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Abstract
In network meta-analysis (NMA), treatments can be complex interventions, for exam-

ple, some treatments may be combinations of others or of common components. In

standard NMA, all existing (single or combined) treatments are different nodes in the

network. However, sometimes an alternative model is of interest that utilizes the infor-

mation that some treatments are combinations of common components, called compo-

nent network meta-analysis (CNMA) model. The additive CNMA model assumes that

the effect of a treatment combined of two components A and B is the sum of the effects

of A and B, which is easily extended to treatments composed of more than two com-

ponents. This implies that in comparisons equal components cancel out. Interaction

CNMA models also allow interactions between the components. Bayesian analyses

have been suggested. We report an implementation of CNMA models in the frequen-

tist R package netmeta. All parameters are estimated using weighted least squares

regression. We illustrate the application of CNMA models using an NMA of treat-

ments for depression in primary care. Moreover, we show that these models can even

be applied to disconnected networks, if the composite treatments in the subnetworks

contain common components.

K E Y W O R D S
combination therapies, complex interventions, disconnected networks, multiple interventions, network

meta-analysis

1 INTRODUCTION

Meta-analysis has evolved to a core method for summarizing evidence from multiple studies in medicine and healthcare. Net-
work meta-analysis (NMA) is an extension of pairwise meta-analysis to compare three or more treatments for a given medical
condition, based on combining information from multiple existing comparisons among subsets of the treatments (Bucher, Guy-
att, Griffith, & Walter, 1997; Higgins & Whitehead, 1996; Lu & Ades, 2006, 2009; Lu, Welton, Higgins, White, & Ades, 2011;
Lumley, 2002; Salanti, 2012).

Many healthcare treatments are complex interventions, for example, some treatments may be combinations of others or consist
of common components. There have been attempts to define complexity for health interventions and many definitions have been
suggested. Complex interventions are usually defined as consisting of several possibly interacting components, but definitions
also described complex interventions that might require a large amount of organizational level, a large number and variability
of outcomes, or a high degree of flexibility and tailoring of the interventions (Craig et al., 2008; Hawe, Shiell, & Riley, 2004;
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Kühne, Ehmcke, Härter, & Kriston, 2015; Petticrew, 2011; Petticrew et al., 2013). In this paper, we will concentrate on only one
aspect, that of multicomponent interventions.

Welton, Caldwell, Adamopoulos, and Vedhara (2009) were the first authors who developed models for NMA of multicompo-
nent interventions by considering their components. They classified psychological interventions for adults with coronary heart
disease into five components of intervention (usual care only, educational, behavioral, cognitive, and support) and considered
further 14 treatments that were combinations of two, three, or four of these basic components (Welton et al., 2009, table 2 there).

A standard approach to include multicomponent treatments in an NMA considers each unique combination of basic com-
ponents as a distinct node in the network. An alternative approach aims at splitting each intervention into its components.
Melendez-Torres, Bonell, and Thomas (2015) introduced a different distinction between “building clinically meaningful units”
and “components and dismantling.” A “clinically meaningful units” (or lumping, Caldwell & Welton, 2016) approach means
combining a number of similar treatment modalities (e.g., all drugs within a class of substances, or a set of psychotherapies
thought similar) into one treatment node. By contrast, a “components and dismantling” approach would seek to disentangle the
common components of different treatments to identify their contribution to the effect of the combined intervention.

In this paper, we focus on the latter approach. Another example of data of this type was given by Mills, Druyts, Ghement,
and Puhan (2011); Mills, Thorlund, and Ioannidis (2012) who presented an example of a network of 10 treatments for treatment
of chronic obstructive pulmonary disease (COPD) (Mills et al., 2012, fig. 1 there). These 10 treatments consist of five compo-
nents: inhaled corticosteroid (ICS), long-acting betaagonist (LABA), long-acting muscarinic agent (LAMA), phosphodiesterase-
4 inhibitor (PDE4-i), and placebo, where placebo may be seen as a potentially inactive reference treatment. More recently,
multicomponent analyses were presented by Caldwell and Welton (2016), Freeman et al. (2018), and Pompoli et al. (2018).

Bayesian approaches to analyze data of this type have been suggested (Welton et al., 2009) and applied (Freeman et al.,
2018; Mills et al., 2011, 2012; Madan et al., 2014; Pompoli et al., 2018), also in a simulation study (Thorlund & Mills, 2012).
A review of methods for meta-analysis of complex health interventions is found in Tanner-Smith and Grant (2018). A more
general overview is given by Higgins et al. (2019).

The objective of this paper is to introduce a frequentist analysis approach to component network meta-analysis (CNMA),
which we implemented in the open source R package netmeta (R Core Team, 2018; Rücker, Krahn, König, Efthimiou, &
Schwarzer, 2019). The paper is structured as follows. In Section 2, we introduce our data example, a real data set from a published
NMA. In Section 3, after introducing the standard frequentist model for NMA in Subsection 3.1, we present an additive CNMA
model (Subsection 3.2), show how it can be compared to the standard NMA model (Subsection 3.3), introduce interaction CNMA
models (Subsection 3.4), and finally explain how CNMA models can be applied to connect disconnected networks (Subsection
3.5). The results for the example are shown in Section 4, and the paper ends with a discussion, Section 5.

2 DATA

In this paper, we will use a data set from an NMA of 22 treatments of depression in primary care (Linde, Rücker, Schneider, &
Kriston, 2016), based on 100 trials in total with 21,298 patients in 217 treatment arms (79 two-arm trials, 13 three-arm trials,
and one four-arm trial). The primary outcome was response after treatment (yes/no), defined as a reduction from baseline by
at least 50% on a depression scale. The data set using the odds ratio (OR) as effect measure is publicly accessible from the R
package netmeta (Rücker et al., 2019, data set “Linde2016”).

The interventions comprised both medical and psychological treatments, also in combination, including placebo and usual care
(UC) (Linde et al., 2016, fig. 1 there). Pharmacological interventions were tricyclic antidepressants (TCA), selective serotonin
reuptake inhibitors (SSRI), serotonin-noradrenaline reuptake inhibitors (SNRI), noradrenaline reuptake inhibitors (NRI), low-
dose serotonin (5-HT2) antagonists and reuptake inhibitors (low-dose SARI), noradrenergic and specific serotonergic agents
(NaSSa), reversible inhibitors of monoaminoxidase A (rMAO-A), hypericum extracts, and an individualized drug. Psychological
interventions were cognitive behavioral therapy (CBT; 4 forms: face-to-face CBT, remote therapist-led CBT, guided self-help
CBT, and no or minimal contact CBT), face-to-face problem-solving therapy (PST), face-to-face interpersonal psychotherapy,
face-to-face psychodynamic therapy, and “other face-to-face therapy.” Combination therapies were face-to-face CBT + SSRI,
face-to-face PST + SSRI, and face-to-face interpersonal psychotherapy + SSRI.

3 METHODS

We propose the following procedure. First, a standard NMA is conducted where each possible combination of components is
considered as a separate intervention and all existing single and combination treatments are different nodes in the network. Such
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T A B L E 1 Hypothetical data

Study Arm 1 Arm 2 Treatment effect Standard error
Study 1 𝐴 𝐴 + 𝐵 𝑑1 SE(𝑑1)
Study 2 𝐴 𝐴 + 𝐵 + 𝐶 𝑑2 SE(𝑑2)
Study 3 𝐴 + 𝐵 𝐵 + 𝐶 𝑑3 SE(𝑑3)
Study 4 𝐴 + 𝐵 𝐴 + 𝐵 + 𝐶 𝑑4 SE(𝑑4)
Study 5 𝐵 + 𝐶 𝐴 + 𝐵 + 𝐶 𝑑5 SE(𝑑5)
Study 6 𝐴 Placebo 𝑑6 SE(𝑑6)

a standard NMA is known as a full interaction model (Welton et al., 2009, Model 4). Second, based on combining the additive
model with the network structure we obtain a model that describes how the observed treatment contrasts are combined from the
components (Welton et al., 2009, Model 2). We show how the parameters of the additive CNMA model can be estimated. As
a result, we obtain estimates for (a) the net effects of the components, compared to a reference treatment such as placebo; (b)
the treatment effects, which are expressed as additive combinations of the components, again compared to the reference; and (c)
estimates for all possible comparisons in the network, based on the network structure.

3.1 The standard NMA model
We follow the frequentist approach introduced by Rücker (2012). Let 𝑚 be the number of pairwise treatment comparisons. In
the special case of only two-arm studies, this corresponds to the number of studies. More generally, each multi-arm study with 𝑝

arms contributes 𝑝(𝑝 − 1)∕2 comparisons and we have to adjust for multiarm studies (Rücker & Schwarzer, 2014). Accordingly,
𝑚 is typically greater than the number of studies. Suppose we have 𝑛 treatments, and let the 𝑛 × 1 vector 𝜽 represent the 𝑛

treatment-based (true) responses. We have data from 𝑚 pairwise comparisons, denoted by 𝐝 = (𝑑1, 𝑑2,… , 𝑑𝑚) with associated
standard errors SE(𝑑𝑗), 𝑗 = 1,… , 𝑚. The 𝑑𝑗 may have been measured as mean differences, log risk ratios, log odds ratios, or
other common effect measures. As usual in meta-analysis, we assume the standard errors known and fixed. The model is

𝐝 = 𝐗𝜽 + 𝝐, 𝝐 ∼ 𝑁(𝟎,𝚺), (1)

where 𝐗 is the design matrix describing the structure of the network and 𝚺 is a variance–covariance matrix. We may write this
model briefly 𝜹 = 𝐗𝜽 where 𝜹 denotes the vector of true parameters for the contrasts. From now on we will use this notation.

Let 𝐖 (the “weight matrix”) be a diagonal matrix of dimension 𝑚 × 𝑚 whose diagonal elements are weights (𝑤1,… , 𝑤𝑚).
For two-arm studies, the weights are the inverses of the observed variances, for multiarm studies they are assumed to be adjusted
as described in Rücker and Schwarzer (2014). We can estimate the true parameters 𝜹𝑛𝑚𝑎 as

�̂�
𝑛𝑚𝑎 = 𝐗(𝐗𝑇𝐖𝐗)+𝐗𝑇𝐖𝐝,

where (𝐗𝑇𝐖𝐗)+ is the Moore–Penrose generalized inverse (also called pseudoinverse (Albert, 1972; Rao & Mitra, 1971)) of
the matrix 𝐗𝑇𝐖𝐗. The matrix 𝐗𝑇𝐖𝐗 is also called the Laplacian matrix (Rücker, 2012). The estimated variance–covariance
matrix of �̂�

𝑛𝑚𝑎
is 𝐗(𝐗𝑇𝐖𝐗)+𝐗𝑇 .

𝐇 = 𝐗(𝐗𝑇𝐖𝐗)+𝐗𝑇𝐖 (2)

is known in regression as the hat matrix.

3.2 The additive CNMA model
We begin by explaining the general idea of what we term CNMA, according to others (Freeman et al., 2018; Pompoli et al.,
2018). To this aim, we consider a hypothetical example with three active treatment components 𝐴, 𝐵, and 𝐶 (see Table 1). We
consider five treatments: (a) 𝐴 alone, (b) 𝐴 combined with 𝐵 (written 𝐴 + 𝐵), (c) 𝐴 combined with 𝐵 and 𝐶 (𝐴 + 𝐵 + 𝐶),
(d) 𝐵 combined with 𝐶 (𝐵 + 𝐶), and (e) placebo. Usually, we may conduct an NMA where all existing (single or combined)
treatments are different nodes in the network. In the example, we have five nodes, corresponding to treatments (a) to (e). Perhaps,
however, we are more interested in an alternative model that utilizes the information that treatments (a) to (d) are combinations
of the elementary active components 𝐴, 𝐵, and 𝐶 . The assumption is that the effects of combined treatments (here 𝐴 + 𝐵, 𝐴 +
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𝐵 + 𝐶, 𝐵 + 𝐶) are additive sums of their components. This implies that in comparisons equal components cancel out. For the
example, additivity means that

𝐴 + 𝐵 versus 𝐴 estimates 𝐵;
𝐴 + 𝐵 + 𝐶 versus 𝐴 estimates 𝐵 + 𝐶;
𝐴 + 𝐵 + 𝐶 versus 𝐴 + 𝐵 estimates 𝐶; and
𝐴 + 𝐵 + 𝐶 versus 𝐵 + 𝐶 estimates 𝐴.

Again, we consider a set of 𝑛 treatments, which now may be combinations from a set of 𝑐 clinically defined components,
including a reference or “null” component, for example placebo. As before, the data consist of 𝑚 pairwise comparisons of
treatments from the set of treatments. Let each comparison 𝑗 = 1,… , 𝑚 be represented by an observed (relative) treatment
effect 𝑑𝑗 with standard error SE(𝑑𝑗). For sake of clarity, we here ignore that there may be multiarm studies, however, adjustment
for multiarm studies in the CNMA model works as described in Rücker and Schwarzer (2014) for the standard NMA model.
We now define three matrices.

Matrix 𝐁 has 𝑚 rows (corresponding to the pairwise comparisons) and 𝑛 columns (representing the treatments) and describes
the structure of the network: it contains for each comparison in the network the entries 1 and −1 in the columns corresponding
to the treatments compared, and zero entries otherwise. 𝐁 corresponds to the edge–vertex incidence matrix as defined in Rücker
(2012).

Matrix 𝐂 is a 𝑛 × 𝑐 matrix describing how the 𝑛 treatments are composed by the 𝑐 active components, where an entry 1
indicates that the component in the column contributes to the treatment in the row, whereas zero entries indicate no contribution.

The design matrix of the additive model is

𝐗𝑎 = 𝐁𝐂. (3)

For the hypothetical data in Table 1, ordering the studies (rows) by their number and the treatments (columns) by 𝐴, 𝐴 +
𝐵, 𝐴 + 𝐵 + 𝐶, 𝐵 + 𝐶 , placebo, the network structure is described by

𝐁 =

⎛⎜⎜⎜⎜⎜⎜⎝

1 −1 0 0 0
1 0 −1 0 0
0 1 0 −1 0
0 1 −1 0 0
0 0 −1 1 0
1 0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎠
.

The combination structure is described by

𝐂 =

⎛⎜⎜⎜⎜⎜⎝

1 0 0
1 1 0
1 1 1
0 1 1
0 0 0

⎞⎟⎟⎟⎟⎟⎠
,

where the treatments (now represented by the rows) are ordered as above and the columns correspond to the components 𝐴, 𝐵,
and 𝐶 . Note that the reference treatment, here placebo, is not counted as a component, and therefore placebo as a treatment (last
row) consists of no active component and all entries in this row are zero. The product provides the design matrix, where the
rows represent the studies and the columns the components 𝐴, 𝐵, and 𝐶:

𝐗𝑎 = 𝐁𝐂 =

⎛⎜⎜⎜⎜⎜⎜⎝

0 −1 0
0 −1 −1
1 0 −1
0 0 −1

−1 0 0
1 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
.
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For ease of presentation, we here introduce the common (or fixed) effect additive CNMA model1 which is

𝜹𝑎 = 𝐗𝑎𝜷 = 𝐁𝐂𝜷 = 𝐁𝜽𝑎, (4)

where 𝜹𝑎 ∈ ℝ𝑚 is the vector of true relative effects (differences) from the studies, 𝐗𝑎 = 𝐁𝐂 the design matrix, 𝜷 ∈ ℝ𝑐 a param-
eter vector of length 𝑐, representing the active components, and 𝜽𝑎 = 𝐂𝜷 ∈ ℝ𝑛 a vector of length 𝑛, representing the treatments.
We want to obtain a weighted least squares estimate of 𝜷, using the inverse variance weights from the observed effects that we
write as a diagonal matrix 𝐖 of dimension 𝑚 × 𝑚:

𝐖 = (Cov (𝐝))−1 =

⎛⎜⎜⎜⎜⎝
𝜎−11 0 ⋯ ⋯ 0
0 𝜎−12 0 ⋯ 0
∶ ∶ ∶ ∶ ∶
0 ⋯ ⋯ ⋯ 𝜎−1𝑚

⎞⎟⎟⎟⎟⎠
.

Estimation of 𝜷 Using again the theory described in Rücker (2012), we obtain the estimate

�̂� = (𝐗⊤
𝑎𝐖𝐗𝑎)+𝐗⊤

𝑎𝐖𝐝 (5)

for the component effects 𝜷 with estimated covariance matrix

Ĉov (�̂�) = (𝐗⊤
𝑎𝐖𝐗𝑎)+.

Estimation of 𝜽𝑎 The treatment effects 𝜽𝑎 are estimated by

�̂�𝑎 = 𝐂�̂�

with covariance matrix

Ĉov (�̂�𝑎) = 𝐂(𝐗⊤
𝑎𝐖𝐗𝑎)+𝐂⊤.

Estimation of 𝜹𝑎 The comparisons (contrasts) 𝜹𝑎 are estimated by

�̂�𝑎 = 𝐗𝑎�̂� (6)

with covariance matrix

Ĉov (�̂�𝑎) = 𝐗𝑎(𝐗⊤
𝑎𝐖𝐗𝑎)+𝐗⊤

𝑎 .

3.3 Heterogeneity, additivity test, and random effects CNMA
As the crucial additivity assumption may not hold, it is important to test whether this assumption is compatible with the data.
To this aim, we propose a test of additivity which is based on the comparison of treatment estimates from the standard NMA
model (1) and the additive CNMA model (4).

The hat matrix (2) of the standard NMA model, 𝐇, is a projection matrix that maps each vector in ℝ𝑚 onto its image in
the (𝑛 − 1)-dimensional subspace 𝕊 ⊆ ℝ𝑚 of consistent vectors (Rücker & Schwarzer, 2014). Particularly, 𝐝 is mapped onto
𝐇𝐝 = �̂�

𝑛𝑚𝑎 ∈ 𝕊. The space of vectors that are not only consistent in the sense of the standard NMA model, but also consistent
with the CNMA model is a 𝑐-dimensional subspace ℂ ⊆ 𝕊 ⊆ ℝ𝑚 where 𝑐 is the rank of the design matrix 𝐗𝑎. The projection
matrix

𝐇𝑎 = 𝐗𝑎(𝐗⊤
𝑎𝐖𝐗𝑎)+𝐗⊤

𝑎𝐖

represents the corresponding hat matrix that maps the observed effects 𝐝 onto their model-based estimates 𝐇𝑎𝐝 = �̂�𝑎 ∈ ℂ ⊆ 𝕊.
Due to 𝐇𝐝 ∈ 𝕊 and 𝐇𝑎𝐝 ∈ 𝕊, we have also 𝐇𝐝 −𝐇𝑎𝐝 ∈ 𝕊. Because the two projections are commutative (𝐇𝑎𝐇 = 𝐇𝑎 = 𝐇𝐇𝑎)
we have

�̂�𝑎 = 𝐇𝑎𝐝 = 𝐇𝑎𝐇𝐝 = 𝐇𝑎�̂�
𝑛𝑚𝑎

.
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The heterogeneity statistic for the standard NMA model is

𝑄 =
(
𝐝 − �̂�

𝑛𝑚𝑎)⊤ 𝐖
(
𝐝 − �̂�

𝑛𝑚𝑎)
,

where �̂�
𝑛𝑚𝑎

denotes the vector of estimates based on the standard NMA model. Under standard conditions, 𝑄 follows a chi-
square distribution with 𝑛𝑎 − 𝑘 − (𝑛 − 1) degrees of freedom, where 𝑛𝑎 is the total number of treatment arms, 𝑘 is the number
of studies, and 𝑛 is the number of treatments. If there are only two-arm trials, we have 𝑛𝑎 = 2𝑘 and thus 𝑘 − (𝑛 − 1) degrees
of freedom.

The heterogeneity statistic for the CNMA model is

𝑄𝑎 =
(
𝐝 − �̂�𝑎

)⊤ 𝐖
(
𝐝 − �̂�𝑎

)
,

where �̂�𝑎 denotes the vector of estimates based on the additive treatment as given above. For 𝑄𝑎, we have 𝑑𝑓𝑎 = 𝑛𝑎 − 𝑘 − 𝑟

degrees of freedom where 𝑟 is the rank of the design matrix 𝐗𝑎. If there are only two-arm trials, 𝑄𝑎 has 𝑘 − 𝑟 degrees of freedom.
We now provide a statistical test for the additivity assumption based on the Pythagorean theorem. Using the statistic

𝑄𝑎 −𝑄 =
(
�̂�𝑎 − �̂�

𝑛𝑚𝑎)⊤ 𝐖
(
�̂�𝑎 − �̂�

𝑛𝑚𝑎)
with 𝑛 − 𝑟 − 1 degrees of freedom we can test whether the (richer) standard NMA model (i.e., the model with more parame-
ters) is superior to the sparser (i.e., more parsimonious) CNMA model (with fewer parameters), thus testing the assumption of
additivity. The additive CNMA model will explain the data as well as the standard NMA model if no substantial unexplained
heterogeneity exists.

A random effects CNMA model assuming a common between-study variance 𝜏2 can be implemented similar to Rücker and
Schwarzer (2014) by using a multivariate methods of moments estimate of 𝜏2 (Jackson, White, & Riley, 2012):

𝜏2 = max

(
𝑄𝑎 − df𝑎

𝑡𝑟
(
(𝐈 −𝐇𝑎)𝐔𝐖

) , 0)

with 𝑄𝑎, 𝑑𝑓𝑎,𝐇𝑎,𝐖 defined as above. 𝐈 is the 𝑚 × 𝑚 identity matrix and 𝑡𝑟 denotes the trace of a matrix, that is, the sum of its
diagonal elements. 𝐔 is a block diagonal matrix derived from the 𝑚 × 𝑚 matrix 0.5𝐁𝐁⊤, obtained by selecting for each 𝑝-arm
study a 𝑝 × 𝑝 block, setting all other matrix elements to zero. The estimate 𝜏2 is added to the observed sampling variance of
each single comparison in the network before adjusting the standard errors for multiarm studies and repeating the procedure
described in Section 3.2 with the resulting enlarged standard errors.

3.4 The interaction CNMA model
The additive CNMA model assumes that there is no interaction between components and the effect of the combination of two or
more treatment components is additive which may be clinically or biologically implausible. Furthermore, the test of additivity
described in the previous subsection may suggest that the additive model does not fit the data well. Allowing interactions between
pairs of clinically defined components, the additive model can be extended to the two-way interaction CNMA model (Welton
et al., 2009, Model 3). In the presence of an interaction the combination of components may act synergistically or antagonistically
providing greater or smaller effects than the sum of their effects, respectively (Welton et al., 2009). For the frequentist approach,
the interaction CNMA model is easily implemented by adding further columns to the combination matrix 𝐂 of the additive
CNMA model that represent interaction terms of interest.

In our hypothetical data example, an interaction term for the combination of treatments 𝐴 and 𝐵 would be represented by an
additional (rightmost) column in the matrix 𝐂 with 1 in each row belonging to a treatment that contains 𝐴 + 𝐵, that is, treatments
𝐴 + 𝐵 and 𝐴 + 𝐵 + 𝐶 in the second and third rows:

𝐂𝐴∗𝐵
𝑖𝑛𝑡 =

⎛⎜⎜⎜⎜⎜⎝

1 0 0 0
1 1 0 1
1 1 1 1
0 1 1 0
0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
.
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CB

A

B + C A + C

A + B

CB

A

B + C A + C

A + B

F I G U R E 1 Left panel: A disconnected network of three two-arm studies with six treatments. Right panel: The CNMA model adds new joins

between the treatments having common components, thus reconnecting the network

Other interaction terms could be added, however, as always, there is a trade-off between model fit and sparseness. Furthermore,
it makes no sense to add treatment combinations as interactions that do not occur in any study—even if they seem clinically plau-
sible (corresponding columns would only contain zeros, indicating that these interactions cannot be estimated). This implicitly
assumes that these interactions do not exist. Whether this assumption is justified for treatment combinations that are not repre-
sented in the given data cannot be tested. The richest sensible model is the standard NMA model where each unique combination
has its own term in the model. Nested models can be compared using 𝑄 tests as described in the previous subsection. This allows
disentangling the effects of all considered components, whether single components or interactions.

In practice, this is implemented in complete analogy to the additive CNMA model. Based on an extended combination matrix
𝐂𝑖𝑛𝑡 with one or more added column(s) for an interaction CNMA model, we obtain another design matrix 𝐗𝑖𝑛𝑡 by (3), and for
estimation we use equations (4) to (6) accordingly. Testing for heterogeneity and comparing the standard model (that is, the
full interaction model) to the chosen sparser interaction CNMA model works as described in Subsection 3.3, replacing 𝑄𝑎 for
the additive model with 𝑄𝑖𝑛𝑡 for the interaction model. The chosen interaction CNMA model can also be compared to the even
sparser additive model by comparing 𝑄𝑖𝑛𝑡 and 𝑄𝑎. We provide an example in the Results section.

3.5 CNMA models for disconnected networks
It may happen that a network is disconnected, which means that the set of treatments is partitioned in two or more subsets
such that there is no study that compares a treatment in one subset to any treatment in another subset. Some approaches to
disconnected networks have been suggested (Béliveau, Goring, Platt, & Gustafson, 2017; Goring et al., 2016), some based on
arm-based NMA models (Hawkins, Scott, & Woods, 2016; Hong, Chu, Zhang, & Carlin, 2016), others based on methods for
population- (or matching-)adjusted indirect comparisons (Phillippo et al., 2018; Signorovitch et al., 2012; Veroniki, Straus,
Soobiah, Elliott, & Tricco, 2016).

We note that using CNMA models allows “reconnecting” a disconnected network if all subnets are connected to each other
by treatments that have (potentially different) common components.

A simple hypothetical example is a network of three two-arm studies, one study comparing treatment 𝐴 with 𝐵 + 𝐶 , another
comparing 𝐵 with 𝐴 + 𝐶 , and a third study comparing 𝐴 + 𝐵 with 𝐶 . There are six treatments, and each study forms a subnet-
work not connected to the others, all illustrated in Figure 1, left panel. However, all studies have common treatment components
𝐴, 𝐵, 𝐶 , and their contributions can be estimated using the CNMA model, symbolized by the right part of Figure 1.

Ordering the treatments 𝐴,𝐵, 𝐶, 𝐵 + 𝐶,𝐴 + 𝐶,𝐴 + 𝐵, the network structure is described by

𝐁 =
⎛⎜⎜⎝
1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 −1 0 0 1

⎞⎟⎟⎠ ,
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the combination structure is

𝐂 =

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1
0 1 1
1 0 1
1 1 0

⎞⎟⎟⎟⎟⎟⎟⎠
,

and the design matrix becomes

𝐗𝑎 = 𝐁𝐂 =
⎛⎜⎜⎝

1 −1 −1
−1 1 −1
1 1 −1

⎞⎟⎟⎠
with full rank 3. This means that all components 𝐴,𝐵, 𝐶 can be uniquely estimated. In this example, we do not specify an
inactive treatment.

Even if we have only studies 1 and 3, some contrasts are still estimable. The four treatments are 𝐴,𝐶, 𝐵 + 𝐶,𝐴 + 𝐵. Matrices
𝐁 and 𝐂 reduce to

𝐁 =
(
1 0 −1 0
0 −1 0 1

)
, 𝐂 =

⎛⎜⎜⎜⎜⎝
1 0 0
0 0 1
0 1 1
1 1 0

⎞⎟⎟⎟⎟⎠
,

and the design matrix becomes

𝐗𝑎 = 𝐁𝐂 =
(
1 −1 −1
1 1 −1

)
with rank 2. If we are interested, for example, in the contrasts to 𝐶 , we specify 𝐶 as reference, thus omitting the last columns in
𝐂 and 𝐗𝑎. This makes 𝐗𝑎 invertible, and by (5) and (6) we obtain unique estimates �̂� for the contrasts 𝐴 versus 𝐶 and 𝐵 versus
𝐶 .

4 RESULTS

We applied the standard random effects NMA model and two random effects CNMA models with and without an interaction term
for face-to-face PST + SSRI to the depression data described in Section 2. For the primary outcome “response after treatment”,
𝑘 = 93 studies were available. The number of treatments was 𝑛 = 22. There were 𝑚 = 124 pairwise comparisons from 40 study
designs, including 13 three-arm studies and one four-arm study. Placebo was chosen as reference for the standard NMA model
and assumed as inactive for the two CNMA models. The results are shown in Table 2. They can be visualized by a forest plot
(Figure 2).

4.1 Results of the standard NMA model
For the standard model, heterogeneity and inconsistency were low (𝑄 = 102.45 with df = 87, 𝑝 = .1234, between-study variance
𝜏2 = 0.0174; 𝐼2 = 15.1%). Decomposing 𝑄 into heterogeneity (within designs) and inconsistency (between designs) (Krahn,
Binder, & König, 2013) provided 𝑄ℎ𝑒𝑡 = 58.07 (df = 54, 𝑝 = .3279) and 𝑄𝑖𝑛𝑐 = 44.38 (df = 33, 𝑝 = .0892). The combination
face-to-face CBT + SSRI was only assessed in one small two-arm study (n = 34), compared to SSRI alone, where it showed an
implausible large direct effect with a very long uncertainty interval (OR = 18 [2.95–109.66]) (Linde et al., 2015, 2016). This
led to an even larger effect when comparing face-to-face CBT + SSRI to placebo (see Table 2).
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T A B L E 2 Results for the depression data (Linde et al., 2016)

Treatment (compared to placebo) Standard model Additive model Additive model with one interactiona

OR (95% CI) OR (95% CI) OR (95% CI)
TCA 1.75 [1.47–2.07] 1.74 [1.47–2.05] 1.75 [1.49–2.07]

SSRI 1.71 [1.46–2.01] 1.69 [1.45–1.97] 1.71 [1.47–2.00]

SNRI 1.93 [1.49–2.49] 1.90 [1.47–2.46] 1.92 [1.49–2.49]

NRI 1.45 [0.92–2.27] 1.43 [0.90–2.26] 1.45 [0.91–2.30]

Low-dose SARI 1.84 [1.25–2.69] 1.83 [1.24–2.69] 1.84 [1.25–2.72]

NaSSa 1.22 [0.89–1.66] 1.21 [0.88–1.65] 1.22 [0.89–1.66]

rMAO-A 1.08 [0.73–1.59] 1.07 [0.72–1.59] 1.08 [0.73–1.61]

Individualized drug 2.54 [0.96–6.76] 2.76 [1.04–7.33] 2.80 [1.05–7.44]

Hypericum 2.00 [1.62–2.47] 1.99 [1.61–2.46] 2.01 [1.63–2.48]

Face-to-face CBT 2.05 [1.26–3.36] 2.31 [1.44–3.70] 2.34 [1.46–3.76]

Face-to-face PST 1.39 [0.97–2.00] 1.37 [0.96–1.96] 1.42 [0.98–2.04]

Face-to-face interpsy 1.11 [0.76–1.62] 1.10 [0.79–1.54] 1.11 [0.80–1.55]

Face-to-face psychodyn 1.54 [0.48–5.00] 1.52 [0.47–4.96] 1.54 [0.47–5.03]

Other face-to-face 1.91 [1.18–3.12] 2.08 [1.29–3.33] 2.11 [1.31–3.38]

Remote CBT 2.14 [1.29–3.54] 2.33 [1.42–3.81] 2.36 [1.44–3.88]

Self-help CBT 1.94 [1.13–3.32] 2.08 [1.23–3.53] 2.11 [1.25–3.59]

No contact CBT 1.77 [1.01–3.07] 1.89 [1.10–3.27] 1.92 [1.11–3.32]

Face-to-face CBT + SSRI 30.86 [4.94–192.81] 3.91 [2.32–6.59] 4.02 [2.38–6.79]

Face-to-face interpsy + SSRI 1.75 [1.12–2.74] 1.86 [1.25–2.78] 1.91 [1.28–2.85]

Face-to-face PST + SSRI 1.54 [0.66–3.59] 2.32 [1.52–3.53] 1.56 [0.67–3.65]

Usual care 1.16 [0.76–1.76] 1.24 [0.83–1.85] 1.26 [0.85–1.88]

aInteraction term for face-to-face PST + SSRI.

4.2 Results of the additive CNMA model
The additive model was based on 𝑐 = 18 active components, corresponding to all treatments with the exceptions placebo and the
three combinations of components face-to-face CBT, face-to-face interpsy, face-to-face PST with component SSRI. Note that we
see the estimates for the components, relative to placebo, in the second column of Table 2. The three combinations were modeled
as additive on the logit scale (and thus multiplicative on the OR scale). The estimated between-study variance was 𝜏2 = 0.0208
(𝐼2 = 17.5%). The Q statistic for the additive model was 𝑄𝑎 = 109.12 (df = 90, 𝑝 = .0832) such that the difference 𝑄𝑎 −𝑄 =
6.67 (df = 3, 𝑝 = .0831) suggested that the additive model explained the data quite well, so that the additivity assumption
seems justified.

The biggest difference to the standard model was seen in comparison face-to-face CBT + SSRI versus placebo, where the
additive model estimated an OR of 3.91 (which is the product of the ORs for face-to-face CBT vs. placebo (2.31) and SSRI
vs. placebo (1.69)), whereas the standard model estimated an OR of 30.86. Thus the additive model had the (desired) effect of
shrinking the implausibly large effect from the small study by borrowing strength from other studies that assessed one of the
combined treatment’s components.

Another difference to the standard model occurred with face-to-face PST + SSRI where the additive model provided a sig-
nificant difference to placebo (OR of 1.37 × 1.69 = 2.32, 𝑝 < .0001), potentially driven by the large effect of SSRI alone in
the additive model, in contrast to the standard model that provided a nonsignificant 1.54 (𝑝 = .3136). This combination therapy
was assessed in one three-arm study with 151 participants, where it was compared to SSRI alone and to face-to-face PST alone.
The proportion of treatment responses for the combination therapy lay between that by SSRI alone and that by face-to-face PST
alone; none of the differences was statistically significant (p-values .1242, .4095, and .5605).

4.3 Results of the interaction CNMA model
If we doubt the additivity assumption for face-to-face PST and SSRI, we may want to add an interaction between face-to-face PST
and SSRI to the additive model. Allowing a clinically defined interaction between the face-to-face PST and the SSRI component,
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Treatment

TCA

SSRI

SNRI

NRI

Low−dose SARI               

NaSSa

rMAO−A                      

Ind drug

Hypericum

Face−to−face CBT            

Face−to−face PST            

Face−to−face interpsy       

Face−to−face psychodyn      

Other face−to−face

Remote CBT

Self−help CBT

No contact CBT

Face−to−face CBT + SSRI     

Face−to−face interpsy + SSRI

Face−to−face PST + SSRI     

UC

Additive CNMA
Interaction CNMA
Standard NMA

Additive CNMA
Interaction CNMA
Standard NMA

Additive CNMA
Interaction CNMA
Standard NMA

Additive CNMA
Interaction CNMA
Standard NMA

Additive CNMA
Interaction CNMA
Standard NMA

Additive CNMA
Interaction CNMA
Standard NMA

Additive CNMA
Interaction CNMA
Standard NMA

Additive CNMA
Interaction CNMA
Standard NMA

Additive CNMA
Interaction CNMA
Standard NMA

Additive CNMA
Interaction CNMA
Standard NMA

Additive CNMA
Interaction CNMA
Standard NMA

Additive CNMA
Interaction CNMA
Standard NMA

Additive CNMA
Interaction CNMA
Standard NMA

Additive CNMA
Interaction CNMA
Standard NMA

Additive CNMA
Interaction CNMA
Standard NMA

Additive CNMA
Interaction CNMA
Standard NMA

Additive CNMA
Interaction CNMA
Standard NMA

Additive CNMA
Interaction CNMA
Standard NMA

Additive CNMA
Interaction CNMA
Standard NMA

Additive CNMA
Interaction CNMA
Standard NMA

Additive CNMA
Interaction CNMA
Standard NMA

0.5 1 2 5 10

Comparison: other vs 'Placebo'
(Random Effects Model)

Favours Placebo Favours other

OR

1.74
1.75
1.75

1.69
1.71
1.71

1.90
1.92
1.93

1.43
1.45
1.45

1.83
1.84
1.84

1.21
1.22
1.22

1.07
1.08
1.08

2.76
2.80
2.54

1.99
2.01
2.00

2.31
2.34
2.05

1.37
1.42
1.39

1.10
1.11
1.11

1.52
1.54
1.54

2.08
2.11
1.91

2.33
2.36
2.14

2.08
2.11
1.94

1.89
1.92
1.77

3.91
4.02

30.86

1.86
1.91
1.75

2.32
1.56
1.54

1.24
1.26
1.16

95%−CI

[1.47;   2.05]
[1.49;   2.07]
[1.47;   2.07]

[1.45;   1.97]
[1.47;   2.00]
[1.46;   2.01]

[1.47;   2.46]
[1.49;   2.49]
[1.49;   2.49]

[0.90;   2.26]
[0.91;   2.30]
[0.92;   2.27]

[1.24;   2.69]
[1.25;   2.72]
[1.25;   2.69]

[0.88;   1.65]
[0.89;   1.66]
[0.89;   1.66]

[0.72;   1.59]
[0.73;   1.61]
[0.73;   1.59]

[1.04;   7.33]
[1.05;   7.44]
[0.96;   6.76]

[1.61;   2.46]
[1.63;   2.48]
[1.62;   2.47]

[1.44;   3.70]
[1.46;   3.76]
[1.26;   3.36]

[0.96;   1.96]
[0.98;   2.04]
[0.97;   2.00]

[0.79;   1.54]
[0.80;   1.55]
[0.76;   1.62]

[0.47;   4.96]
[0.47;   5.03]
[0.48;   5.00]

[1.29;   3.33]
[1.31;   3.38]
[1.18;   3.12]

[1.42;   3.81]
[1.44;   3.88]
[1.29;   3.54]

[1.23;   3.53]
[1.25;   3.59]
[1.13;   3.32]

[1.10;   3.27]
[1.11;   3.32]
[1.01;   3.07]

[2.32;   6.59]
[2.38;   6.79]

[4.94; 192.81]

[1.25;   2.78]
[1.28;   2.85]
[1.12;   2.74]

[1.52;   3.53]
[0.67;   3.65]
[0.66;   3.59]

[0.83;   1.85]
[0.85;   1.88]
[0.76;   1.76]

F I G U R E 2 Comparing results of the additive model (red),

an interaction model (blue), and the standard NMA model (black)

for the depression data by a forest plot

the interaction CNMA model can be implemented. Adding a column in matrix 𝐂 indicating the interaction between face-to-face
PST and SSRI, we have 𝑐 = 19. The results of this model are given in the rightmost column of Table 2. Most estimates tend to be
very near to those of the standard NMA model, particularly, as expected, the comparison face-to-face PST + SSRI to placebo,
for which an interaction is admitted. For the comparison face-to-face CBT + SSRI to placebo, the interaction model estimated
an OR of 4.02 (standard model: 30.86), borrowing strength from other studies containing the components. Comparing the
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interaction CNMA model to the standard model, we obtained 𝑄𝑖𝑛𝑡 −𝑄 = 5.55 (df = 2, 𝑝 = .0622), meaning that the interaction
CNMA model was plausible and explained the data well. Comparing the interaction model with the additive model provided
𝑄𝑎 −𝑄𝑖𝑛𝑡 = 1.12 (df = 1, 𝑝 = .29). The interpretation is that adding the interaction is not necessary here and the additive model
is sufficient.

5 DISCUSSION

Although the use of NMA has considerably increased in the last couple of decades, CNMA for evaluating the effects of complex
interventions and their components, though introduced already 10 years ago by Welton et al. (2009), seems not to be widely
known and only occasionally applied. One possible explanation is the lack of easily accessible software. In this paper, we present
a flexible frequentist implementation of the additive and the interaction CNMA models.

If there are treatments that are composed of common components, the additive model for CNMA allows (a) estimating effects
of treatment components of combination therapies, (b) adding interaction terms by simply adding one column per interaction to
the combination matrix 𝐂, and (c) comparing estimates and model fit between models, thus providing a statistical test for the
additive or interaction model assumption using likelihood ratio statistics. An additive model has fewer parameters than the full
interaction model (standard NMA model), which corresponds to a model that includes all observed interactions. CNMA models
can be superior to the standard NMA model as they provide more powerful results while having fewer parameters to estimate
(number of components instead of the number of observed combination of components). Furthermore, they allow borrowing
strength from studies having common components for combinations that were evaluated in only a few studies or in only one small
study at all. A simulation study has shown that if the additivity assumption approximately holds, the additive effects model was
preferable to the conventional NMA (Thorlund & Mills, 2012). A case study with 51 observed combinations of 12 therapeutic
components for panic disorder was published by Pompoli et al. (2018), giving more powerful results with the implementation
of CNMA.

A possible objection to additive models is that they could mislead researchers to add a treatment to itself. In fact, one might
ask whether, in rare cases, additive models are suitable to capture dose effects. If it seems justifiable to assume that, for example,
a doubled dose of some drug 𝐴 or a doubled duration of a treatment has about the double effect, this could be modeled by
entering 2 in all rows of the 𝐴 column of the combination matrix 𝐂 that correspond to treatment combinations that include the
doubled dose.

In our example, use of the additive CNMA resulted in a plausible shrinkage of the extreme face-to-face CBT + SSRI effect,
which was evaluated only in one small study and constituted a separate node in the standard NMA model. However, we also
observed a notable increase in the face-to-face PST + SSRI effect even resulting in a statistically significant effect that was not
present in the standard NMA model. This motivated us to conduct a sensitivity analysis by considering this combination as an
interaction term. The 𝑄 test revealed that the model with the single interaction was not significantly superior to the additive
CNMA model.

In our application, we assume that placebo is an inactive treatment, implying that adding placebo to any active treatment does
not change the effect of the respective treatment or, in other words, that comparing a treatment to placebo directly provides the
treatment’s net effect. Without this assumption, a nonnull treatment response for placebo would be estimated which we do not
think meaningful in our depression example. A CNMA model assuming placebo as an active component would result in slightly
different treatment estimates. We would like to emphasize the difference between choosing a treatment as the reference (which
is merely a matter of parameterization) and assuming a treatment as inactive (which is an additional modeling assumption). We
can use an active treatment as the reference, for example, to express treatment estimates relative to SNRI in the depression data
set, however, it makes no sense to take an active treatment like SNRI as inactive.

Standard considerations for model selection apply if interaction CNMA models are used. The additive CNMA model without
interactions has the smallest number of parameters to estimate while the standard NMA model has the most parameters, as it
implicitly includes all estimable interactions which are prespecified by the network structure. Obviously, we could either start
with the additive CNMA model and add interactions (corresponding to forward selection) or start with the standard NMA model
and remove estimable interactions (backward selection); both approaches will lead to an interaction CNMA model between the
two extremes. From a practical point, it is much easier in the CNMA setting to use forward than backward selection: we simply
have to add a single column to matrix 𝐂 instead of determining all estimable interactions and add all corresponding columns.
In order to avoid data dredging, the interaction terms considered in the model selection should ideally be prespecified based on
subject matter knowledge.
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A special feature of CNMA models is its potential to connect a disconnected network, given the additivity assumption holds
and the subnetworks have at least one common treatment component. This property seems to have been mostly overlooked (or
at least not explicitly mentioned) in the literature, with the exception of Mawdsley, Bennetts, Dias, Boucher, and Welton (2016)
who mention it in the context of meta-analysis of dose–response curves (Mawdsley et al., 2016, p. 400). We gave a hypothetical
example in Subsection 3.5. We note, however, that in a disconnected network the additivity assumption is not testable, as no
standard NMA model exists which is necessary for comparison. We also point out that precision may not always increase
when using a CNMA model, compared to a standard NMA. This holds particularly for disconnected networks. Nevertheless it
may be worth the effort to connect a disconnected network, at the expense of losing some precision for comparisons from the
same subnet.

We implemented the additive and interaction CNMA model in the functions netcomb (for connected networks) and discomb
(for disconnected networks) of R package netmeta (Rücker et al., 2019). The application of netmeta is quite convenient: a
command like netcomb(net1) is sufficient to conduct an additive CNMA for an existing R object, here called net1, with
the results of the standard NMA. Accordingly, this frequentist implementation can be easily applied by researchers without
extended training in statistical software. R code for the examples from this paper is provided in the supplementary material and
also contained in the help files of netcomb and discomb. In contrast, the more flexible Bayesian CNMA implementation in
WinBUGS is less accessible to the typical meta-analyst. This is obvious by looking at the WinBUGS code in the supplementary
material that we used to rerun all models for the depression data. In general, results using WinBUGS (see web supplement) were
similar to those of our models (Table 2 and supplementary material). We observe the largest difference in the indirect estimate
of face-to-face CBT + SSRI compared to placebo in the standard NMA model: log odds ratio 3.43 [1.60 – 5.26] (netmeta) and
3.61 [1.91 – 5.86] (WinBUGS). However, this estimate is based on one very small study comparing face-to-face CBT + SSRI
with SSRI alone and the confidence intervals for the indirect comparison overlap to a very large extent.

In conclusion, we recommend to consider using a CNMA model, either a simple additive model or one with interactions,
if multicomponent interventions occur in a meta-analysis and either full additivity or additivity with some added interactions
is assumed. These models can now be analyzed in a frequentist framework, and with the R package netmeta an open source
software to this aim is readily available.
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