changes [6]. Several studies investigating ADR

reporting in children have identified different reporting

patterns in this population than in adults [3, 5, 7, 8]. Since

ADRs may be age specific, adjustment for age seems to be

a logical step when investigating pediatric ADRs and has

been advocated by some researchers [4]. The major aim of

stratification is verification of confounding and effect

modification which otherwise may mask true signals [9].

Confounding by age can be dealt with by stratifying for age

categories and pooling stratum-specific estimates. How-

ever, if age-specific estimates differ (in case of effect

modification) pooling/adjustment should not be done;

instead, a verification of each individual stratum should be

performed. While stratification has been investigated by

some researchers [10], adjustment is routinely imple-

mented in some Bayesian but not in frequentist SDAs

[11–13]. Few studies have systematically addressed the

impact of age stratification or adjustment and the results are

contradictory [9, 14, 15].

Within the context of the Global Research in Pediatrics

(GRiP) Network of Excellence [16], we aimed to evaluate

the performance of two well-established SDAs in the

pediatric population and determine if age stratification or

adjustment impacts signal detection in this population.

2 Methods

2.1 Data Source

Data were retrieved from the publicly available version of

the US FDA Adverse Event Reporting System (FAERS),

which comprises spontaneous reports of suspected ADRs

submitted by manufacturers, healthcare professionals, and

patients. FAERS is one of the largest repositories of

spontaneous reports in the world [17, 18]. In this study, we

analyzed reports received from the first quarter of 2004

through to the third quarter of 2012.

For performance analysis, only reports of ADRs occur-

ring in children and adolescents (\18 years of age) were

retained. The ADRs in FAERS are coded according to the

Medical Dictionary for Regulatory Activities (MedDRA�)

[19].

To improve the quality of the dataset, we excluded

reports with missing age, the main variable in our study.

Also, reports with reported age equal to zero and with a

MedDRA� preferred term indicating prenatal exposure

were removed, as these imply in utero drug exposure and

were therefore not relevant for our study. We minimized

the number of duplicates (i.e., the same report submitted by

different reporters) by applying an algorithm based on case

identifier, report identifier, and drug and event names. For

multiple reports (i.e., the same report is reported at a later

time, with additional and updated information) [20], the

most recent (and most updated) report was retained for

analysis.

As drug names included in FAERS are not standardized,

a harmonization procedure was implemented. Briefly, this

consisted of removing superfluous characters and applying

a generalized edit distance matching algorithm [21] to map

free-text drug names to synonyms and finally to the cor-

responding active substance and World Health Organiza-

tion–Anatomic Therapeutic Chemical (WHO-ATC) code.

In this study, only those drugs reported as the primary or

secondary suspect in the FAERS database were retained for

analysis. Analysis was performed at DEC level, meaning

that within each report, every suspect drug was combined

with all reported ADRs. Thus, one report may comprise

more than one DEC.

2.2 Signal Detection Algorithms (SDAs)

We tested two well-established SDAs that are routinely

used by various national and international regulatory and/

or research institutions for signal detection: the propor-

tional reporting ratio (PRR) [2] and the empirical Bayes

geometric mean (EBGM) [13] (see Table 1). We also

tested count of reports as a positive control. In order to

define a signal of disproportionate reporting [22, 23], we

selected thresholds that are currently applied in routine

practice. We applied the SDAs at the end of the study

period, when the maximum number of reports had accrued.

2.3 Performance Assessment Measures

The performance of the SDAs was assessed by calculating

diagnostic test-related statistics, namely specificity and
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sensitivity, positive predictive value (PPV), and negative

predictive value (NPV) [24, 25]. Sensitivity is the ability of

the method to identify true signals correctly, while speci-

ficity is the ability to exclude false signals correctly. PPV

and NPV are posterior probabilities, describing how many

of the signals classified as positive or negative are indeed

correctly classified [24, 25].

Since diagnostic test-related statistics are dependent on

the threshold choice, their individual comparison has only a

limited, albeit practical, value. Therefore, we also esti-

mated the area under the curve (AUC) of receiver operating

characteristics (ROC) in order to compare the performance

of the SDAs [26]; the AUC incorporates both sensitivity

and specificity across all the possible values for a certain

SDA. Calculation of AUCs was conducted by varying only

the point estimate of each SDA and did not take into

account the other components of the SDA.

For the purpose of performance evaluation, a previously

constructed pediatric-specific GRiP reference set of posi-

tive and negative DECs was used. It consists of 37 positive

and 90 negative DECs and includes drugs that are admin-

istered to children and events that are regarded as important

for this population. The positive DECs are those that were

confirmed to occur based on evidence from Summary of

Product Characteristics (SmPC) and the published litera-

ture, while the negative DECs are those that could not be

confirmed at the time of literature review by either the

SmPC or the published literature. For a full description of

the reference set, see Osokogu et al. [27].

2.4 Stratification and Adjustment for Age

The impact of age stratification and adjustment on the

performance of the SDAs was investigated. First, we

checked for possible effect modification across age strata,

by stratifying the data according to age categories defined

by the International Conference on Harmonization (ICH)

[28] and calculating stratum-specific measures for each

SDA. Secondly, we calculated age-adjusted estimates for

PRR and EBGM by combining the stratum-specific esti-

mates in an overall measure [29]. The performance of each

SDA was reassessed after adjustment.

2.5 Statistical Analysis

Differences in the performance (AUC) of each SDA, crude

versus age-adjusted and crude versus count of reports (positive

control) were tested using paired chi-squared tests. Stratum-

specific contingency tables were tested for homogeneity using

the Breslow Day Tarone test [30]. The Mantel-Haenszel

approach was used for pooling and calculating age-adjusted

estimates [29]. The lower boundof theEBGM95 %confidence

interval (EBGM05)was calculated using the lower bound of the

95 % confidence interval (EB05) for each stratum and then

computing a Mantel-Haenszel average based on Zeinoun et al.

[31]. Statistical significance was defined by p\0.05.

Analysis was performed using SAS� software version

9.2 (SAS Institute, Cary, NC, USA). Graphs were made in

SAS� software version 9.2 and R version 3.1.3.

3 Results

3.1 Descriptive Analysis

For the study period (first quarter of 2004 through to the

third quarter of 2012), a total of 4,285,088 reports were

retrieved from FAERS. After eliminating duplicates

(n = 43,125) and removal of adult reports (n = 2,686,530)

and reports with missing age (n = 1,419,524) or age equal

to zero with a MedDRA� preferred term indicating pre-

natal exposure (n = 20,235), 115,674 reports correspond-

ing to 893,587 individual DECs were retained for analysis

of pediatric spontaneous reports (see Table 2).

The total number of pediatric reports that included the

investigated drugs and ADRs from the reference set can be

observed in Fig. 1, which also shows data regarding adults

(for comparison purposes). The number of children

Table 1 Signal detection algorithms and corresponding thresholds applied

Signal detection algorithm Applied thresholda Institution where the method and the respective

threshold is currently used

Number of reports C5 NA

PRR PRR lower bound 95 % CI C1 and n C 5 reports European Medicines Agency (EMA)

EBGM EB05 CI C1.8, n C 3 reports, and EBGM C2.5 Medicines and Healthcare products

Regulatory Agency (MHRA)

CI confidence interval, EB05 lower bound of the 95 % confidence interval, EBGM empirical Bayes geometric mean, NA not available, PRR

proportional reporting ratio
a Thresholds were obtained from Candore et al. [23]
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exposed to the drugs of interest, for whom any of the

investigated ADRs was reported, varied from 26 patients

(for praziquantel) to 7535 patients (for ibuprofen), with a

median of 781 patients exposed across all drugs. The

number of events of interest in FAERS ranged from 164

reports (ventricular arrhythmia) to 14,777 (anaphylaxis),

with a median of 1004 reports across all events. For a more

detailed description of reports counts please refer to Elec-

tronic Supplementary material Table 1.

3.2 Overall Performance of SDAs

Both SDAs showed high specificity and low sensitivity.

They both had similar specificity values (PRR: 83.8 % and

EBGM: 91.9 %), while sensitivity was lower for EBGM

than for PRR (17.2 vs. 37.9 %). The NPV and PPV were

similar for both SDAs. When we applied the threshold-

independent (AUC-based) approach, the tested SDAs

showed similar performance in the pediatric population,

although the AUC value for EBGM (0.745) was slightly

higher than for PRR (0.731). None of the SDAs performed

better than the simple report count (AUC = 0.634;

p = 0.27 for PRR and p = 0.14 for EBGM)

3.3 Stratification and Adjustment for Age and its

Impact on Performance

Upon calculating SDA values per age stratum and testing

for heterogeneity across strata, we observed effect modi-

fication for some associations. Some false negatives (pos-

itive DECs that failed to be highlighted as signals when

analyzing data pertaining to the entire pediatric population)

were unmasked in some strata. Four DECs were unmasked

in total: ibuprofen–thrombocytopenia and isoniazid–sei-

zure (by PRR) and clarithromycin–erythema multiforme

and ibuprofen–erythema multiforme (by EBGM). Con-

versely, ‘ibuprofen–acute liver injury’, also a positive

DEC, was highlighted when we analyzed data pertaining to

the entire pediatric population, but it became clear after

stratifying that this DEC was highlighted only in older

children (adolescents) and not in younger children (see

Fig. 2). For an overview of SDA values across age strata

and results of heterogeneity tests please refer to Electronic

Supplementary Material Figures 1A and 1B.

We evaluated the performance of the methods within

individual age strata (see Table 3). On average, perfor-

mance of the SDAs was lower within age strata than in the

entire pediatric population and performance improved with

increasing stratum size. For infants and neonates, the per-

formance was very low, not better than chance (p[ 0.5 for

both SDAs). The adolescent group exhibited the best per-

formance, which was similar to the overall performance.

After adjusting for age by pooling the stratum-specific

estimates, the performance of the SDAs decreased,

although not significantly (see Fig. 3; crude vs. adjusted

AUC for PRR: 0.731 vs. 0.688, p = 0.267; crude vs.

adjusted AUC for EBGM: 0.745 vs. 0.683, p = 0.216).

4 Discussion

In this study, we have demonstrated that age stratification

for detection of drug safety signals in children may unmask

some signals that do not appear in either crude or adjusted

analysis. Adjustment for age does not improve perfor-

mance of the PRR and EBGM.

For the investigated events, similar reporting patterns

were observed for children and adults, while the investi-

gated drugs appeared to have different reporting patterns

(see Fig. 1). Different drug-related reporting patterns in

children versus adults have been reported previously [5].

Consequently, reported DECs for children may differ from

adults [3, 5], underlining the need for pediatric-specific

approaches to signal detection, especially when we con-

sider that reported drugs may vary by age group even

within the pediatric population [3, 32].

Overall, the PRR and EBGM showed good perfor-

mance, although results were slightly lower than results

reported on other (not pediatric-specific) reference sets

[32, 33]. The similarity in performance between PRR

and EBGM is in accordance with recent results from the

PROTECT (Pharmacoepidemiological Research on

Outcomes of Therapeutics by a European Consortium)

project [23]. The fact that the performance (based on

AUC) of PRR and EBGM was not statistically signifi-

cantly better than simple report count may be due to the

lack of power. Within age strata, performance seemed to

correlate with stratum size: the poorest results were

observed for infants and neonates (the smaller groups),

slightly improving for children, while the best perfor-

mance was observed for adolescents, the age stratum

with the highest number of tested DECs. Decrease in

power due to fewer reports and therefore DECs may

account for this observation. The fact that we used lower

bounds of confidence intervals for signaling instead of

point estimates might have exacerbated the influence of

sample size on the results, since smaller strata will have

Table 2 Description of pediatric reports by age categories

Age group Number of reports [n (%)]

Neonates: 0–27 days 5091 (4.40)

Infants: 28 days–23 months 12,566 (10.86)

Children: 2–11 years 49,982 (43.21)

Adolescents: 12–17 years 48,035 (41.53)

Total 115,674 (100)
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higher variability. In neonates and infants for whom

expected counts were difficult to calculate because of

few reports, we observed that simple report counts per-

formed similar or even better than the SDAs and might

be an alternative to commonly used SDAs. The fact that

simple report count performed better than SDAs may

have been because the reference set comprised known

DECs (which in turn may have influenced reporting)

rather than emerging safety issues, a hypothesis pro-

posed by Norén et al. [34].

Inspection of SDA values across child-specific strata

(age stratification) revealed some heterogeneity in esti-

mates, pointing to some effect modification. For example,

‘ibuprofen–thrombocytopenia’ was found as a signal in the

Fig. 1 Count of reports in the

pediatric and adult population

for the investigated adverse

drug reactions (a) and drugs (b),
cumulatively for the period

quarter 1 2004 to quarter 3

2012. The number of reports in

children is represented by bars

and plotted on the left axis,

while the number of reports in

adults is represented by the red

line and plotted on the right

axis; reports with missing age or

age = 0 were excluded. Only

reports mentioning any of the

drugs or events in the reference

set were considered
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adolescents’ group but not detected in the entire pediatric

population or the younger age categories. This suggests

that age-specific SDA calculations are sometimes needed,

rather than age-adjusted SDA estimates. The age-adjusted

estimates did not improve performance; in fact, even PPV

unexpectedly decreased. Simulation studies have shown

that when adjusted for strata, Bayesian methods such as

EBGM tend to be underestimated when there are sparse

strata [15]; this was also the case in our study. Previous

studies in adults show contradictory results, with some

showing a beneficial effect [9] while others did not [15].

The reason for our finding is not entirely clear; a possible

explanation is that age is not a strong confounder for the

investigated DECs. Also, the method of weighting (Mantel-

Haenszel approach) may have played a role since more

weight was assigned to age groups with more reports

(adolescents and children). This may have masked signals

occurring in age groups with fewer reports.

The limitations of data mining in FAERS include those

inherent to spontaneous reporting databases: under-report-

ing, lack of denominator data and control group, biases in

reporting, as well as missing and poor-quality data [35].

Missing information regarding age substantially reduced

the study sample size since we could not determine whe-

ther these reports described patients aged less than 18 years

old. While these biases are well acknowledged and have a

definite impact, they cannot be completely avoided.

Compared with adults, there are fewer reports and different

reporting patterns for children [3, 36, 37], which may

complicate signal detection in the pediatric population.

Evaluating performance of SDAs is a constant challenge

due to lack of standard methodologies, imperfect reference

standards, and uncertainty regarding the best thresholds

(see the Electronic Supplementary Material for measures of

performance using alternative thresholds). Some of the

drugs and events in the reference set are specific to one age

group within pediatrics and this is obvious in Fig. 1, even

though the reference set was designed to be relevant for the

entire pediatric population. We acknowledge that the ref-

erence set used, although specifically constructed for this

p-values were calculated with Breslow Day Tarone test for homogeneity

p<0.0001 p=0.001 p=0.339

Fig. 2 Variation of proportional reporting ratio and empirical Bayes geometric mean estimates across pediatric specific strata—selected

examples. EBGM empirical Bayes geometric mean, PRR proportional reporting ratio, SDA signal detection algorithm

Table 3 Performance of signal detection algorithms across age strata

Age groups and signal

detection algorithms

Size of the age stratum

(number of reports)

AUC

Neonates 5091

Number of reports 0.625

EBGM 0.600

PRR 0.65

Infants 12,566

Number of reports 0.667

EBGM 0.548

PRR 0.554

Children 49,982

Number of reports 0.654

EBGM 0.698

PRR 0.649

Adolescents 48,035

Number of reports 0.698

EBGM 0.771

PRR 0.718

Entire pediatric population

Number of reports 115,674 0.634

EBGM 0.746

PRR 0.733

AUC area under the curve, EBGM empirical Bayes geometric mean,

PRR proportional reporting ratio
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purpose, does not include all the ADRs that are highly

specific for pediatrics. This highlights the need for pedi-

atric-specific approaches to signal detection, accounting for

not just the entire pediatric population but also the different

age strata within pediatrics. Still, the reference set captures

various drug use and ADRs patterns [38] and is currently

the only available pediatric-specific reference set. The

thresholds applied to define a signal were obtained from

previous publications and other cut-off points may generate

better results; further research on pediatric-specific

thresholds should be encouraged.

5 Conclusion

Our study revealed that age adjustment did not improve the

performance of the SDAs. However, stratification revealed

some variation in the values of SDAs across strata (effect

modification) and inspection of stratum-specific estimates

might sometimes yield useful information during routine

surveillance.
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SDA Sensitivity Specificity PPV NPV AUC p-valueb

Number of reports  58.62 67.57 58.62 67.57 0.634 reference

PRR 37.93 83.78 64.71 63.27 0.731 0.266
EBGM 17.24 91.89 62.50 58.62 0.745 0.144
After age 
adjustment a

(reference-
crude 
PRR/EBGM)

PRR 34.48 86.49 66.67 62.75 0.688 0.267
EBGM 10.34 97.30 75.00 58.06 0.683 0.216

SDA-signal detection algorithm; PRR= Proportional reporting ratio; EBGM= Empirical Bayes Geometric Mean; AUC=area 
under the curve; PPV=positive predictive value; NPV-negative predictive value
a adjusted PRR/ROR values calculated by combining the individual estimates from each age stratum into one measure 
according to the Mantel-Haenszel approach.
b paired chi-square test 

Fig. 3 Performance of signal

detection algorithms within the

entire pediatric population
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