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ABSTRACT

Bioinformatics tools for fusion transcript detection
from RNA-sequencing data are in general developed
for identification of novel fusions, which demands a
high number of supporting reads and strict filters to
avoid false discoveries. As our knowledge of bona
fide fusion genes becomes more saturated, there is
a need to establish their prevalence with high sensi-
tivity. We present ScaR, a tool that uses a supervised
scaffold realignment approach for sensitive fusion
detection in RNA-seq data. ScaR detects a set of 130
synthetic fusion transcripts from simulated data at
a higher sensitivity compared to established fusion
finders. Applied to fusion transcripts potentially in-
volved in testicular germ cell tumors (TGCTs), ScaR
detects the fusions RCC1-ABHD12B and CLEC6A-
CLEC4D in 9% and 28% of 150 TGCTs, respectively.
The fusions were not detected in any of 198 normal
testis tissues. Thus, we demonstrate high prevalence
of RCC1-ABHD12B and CLEC6A-CLEC4D in TGCTs,
and their cancer specific features. Further, we find
that RCC1-ABHD12B and CLEC6A-CLEC4D are pre-
dominantly expressed in the seminoma and embry-
onal carcinoma histological subtypes of TGCTs, re-
spectively. In conclusion, ScaR is useful for estab-
lishing the frequency of known and validated fusion
transcripts in larger data sets and detecting clinically
relevant fusion transcripts with high sensitivity.

INTRODUCTION

Fusion genes and fusion transcripts are important in can-
cer biology and are often entirely cancer specific, making
them attractive as biomarkers. Their attention started with
the discovery of the Philadelphia chromosome and the re-

sulting BCR-ABL1 fusion in patients with chronic myeloge-
nous leukemia (CML) (1–4). In the 1980s and 90s, multiple
recurrent fusions were discovered and characterized with
chromosome banding and fluorescence in situ hybridization
(FISH). These techniques were biased toward detection of
fusion genes in hematological cancers and fusions arising
from interchromosomal rearrangements (5). With the ad-
vent of high-throughput parallel RNA sequencing (RNA-
seq) technology, the nomination rate of novel fusion tran-
scripts in both hematological and solid tumor types has ex-
ploded. This is underlined with 20 731 fusion transcripts be-
ing detected in 9966 cancer samples (33 cancer types) from
The Cancer Genome Atlas (TCGA) consortium alone (6).
Importantly, 83% of these fusion transcripts are detected
in single cancer samples and are thus not recurrent. This
statistic underlines that fusion transcripts are commonly ex-
pressed in cancer, often as a result of increased genomic in-
stability, and that only a minority of these are selected for
and act as oncogenic drivers. Therefore, to minimize the de-
tection of additional non-recurrent or nomination of even
non-existing (false positive) fusion transcripts, most avail-
able fusion finder tools have focused on maximizing speci-
ficity.

Nevertheless, several recurrent fusion genes have been in-
dicated as targetable molecular alterations in personalized
cancer medicine. These include for example fusion genes in-
volving the kinase-encoding genes ALK and ROS1 in non-
small cell lung cancer, BCR-ABL1 in CML, and NTRK1,
FGFR3 and BRAF in various cancer types (7). In fact, the
FDA recently approved Vitrakvi (larotrectinib) as the sec-
ond tumor-agnostic pan-cancer drug approved for patients
harboring NTRK gene fusions without a known acquired
resistance mutation, that are metastatic or where surgical re-
section is likely to result in severe morbidity and have no sat-
isfactory alternative treatments (8). In addition, highly can-
cer specific fusion transcripts have potential as biomarkers
for disease detection, monitoring and predicting treatment
response.
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The ability to detect these fusions at high sensitivity is
therefore paramount. This will enable us to determine true
prevalence of known, and previously validated, fusion tran-
scripts in cohorts of cancer patients, where existing fu-
sion finder tools would provide underestimates in efforts
of avoiding the scoring of false positives. However, since
we in those cases are not searching for novel fusions, we
are not risking much by lowering the specificity demands.
In more detail, much effort has been invested in develop-
ing approaches for fusion transcript detection without any
prior knowledge from RNA-seq data, and >40 different
tools have been developed for this task (Supplementary Ta-
ble S1). The performance of fusion finder tools has been
shown to vary according to the data set to which they are
applied, and none achieve a perfect sensitivity (9,10). Most
of the currently available tools use similar approaches to
align reads, nominate fusion transcript breakpoints de novo
based on supporting reads or read pairs and apply vari-
ous filters to reduce noise from artifact fusion transcript se-
quences or the presence of chimeric transcripts in normal
cells. A few of the tools available have an option to take a
user provided list of known fusion genes and works to force
the nominated fusion breakpoints through the list of strict
filters (e.g. the –focus parameter in FusionCatcher). How-
ever, little effort has been made to develop tools that can
validate the presence and prevalence of specific fusion tran-
scripts, with the benefit of a priori knowledge (e.g. fusion
breakpoint sequences or genomic junction coordinates) and
thereby with increased sensitivity. This is underlined in a
case where a simple search of a chimeric sequence in raw
sequencing data, using the unix tool ‘grep’ , outperformed
the sensitivity of several established fusion finder tools (11).
As the knowledge of fusion transcripts and their clinical
impact expands together with an increasing number of pa-
tients with RNA-seq data available, there is therefore a need
for a tool that can establish the presence of already known
and validated fusion transcripts in RNA-seq data with su-
perior sensitivity.

A type of cancer for which no recurrent fusion genes
have been established as biomarkers or drug targets is tes-
ticular germ cell tumors (TGCT), which is the most com-
monly diagnosed cancer among young men (12). In fact,
not much effort has been done to introduce genomics based
personalized medicine for this disease. Although TGCT pa-
tients have among the highest survival rates, the treatment
choices are few and side effects are often profound. Further,
since the patients are young, serious side effects may affect
many decades of their life (13). Therefore, research on fu-
sion genes as potential biomarkers or therapeutic targets in
TGCT is of priority. We recently described the detection and
characterization of recurrent fusion genes in TGCT (14).
TGCT is a disease with distinct histological subtypes in-
cluding seminomas and nonseminomas, where the latter can
be subdivided into pluripotent embryonal carcinomas and
more differentiated subtypes: teratomas, yolk sac tumors
and choriocarcinomas. The pluripotent phenotype of ma-
lignant TGCTs has similarities to that of embryonic stem
cells (15). Studying these cancers can therefore shed light on
cancer biology in a context of pluripotency. We previously
also showed that the expression of the fusion transcripts
RCC1-ABHD12B and RCC1-HENMT1 is reduced upon in

vitro differentiation of the EC cell line NTERA2 (14). It is
therefore of interest to explore the frequency and distribu-
tion of the, sometimes weak, expression of these previously
identified fusion transcripts in larger cohorts of TGCTs.

Based on the identified need for a sensitive ap-
proach to evaluate the recurrence of known fusion tran-
scripts, we herein report the development of a new tool
ScaR––Scaffold Realignment. We present benchmarking
of ScaR on simulated data and apply it to investigate the
prevalence of previously identified fusion transcripts in an
extended cohort of TGCTs.

MATERIALS AND METHODS

RNA-sequencing data

We downloaded and processed paired-end RNA-seq
raw fastq files of 150 TGCT samples from The Can-
cer Genome Atlas (TCGA) project (dbGAP accession:
phs000178.v9.p8) (16). There was a median of 58.3 mil-
lion pairs of reads per sample (min: 27.3 million and max:
107.3 million) with read length of 48 × 2 bp (see Supple-
mentary Table S2 for detailed RNA-seq metrics and sam-
ple information). We further downloaded and processed
paired-end RNA-seq raw fastq files of 198 normal testic-
ular tissue samples of deceased individuals included in the
Genotype-Tissue Expression (GTEx) project (dbGAP ac-
cession: phs000424.v6.p1) (17,18). All GTEx tissue samples
were taken from healthy testis and the cause of death of in-
dividuals is not related to cancer, according to clinical data
from GTEx (Supplementary Table S3). There was a median
of 42.8 million pairs of reads (min: 27.8 million and max:
132.2 million) with read length of 76 × 2 bp (Supplemen-
tary Table S2). Paired-end RNA-seq data from the ES cell
line Shef3, as described in Hoff et al. (14), were used to-
gether with simulated RNA-seq data from synthetic fusion
transcripts for benchmarking (see Benchmarking and data
simulation).

ScaR and the scaffold realignment approach

The main purpose of Scaffold realignment is to evaluate the
presence of known fusion transcripts with breakpoint sites
at exon boundaries or within exon regions (Figure 1). Scaf-
fold realignment seeks two types of sequence reads to sup-
port fusion transcripts: split reads (a read mapping directly
across the fusion transcript breakpoint sequence) and span-
ning reads (i.e. the paired reads map to one fusion partner
gene each). Split reads are divided into two categories (Fig-
ure 1): discordant-split reads (i.e. the other read of the pair
maps to the fusion gene partner A / B or across the fusion
transcript breakpoint sequence) or singleton-split reads (i.e.
the other read of the pair does not map to the transcriptome
or genome). The pipeline is divided into four steps: (i) build
reference sequences (scaffolds), (ii) read alignment to refer-
ence sequences, (iii) read re-alignment to genome sequences
and (iv) summarize split read alignments across samples.

Build reference sequences. In the first step, a given break-
point sequence supporting a fusion transcript is split in
two fragments at the breakpoint site, which corresponds
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Figure 1. Overview of the scaffold realignment approach –– ScaR.
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to Scaffold partA and Scaffold partB (Figure 1). If the se-
quences are longer than the read length used in the sequenc-
ing experiment, they are trimmed to match the length of the
reads. Each sequence is then screened against all cDNA se-
quences of gene partners to match parental transcripts (3
transcriptome assembly annotations are packaged with the
tool: Ensembl release 89 as default, and GENCODE re-
lease 27 or UCSC annotation based on GenBank release
225 and RefSeq release 86 as optional). ScaR also allows
user-provided reference annotations if the breakpoint se-
quences are not previously annotated in the three transcrip-
tome resources. If the sequence matches more than one
transcript, the longest one (e.g. GeneA-T1 and GeneB-T1
marked as * in Figure 1) is selected to represent the gene.
If the sequences are shorter than read length, the sequences
are extended from the 5′-end of the matching transcript of
Scaffold partA and the 3′-end of the matching transcript of
Scaffold partB, respectively, to match the read length. The
extended sequences are re-assembled to a new breakpoint
sequence scaffold, which together with the sequences of the
targeted transcripts from gene A / B serves as a reference
sequence for read alignment. In addition, ScaR can accept
a pair of fusion junction coordinates as input instead of a
scaffold sequence. The scaffold sequences are then extracted
from the longest matched annotated transcripts according
to the coordinates.

Read alignment to reference sequences. To detect the pres-
ence of reads supporting the fusion breakpoint, paired-end
reads are aligned to the custom scaffold reference using
HISAT2 by default (see user’s manual for setting STAR
as an optional aligner, although all of the results and
benchmarking here have been performed with the HISAT2
aligner) (19). Briefly, an index of the custom scaffold ref-
erence sequence is built using hisat2-build with default pa-
rameters. Paired-end reads are then aligned to the refer-
ence sequences using –no-spliced-alignment model with –
no-softclip setting. On the basis of the aligned SAM/BAM
files, we retrieve three types of mapping reads: discordant-
split reads, singleton-split reads and spanning reads. To in-
crease mapping specificity, a minimum anchor length of 6
bp is required (by default) for split reads that map to the fu-
sion breakpoint sequence (Figure 1). All supporting read-
pairs of these three mapping types are extracted and saved
as fastq files.

Read re-alignment to genome sequences. The supporting
reads, both split and spanning reads, of a fusion breakpoint
are further evaluated at a genomic level by aligning all ex-
tracted reads to the human reference genome (GRCH38)
using HISAT2 –spliced-alignment model with –no-softclip
setting (Figure 1). Supporting reads that are found to align
to multiple locations are filtered out. This approach im-
proves specificity and ensures that supporting reads that
originate from repetitive sequences or gene homologs are
not included in the support of a fusion breakpoint. In this
step, singleton-split reads are also renamed as discordant-
split reads if the unmapped read partner could be aligned
uniquely to a gene partner at the genomic level.

Summary of fusion breakpoint support and cohort level statis-
tics. A minimum support of two discordant-split reads is
required to call a positive fusion breakpoint in a given sam-
ple. In addition, when the coverage of the fusion transcript
is low, supported by only two or three split reads for each
sample, the read coverage can show an uneven distribution
between Scaffold partA or Scaffold partB regions. This un-
even distribution can be attributed to either a sampling bias
of a random distribution or an indication of artifact fusion
sequences. For a better overview of the mapping distribu-
tion for a given scaffold, split reads across all samples in a
cohort can be concatenated and aligned to the scaffold se-
quence. A Chi-squared test is then applied to test whether
there is a significant bias in the distribution of the number
of reads mapped to the upstream and downstream parts of
the fusion scaffold sequence (Figure 1).

Benchmarking and data simulation

To compare the performance of our scaffold align-
ment approach on detecting known and previously val-
idated fusion transcripts to that of established de novo
fusion finders, we applied ScaR together with deFuse
v.0.7.0 (20) and FusionCatcher v.1.00 (21) on the ex-
ternal TGCT and normal testis data sets from TCGA
and GTEx. We used the Ensembl release 89 annotation
database for all tools to avoid bias from different annota-
tions. deFuse was run with ‘span count threshold = 1 &
split min anchor = 6’, and FusionCatcher was run with
‘–paranoid-sensitive’, otherwise default parameters were
used for both tools. We searched for the fusion transcripts
RCC1-ABHD12B, RCC1-HENMT1, CLEC6A-CLEC4D
and EPT1-GUCY1A3, as previously identified and charac-
terized in TGCT by Hoff et al. (14). The Unix command line
tool grep was also applied as a simple blunt tool for compar-
ison to our scaffold approach. A string of 15 bp matching
the gene on each side of the known breakpoints (30 bp to-
tal) was searched for in the fastq files and a minimum of two
split reads were required for a positive call.

To further benchmark ScaR and the scaffold realign-
ment approach on a controlled data set, we simulated RNA-
seq reads from synthetic fusion transcripts using the MAQ
v0.7.1 tool (22). Briefly, we simulated paired-end reads from
in total 150 synthetic fusion transcripts, previously used for
benchmarking in the SOAPfuse paper (23). After remov-
ing 20 fusion transcripts due to a high degree of sequence
similarity between the gene partners and their paralogs and
failure to lift over coordinates, a subset of 130 were finally
used for benchmarking analysis in this study. Importantly,
none of the fusion transcripts were between gene paralogs
and also with an intergenic distance of >50 kb. Based on
the breakpoint positions and genes listed in SOAPfuse (23),
lifted over to GRCH38, we randomly selected one over-
lapping transcript isoform for each gene partner from En-
sembl release 89 annotation and created the fused transcript
from the paired transcript sequences. The minimum com-
bined length of synthetic fusion transcripts was set to 500
bp, with a minimum upstream and downstream sequence
length of 100 bp. Paired-end reads (76 bp each) with settings
of background mutation rate, -r = 0.0001, fraction of indels,
-R = 0.01 and a insert size of 170 bp (SD = 25 bp) were
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simulated. Further, different amounts of synthetic reads to
match a gradient sequencing depth of the synthetic fusion
transcripts (5X, 10X, 20X, 30X, 50X, 80X, 100X, 150X and
200X) were generated and then mixed with the RNA-seq
reads from the embryonic stem cell line Shef3.

The fusion finder tools, deFuse, FusionCatcher and
grep, were applied on the simulated data with identical
settings to that previously described. To increase the
robustness of our benchmarking, additional fusion finder
tools (STAR-Fusion v.1.6.0 (24), FusionInspector v.2.0.0
(packaged with STAR-Fusion), SOAPfuse v.1.27 and
JAFFA v.1.0.9 (25)) were applied on this synthetic data
set. Genome indices were built with Ensembl release
89 annotation for all tools. STAR-Fusion was run with
‘–chimSegmentMin 6’, ‘–chimJunctionOverhangMin
6’, ‘–min FFPM 0’, ‘–no annotation filter’ and oth-
erwise default parameters. FusionInspector, which is
packaged together with STAR-Fusion, was given a
list of the 130 simulated fusion transcripts as input
and run with ‘require LDAS 0’, ‘–min sum frags 1’,
‘–min junction reads 0’, ‘–min novel junction support
2’, ‘–min spanning frags only 2’ and otherwise
default parameters. SOAPfuse was run with
‘PA s07 the minimum span reads for junction construction
= 1’, ‘PA s08 min bases covered both sides around fuse point
= 6’ and otherwise default parameters. JAFFA was run in
hybrid mode with ‘overHang = 6’ and otherwise default
parameters. A minimum of two supporting split reads
was set as a cutoff for all applied fusion finder tools when
calling the simulated fusion transcripts. Grep was also
applied on the simulated data with identical search string
patterns as previously described. For ScaR and the scaffold
realignment approach, we generated scaffolds of the 130
synthetic transcripts and required a minimum of two
discordant split reads as support. The sensitivity of these
tools to detect the synthetic fusion transcripts in different
mixtures was compared and reported.

Execution time and memory usage were compared for
ScaR, FusionInspector and grep on both simulated data
and real TCGA data. Benchmarking analyses were per-
formed in the Abel high performance-computing cluster
(16 CPU cores, 64 Gb size of physical memory per node
and CentOS 6 operating system) at the University of Oslo.
Four CPUs were allocated for the ScaR and FusionInspec-
tor jobs.

TGCT hierarchical clustering and differential expression
analysis

To perform hierarchical clustering and differential expres-
sion analysis of the 150 TGCT samples from the TCGA co-
hort, we acquired raw gene count data produced by HTSeq-
count from NCI’s Genomic Data Commons (http://xena.
ucsc.edu) as well as clinical data including the International
Classification of Diseases for Oncology (ICD-O) morpho-
logical codes (the latter being available for 134 of the 150
samples; Supplementary Table S3). Mutation data for the
150 samples were also acquired from cBioportal. The DE-
Seq2 R package (26) was used to perform data normaliza-
tion and differential expression analysis. Genes that were
not expressed across the cohort were removed from further

analyses. Prior to performing principal component anal-
ysis (PCA) and hierarchical clustering, variance stabiliz-
ing transformation was applied on the raw counts. PCA
was then performed with the top 500 variable genes used
for principal components. Hierarchical clustering was per-
formed on the transformed raw counts using the top 50
most variable genes, clustering on both samples and genes.
Clustered heat maps were produced with the pheatmap R
package, plotted together with annotation tracks including
ICD-O histological subtypes, fusion transcript status (de-
termined by ScaR) and mutation data of known TGCT
driver genes. Mutation status was plotted for genes previ-
ously implicated in TGCT and that were mutated in two or
more samples in the TCGA cohort. Differential expression
analysis was performed on RCC1-ABHD12B positive sam-
ples versus negative samples and CLEC6A-CLEC4D posi-
tive versus negative samples, both controlling for the effect
of ICD-O histology subtypes.

RESULTS

Overview of the ScaR workflow

Here, we sought to establish the frequency of known
and previously validated fusion transcripts in a larger co-
hort of TGCT patients and we report the development
of ScaR––a tool for sensitive detection of known fusion
transcripts, which is openly available at https://github.com/
senzhaocode/ScaR. ScaR takes any fusion scaffold se-
quence, or genomic junction coordinates, as input together
with raw RNA-seq data to return the number of spanning
and discordant- / singleton- split reads supporting the scaf-
fold sequence (Figure 1). Finally ScaR can summarize the
number of supporting reads across a larger cohort. We ap-
plied ScaR to investigate the recurrence of four previously
described fusion transcripts (RCC1-ABHD12B, CLEC6A-
CLEC4D, RCC1-HENMT1 and EPT1-GUCY1A3) in 150
primary TGCT samples using RNA-seq data from TCGA.
Overall, we find that ScaR has a sensitivity that is superior
to tools such as deFuse and FusionCatcher and the basic
grep method in detection of four known fusion transcripts
in TGCT.

Optimization of ScaR parameters

To balance sensitivity and specificity for fusion transcript
detection with ScaR, we investigated the sensitivity of de-
tecting the TGCT fusion transcripts with a variable thresh-
old. We also applied the fusion finder tools, deFuse and
FusionCatcher, which calls fusion breakpoints in a de novo
manner, as well as the basic grep method, to provide a ref-
erence for the performance of ScaR. As expected, the de-
tection rate decreased with increasing the minimal thresh-
old of required split reads for all four methods, but ScaR
consistently achieved a higher sensitivity compared with the
other three tools when setting the threshold below 5 re-
quired split reads (Figure 2). All of the four tools show a low
sensitivity of detection and a high false negative rate when
strict criteria (split read number > 5) are applied for fusion
nomination. To evaluate the reads mapping to the different
scaffold sequences, ScaR has the ability to concatenate all
supporting split reads from a given cohort (in this case the

http://xena.ucsc.edu
https://github.com/senzhaocode/ScaR
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Figure 2. ScaR performance on TGCT data from TCGA. Comparison
of sensitivity between ScaR and other tools (deFuse, FusionCatcher, grep
and Combine; combination of the three other tools) for fusion transcripts
RCC1-ABHD12B (A), CLEC6A-CLEC4D (B) and RCC1-HENMT1 (C)
across 150 TCGA TGCT samples. The X-axes show an increasing thresh-
old of minimum required supporting split reads. The Y-axes show the num-
ber of samples with positive detection.

150 TGCT samples) and align them to the scaffold. For ex-
ample from this cohort, 59 samples have detectable RCC1-
HENMT1 with a threshold set to one split read, but 51 of
them have only one discordant-split read support (Figure
2C and Supplementary Table S4). We found that 62 reads
from 38 of the 51 samples aligned to a scaffold sequence
that show a biased distribution around the scaffold break-
point sequence with a shift toward the RCC1 part of the
scaffold (P = 3 × 10−15; Chi-squared test; Supplementary
Figure S1J), indicating that these are false positives. The
same pattern was observed for the fusion scaffold RCC1-
ABH12B alt1 (Supplementary Figure S1B), but without a
significant P-value, probably due to the small number of
supporting reads. This coverage bias in the consensus of
split read alignments indicates that the reads mapping to
the breakpoint scaffold sequences of RCC1-HENMT1 alt1
and RCC1-ABH12B alt1 are most likely mapping artifacts
and that these fusion scaffolds represent false positives.
These are therefore excluded from further analysis. Over-
all, from these results, we find that a minimal requirement
of two discordant-split reads represents a good balance be-
tween sensitivity and specificity for fusion nomination by
the ScaR approach, which is further used as a threshold for
fusion detection in this study.

ScaR––benchmarking using simulated fusion transcript read
data

To evaluate the performance of ScaR on a controlled data
set, we simulated RNA-seq data from 130 synthetic fusion
transcripts (Supplementary Table S5). Various amounts of
reads were simulated at 5X to 200X coverage of these syn-
thetic fusion transcripts and mixed in silico with real RNA-
seq data from the ES cell line Shef3. Briefly, 97.5% of the
synthetic reads were found to map to the genome. The num-
ber of discordant split reads detected by ScaR for the syn-
thetic fusion transcripts showed a perfect correlation with
the number of simulated reads with the increase of simu-
lated sequencing coverage (r = 0.99, P = 1 × 10−15, Pear-
son correlation). We further performed a comprehensive
benchmark comparison of ScaR, deFuse, FusionCatcher,
grep, SOAPfuse, STAR-Fusion, STAR-Fusion; FusionIn-
spector and JAFFA to detect these fusion transcripts (Fig-
ure 3 and Supplementary Table S5). ScaR was able to de-
tect 123 out of the 130 fusion transcripts (95%) at 5X cov-
erage of simulated data, with median of four split reads
and one spanning read. At all other sequencing depth lev-
els, ScaR reached 100% detection rate of the synthetic fu-
sion transcripts. In comparison, the best performing estab-
lished fusion finder, in terms of sensitivity, at 5X coverage
was deFuse with 105/130 synthetic fusion transcripts de-
tected. However, it should be noted that deFuse was run
with very non-stringent criteria and nominated on average
155917 fusion breakpoints per simulated sequencing depth
level in the raw output file. The use of grep for a 30 bp
search string (15 bp upstream and downstream of break-
point) could identify 107/130 synthetic fusion transcripts
at 5X coverage, while a combination of all the other fu-
sion tools, together with grep, in total detected 122/130 at
this level. Of note, none of the other fusion tools could
achieve 100% detection rate at any level of coverage. How-
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Figure 3. ScaR performance on simulated data. Benchmarking perfor-
mance of ScaR, grep and all established fusion finder tools applied on sim-
ulated RNA-seq data showing the number of synthetic fusion transcripts
detected at simulated coverage levels ranging from 5X to 200X. Combine
indicates a union detection by all established fusion tools, including grep.

ever, a combination of the tools detected all 130 synthetic
fusion transcripts at 10X coverage and above. Execution
time and memory usage of ScaR, FusionInspector and grep
were compared both for detecting the 130 synthetic fusion
transcripts in simulated data (5X to 200X) and for detect-
ing the RCC1-ABHD12B fusion transcript in real RNA-seq
data from 150 TGCT samples. ScaR was the fastest tool for
detecting the RCC1-ABHD12B fusion transcript per sam-
ple in TCGA data (Supplementary Table S6). For detecting
the 130 synthetic fusion transcripts in simulated data, ScaR
used considerably longer runtime compared to that of Fu-
sionInspector and grep (Supplementary Table S6). In terms
of memory consumption, FusionInspector used the maxi-
mum amount with on average 41 Gb memory per sample,
whereas ScaR used on average 6.3 Gb memory on simulated
data (Supplementary Table S6).

Known fusion transcripts in TGCT are frequently detected by
applying ScaR to larger cohorts

To further evaluate the performance of ScaR on real
biomedical data, we applied ScaR on the TGCT TCGA co-
hort to detect the previously described fusion transcripts.
Specifically, for RCC1-ABHD12B (Figure 4A), ScaR de-
tected the fusion transcript in 13 samples (8.7%) with at
least two supporting discordant-split reads (Supplementary
Table S4). In comparison, deFuse, FusionCatcher and grep
detected the fusion in only one (0.6%), five (3.3%) and
eight (5.3%) samples, respectively. By merging the results
from these three tools, RCC1-ABHD12B was detected in
10 unique samples, where all except one sample (TCGA-
XE-A8H4; Figure 4A) overlapped with the positive sam-
ples from ScaR. ScaR failed to report the fusion tran-
script in this sample because one of two supporting split
reads is a singleton-split type (Supplementary Table S4).
ScaR detected RCC1-ABHD12B in four additional unique

samples compared to the other three tools. For CLEC6A-
CLEC4D (Figure 4B), we evaluated six different fusion
breakpoint scaffolds between the two neighboring genes,
as have previously been reported ((14); Supplementary Ta-
ble S4). Samples with reads supporting any of these scaf-
fold sequences were regarded as positives. In total, ScaR
detected the fusion transcript in 42 (28%) samples, which is
higher compared to the frequency identified by deFuse (11;
7.3%), FusionCatcher (33; 22%) and grep (23; 14.7%). Im-
portantly, five of 42 samples detected as positive by ScaR
failed to be nominated by any of the three other tools.
All positive samples except three cases detected by the
deFuse, FusionCatcher or grep are also identified by ScaR.
Two of these (TCGA-2X-A9D6 and TCGA-WZ-A8D5) are
uniquely identified with grep and have two supporting split
reads. For both samples, one of the reads show unspecific
multiple alignment at genomic level and is therefore fil-
tered out by ScaR. The third sample (TTCGA-VF-A8AA)
is exclusively detected by deFuse. We found that the anchor
length for supporting split read alignments for this sample is
4 bp, below the minimum requirement of ScaR. For RCC1-
HENMT1, ScaR detected the fusion transcript in only one
sample (TCGA-WZ-A7V3) when not regarding samples
with support for the unreliable RCC1-HENMT1 alt1 scaf-
fold. FusionCatcher detected RCC1-HENMT1 in a single
sample (TCGA-XY-A8S3), while deFuse and grep failed
to detect the fusion transcript in any of the 150 samples
(Supplementary Table S4). The RCC1-HENMT1 break-
point sequence nominated by FusionCatcher was found to
span from the 3′UTR region of RCC1 to an intronic re-
gion of HENMT1, with the downstream part of the break-
point sequence having a high number of homologues se-
quences sharing a high percentage of sequence identity.
The fusion EPT1-GUCY1A3 could not be rediscovered by
any of these four tools, with zero spanning and split reads
identified. These findings indicate that EPT1-GUCY1A3 is
most likely a private fusion event. We further investigated
the scaffold alignments for the samples that were uniquely
called by ScaR and not by any of the other tools. For
RCC1-ABHD12B and CLEC6A-CLEC4D that were de-
tected uniquely by ScaR in four and five samples, respec-
tively, we found that the mapping qualities of the reads at
the breakpoint sites were of high quality with an even dis-
tribution to upstream and downstream regions, suggesting
that these samples are indeed positive (Figure 4A and B).

TGCT fusion transcripts are malignancy specific and not de-
tected in normal testis tissue samples from the GTEx consor-
tium

We furthermore evaluated the prevalence of these fusion
transcripts in 198 normal testicular samples from GTEx
project using ScaR. In brief, none of the investigated fu-
sion transcripts could be detected in any of the normal sam-
ples (Supplementary Table S7). For the fusion transcript
CLEC6A-CLEC4D where the two genes are located only
30 kb apart on chromosome arm 12p, we detected only two
split reads and one spanning read all in distinct samples
across the 198 samples. Therefore, none of the samples pass
the threshold for detection. Similarly, no split or spanning
reads are identified for RCC1-ABHD12B and one spanning
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Figure 4. Fusion transcript detection in TGCTs. Overview of TGCT samples from TCGA (n = 150) that are positive for the fusion transcripts RCC1-
ABHD12B (A) and CLEC6A-CLEC4D (B) among the four tools: ScaR, deFuse, FusionCatcher and Grep. Split read alignments of positive samples
uniquely identified by ScaR are visualized using IGV. The ICD-O histology codes are shown as annotated by TCGA.

read is identified for RCC1-HENMT1 across all 198 GTEx
samples. Importantly, reads from the GTEx data aligned to
genome show a mapping percentage with a median value
of 93.5% (only one sample < 85%) compared to 95.5% for
the TCGA tumor samples. Additionally, the GTEx samples
have a median sequencing output of 6.5 Gbp compared to
the median sequencing output of the TCGA tumor sam-
ples of 5.6 Gbp. These results indicate that the failure to
detect the investigated fusion transcripts in normal GTEx
samples is not due to differences in sequencing power be-
tween cohorts, and that these fusion transcripts are specifi-
cally present in TGCT and not in normal tissue of the testis.
This is in accordance with previously published experimen-
tal RT-PCR data (14), although then from relatively few
samples.

CLEC6A-CLEC4D and RCC1-ABHD12B are more fre-
quently detected in the undifferentiated seminoma and em-
bryonal carcinoma like subgroups, respectively

To investigate the biological associations of the fre-
quently identified fusion transcripts CLEC6A-CLEC4D
and RCC1-ABHD12B in data from the TCGA cohort, we
performed principal component analysis on gene expres-
sion data from the 150 TGCT samples. Not surprisingly,
we found that the samples cluster roughly into three groups
that correspond well to the annotated ICD-O histological
subtypes by TCGA (Supplementary Figure S2A). The three
groups comprise mostly of seminomas, embryonal carcino-
mas and a third subgroup with the more differentiated his-

tological subtypes and a high frequency of mixed tumors.
Further, we performed hierarchical clustering with the 50
most variable genes across the cohort and annotated the
samples with somatic mutation calls in known TGCT driver
genes, as well as the fusion transcript status, as determined
by ScaR (Figure 5). Among the top 50 most variable genes,
we found some of the commonly described stem cell associ-
ated genes, such as NANOG, POU5F1 and SOX2. Intrigu-
ingly, we saw a clear enrichment of CLEC6A-CLEC4D ex-
pressing samples within the seminoma-like subgroup (P <
0.0001, Fisher’s exact test; Figure 5 and Supplementary Fig-
ure S2C) together with frequent KIT and KRAS mutations.
For RCC1-ABHD12B there was a clear association with
the embryonal carcinoma-like subgroup, with 12/13 posi-
tive samples clustering within this group (P < 0.0001; Fig-
ure 5 and Supplementary Figure S2B). CLEC6A-CLEC4D
and RCC1-ABHD12B were also largely mutually exclu-
sive, except for two samples that had either a mixed germ
cell tumor or unavailable histological subtype. Further, by
differential expression analysis we also found that RCC1
and ABHD12B were significantly upregulated in the RCC1-
ABHD12B positive subgroup (Supplementary Figure S3A).
Also, both CLEC6A and CLEC4D were among the highest
ranked upregulated genes in the CLEC6A-CLEC4D sub-
group (Supplementary Figure S3B).

DISCUSSION

We have developed, tested and applied the bioinformat-
ics tool ScaR for sensitive assessment of the prevalence of
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Figure 5. Fusion transcripts in TGCT and associated molecular features. Heat map showing fusions, somatic mutations and RNA expression (normalized
RNA-seq counts) of the 50 most variable genes across the TCGA cohort. Individual samples are clustered along the horizontal axis while genes are
clustered on the vertical axis. Annotation tracks include ICD-O histology codes, and fusion transcript status for RCC1-ABHD12B, RCC1-HENMT1 and
CLEC6A-CLEC4D. Somatic mutation status for genes known to be recurrently mutated in TGCT are also shown and colored according to mutation type.

known fusion transcripts in cohorts of cancer samples using
RNA-seq data. ScaR efficiently implements a direct scaf-
fold realignment approach, and we have benchmarked the
tool on simulated data. Importantly, we have evaluated pre-
viously described fusion genes in TGCTs in larger cohorts
from the TCGA and GTEx consortia, and demonstrated
that ScaR achieves a high sensitivity for detecting known
fusions compared to established fusion finder tools that are
developed to call fusion transcripts de novo.

The improved sensitivity will be of value as an expand-
ing array of fusion genes with clinical impact are uncov-
ered. Already, multiple fusion genes occurring in cancer are
predictive for response to kinase inhibitors, and establish-
ing the presence of such fusion genes and their fusion tran-
script products in patients prior to treatment is of impor-
tance. Improved detection sensitivity for a fusion transcript
biomarker can also be important in monitoring a patient’s

response to treatment or in detecting minimal residual dis-
ease, e.g. detecting the presence of BCR-ABL1 in CML pa-
tients undergoing treatment with the kinase inhibitor ima-
tinib. By looking specifically for the fusion transcripts of in-
terest and thereby circumventing the need for strict filters
and thresholds to avoid false positives, due to biological and
technical noise in RNA-seq data, our approach with ScaR
could be better suited for these purposes. Also, as RNA-
seq data from more patients and cancer types are becom-
ing available, establishing the prevalence of known and val-
idated fusion transcripts in expanded and new cohorts is of
importance. For instance, fusion genes involving the kinases
ALK, RET, ROS1 and BRAF have been found in multiple
cancer types, expanding the repertoire of cancers that kinase
inhibitors could target (27).

We show that our tool has an improved sensitivity com-
pared to established fusion gene detection tools, both by
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using simulated data and on real data from TCGA. The
improvement in sensitivity is not unexpected, as ScaR uses
an approach for the detection of known fusion transcripts
with a prior knowledge compared to most other approaches
that nominate fusion transcripts without any prior knowl-
edge of the fusion events. Although there are >40 differ-
ent fusion finder tools available (Supplementary Table S1),
most of them build on similar de novo approaches by read-
alignment, detection of reads or read-pairs that support a
fusion breakpoint and applying different filtering criteria.
We applied deFuse and FusionCatcher in our search for
TGCT fusion transcripts in data from TCGA, on the basis
that deFuse has been an established fusion finder tool for
many years (and still maintained) and that FusionCatcher
has repeatedly performed well in independent comparison
studies on multiple data sets (9,10,20). In the benchmarking
analysis of simulated synthetic fusion transcript data, we
further conducted a comprehensive evaluation by adding
more fusion finder tools (SOAPfuse, STAR-Fusion, Fu-
sionInspector and JAFFA). SOAPfuse, FusionCatcher and
JAFFA were among the best performing tools in an inde-
pendent comparison study including 15 fusion finder tools,
and were suggested combined in a meta-caller (10). STAR-
Fusion is a recent, maintained and widely adopted fusion
finder that is built on the popular STAR RNA-seq read
aligner (28), and it performed well in comparison with other
established fusion finders (24). In addition, FusionInspec-
tor was included in our benchmarking because this tool is
designed for detecting and validating fusion transcript pre-
dictions or known and validated fusions in a similar manner
to ScaR. Our benchmarking results show that ScaR is able
to detect the synthetic fusion transcripts with improved sen-
sitivity compared to all tested tools individually and even
combined at a low level (5X) coverage. Although FusionIn-
spector performed better than STAR-fusion at low cover-
age, its sensitivity was lower than ScaR at all levels. Inter-
estingly, FusionInspector detected fewer fusion transcripts
at higher coverage compared to STAR-Fusion, which prob-
ably is a result of some additional filters applied in this
pipeline. Similarly, none of the established tools were able to
detect all the 130 synthetic fusion transcripts at any level of
coverage, indicating that some of the synthetic fusion tran-
scripts fail to pass the stringent filters applied. However, the
combination of all tools showed a 100% detection rate from
10X coverage, underlining that there is not a systematic bias
for some of the synthetic fusion transcripts calling and that
different filters for the different tools may lead to the ob-
served results. Comparison of execution time and memory
usage showed that ScaR has a relatively small memory re-
quirement compared to that of FusionInspector. Although
the performance of FusionInspector in runtime was more
efficient than ScaR for detecting hundreds of fusion tran-
scripts in the nine levels of simulated data, ScaR was the
fastest tool for detecting the RCC1-ABHD12B fusion tran-
script in the 150 TGCT samples. Nevertheless, the main pur-
pose of ScaR is not to be the fastest tool, but to enable effi-
cient establishment of the prevalence of one or a few fusion
breakpoints in large patient cohorts.

Most fusion tools that work without prior knowledge of
fusion events relies on spanning reads to nominate gene
partners of fusion genes and split reads are consequently

used to refine the exact breakpoint sequences. The amount
of spanning read pairs for a given fusion breakpoint is
highly dependent on the insert size of the read-pairs in each
RNA-seq library. In fact, in sequencing libraries with very
short or negative insert sizes (overlapping single-end reads)
the number of supporting spanning reads may be very low
or completely absent leading to a reduced sensitivity of de-
tection. By providing ScaR with an already known fusion
breakpoint, we can avoid this bias of insert size. In addition,
for some fusions, the breakpoint in the upstream gene part-
ner can be close to the transcript start site, with distance less
than the read length. As a consequence, the sequence from
the upstream gene partner can be too short to detect span-
ning reads, which can reduce the sensitivity of other fusion
tools. ScaR not only uses split-reads as the main support for
a given fusion breakpoint, but also provides the supporting
spanning reads in the output, which may be used for down-
stream purposes. This is one of the major impacts on the im-
proved sensitivity we see with ScaR compared to established
fusion tools. The unix tool grep, which we also compared
to, has been used as a direct approach to indicate the pres-
ence of fusion transcripts from RNA-seq data (11). How-
ever, this approach suffers from requiring a perfect match
to the query sequence in RNA-sequencing reads, not allow-
ing for single mismatches, indels or variable anchor lengths
(In Supplementary Figure S4, a few samples are shown to
have fusion supporting split reads with mismatched bases
that grep fails to detect). The search string given to grep is
in addition static, and in this study matching 15 bp on each
side of the fusion breakpoints (30 bp total). Using grep to
allow a junction overhang of 6 bp to resemble parameters
of ScaR and other tools included would result in many un-
specific hits if a 12 bp total length query sequence is applied
for search, or requiring multiple grep commands with a dy-
namic sliding window string. The latter option is possible,
but computationally demanding and time-consuming (e.g.
requiring 19 search strings with a total length of 30 bp and 6
bp overhang to grep). Indeed, execution time for ScaR was
shorter for detecting the RCC1-ABHD12B fusion in TCGA
RNA-seq data compared to grep for the same fusion, even
when using single static 30 bp sequences. Also, supporting
reads from the grep approach are not confirmed to be un-
ambiguously mapping to the breakpoint sequence, or if they
potentially map ambiguously to multiple sequences in the
genome. ScaR circumvents these drawbacks and improves
the sensitivity while balancing specificity by using a dedi-
cated aligner for aligning reads to a fusion specific scaffold
sequence and further mapping supporting reads back to the
genome to avoid ambiguous supporting reads. For exam-
ple, in the 150 synthetic fusion transcripts previously used
for benchmarking in the SOAPfuse paper, 16 fusions were
identified with different degrees of multi-mapping split and
spanning reads from 5X to 200X coverage (Supplementary
Table S8), as one or two of their partner genes had paralogs
with moderate to high level of sequence similarity. These 16
fusion transcripts were excluded from the final simulation
data and benchmarking analyses to avoid biases to fusion
calling.

ScaR requires the use of a transcriptome annotation and
generates the fusion scaffold from exonic sequences of tran-
scripts matched to the input breakpoint sequence. Cur-
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rently, we include three options of major transcriptome an-
notation resources (Ensembl, GENCODE and UCSC) in
ScaR. In addition, we allow a user-defined annotated refer-
ence sequence as input, which could involve non-coding se-
quences from intronic and intergenic regions. It extends the
functionality of ScaR to evaluate fusion transcripts from al-
ternative promoter or new splicing events that are not pre-
viously annotated in any of the three major transcriptome
annotations.

Here, our aim was to validate the presence and explore
on the prevalence of fusion transcripts we previously dis-
covered to be recurrent in a small cohort of TGCTs (14), in
a larger cohort from TCGA. Admittedly, we initially found
that the frequency of samples positive for these fusion tran-
scripts was much lower than what we previously established
with quantitative real-time PCR in our cohort of TGCTs.
We therefore explored if these fusion transcripts could be
expressed at low levels in a larger number of samples, and
that more sensitive approaches were needed to detect this
signal in RNA-seq data. By developing and applying ScaR,
we discovered that these fusion transcripts, especially the
read-through CLEC6A-CLEC4D and the interchromoso-
mal fusion RCC1-ABHD12B, are detectable in a higher
frequency of TGCTs than what could be established with
previously established fusion finder tools. Importantly, we
also show that our sensitive detection approach with ScaR
does not uncover these fusion transcripts in any samples
from a large cohort of normal testis samples (GTEx), in-
dicating a high specificity of ScaR and that these fusion
transcripts, albeit being expressed at low levels, are cancer-
specific. Further, by hierarchical clustering on gene expres-
sion data from the TCGA, we show that the TGCT sam-
ples cluster according to their histological subtypes (16), in
line with previous publications on gene expression in TGCT
(29). From the heat map in Figure 5, we see that CLEC6A-
CLEC4D is significantly enriched in samples of the undif-
ferentiated seminoma-like cluster, while RCC1-ABHD12B
is significantly enriched in samples of the undifferentiated
embryonal carcinoma-like cluster. These findings support
our previous results that showed that RCC1-ABHD12B ex-
pression, but not CLEC6A-CLEC4D expression, was sig-
nificantly reduced when a pluripotent embryonal carcinoma
cell line (NTERA2) was differentiated in vitro (14). These
observations support a biological significance of these fu-
sion transcripts being markers of pluripotent TGCTs.

In conclusion, we have developed ScaR, a tool that uses
a scaffold alignment approach for sensitive detection of
known fusion transcripts in RNA-seq data. Such sensitive
detection of known fusion transcripts will be of impor-
tance in personalized cancer medicine. Further, we have
used ScaR to establish that the RCC1-ABHD12B and
CLEC6A-CLEC4D fusion transcripts are frequently de-
tected in TGCTs and associated with the undifferentiated
embryonal carcinoma and seminoma histological subtypes.

DATA AVAILABILITY

ScaR is freely available via GitHub and its implementation
is explained in the manual and tutorials: https://github.com/
senzhaocode/ScaR.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.

ACKNOWLEDGEMENTS

We would like to thank Jonas M. Strømme for his valuable
suggestions and input on the study.

FUNDING

Norwegian Cancer Society [PR-2007-0166 to S.Z., A.M.H.,
R.I.S.]; Research Council of Norway [FRIPRO project
number, 262529]; NorStore [storage of computational data,
NS9013K]; Notur [CPU hours from the Abel supercom-
puter, NN9313K].
Conflict of interest statement. None declared.

REFERENCES
1. Nowell,P.C. and Hungerford,D.A. (1960) A minute chromosome in

human chronic granulocytic leukemia. Science, 142, 1497.
2. Shtivelman,E., Lifshitz,B., Gale,R.P. and Canaani,E. (1985) Fused

transcript of abl and bcr genes in chronic myelogenous leukaemia.
Nature, 315, 550–554.

3. Heisterkamp,N., Stephenson,J.R., Groffen,J., Hansen,P.F., de
Klein,A., Bartram,C.R. and Grosveld,G. (1983) Localization of the
c-abl oncogene adjacent to a translocation break point in chronic
myelocytic leukaemia. Nature, 306, 239.

4. Groffen,J., Stephenson,J.R., Heisterkamp,N., de Klein,A.,
Bartram,C.R. and Grosveld,G. (1984) Philadelphia chromosomal
breakpoints are clustered within a limited region, bcr, on
chromosome 22. Cell, 36, 93–99.

5. Mertens,F., Johansson,B., Fioretos,T. and Mitelman,F. (2015) The
emerging complexity of gene fusions in cancer. Nat. Rev. Cancer, 15,
371–381.

6. Hu,X., Wang,Q., Tang,M., Barthel,F., Amin,S., Yoshihara,K.,
Lang,F.M., Martinez-Ledesma,E., Lee,S.H., Zheng,S. et al. (2017)
TumorFusions: an integrative resource for cancer-associated
transcript fusions. Nucleic Acids Res., 46, D1144–D1149.

7. Yoshihara,K., Wang,Q., Torres-Garcia,W., Zheng,S., Vegesna,R.,
Kim,H. and Verhaak,R.G.W. (2014) The landscape and therapeutic
relevance of cancer-associated transcript fusions. Oncogene, 34,
4845–4854.

8. U.S. Food & Drug Administration (2018) FDA approves an oncology
drug that targets a key genetic driver of cancer, rather than a specific
type of tumor. http://www.fda.gov/news-events/press-
announcements/fda-approves-oncology-drug-targets-key-genetic-
driver-cancer-rather-specific-type-tumor.

9. Kumar,S., Vo,A.D., Qin,F. and Li,H. (2016) Comparative assessment
of methods for the fusion transcripts detection from RNA-Seq data.
Sci. Rep., 6, 21597.

10. Liu,S., Tsai,W.-H., Ding,Y., Chen,R., Fang,Z., Huo,Z., Kim,S.,
Ma,T., Chang,T.-Y., Priedigkeit,N.M. et al. (2015) Comprehensive
evaluation of fusion transcript detection algorithms and a meta-caller
to combine top performing methods in paired-end RNA-seq data.
Nucleic Acids Res., 44, e47.

11. Panagopoulos,I., Gorunova,L., Bjerkehagen,B. and Heim,S. (2014)
The ‘grep’ command but not FusionMap, FusionFinder or
ChimeraScan captures the CIC-DUX4 fusion gene from whole
transcriptome sequencing data on a small round cell tumor with
t(4;19)(q35;q13). PloS One, 9, e99439.

12. Znaor,A., Lortet-Tieulent,J., Jemal,A. and Bray,F. (2014)
International variations and trends in testicular cancer incidence and
mortality. Eur. Urol., 65, 1095–1106.

13. Haugnes,H.S., Bosl,G.J., Boer,H., Gietema,J.A., Brydøy,M.,
Oldenburg,J., Dahl,A.A., Bremnes,R.M. and Fosså,S.D. (2012)
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