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Abstract: In recent years, poly (ADP-ribose) polymerase (PARP) inhibition has become a promising therapeutic option for several 
tumors, especially for those harboring a BRCA 1–2 mutation or a deficit in the homologous recombination repair (HRR) pathway. 
Nevertheless, to date, PARP inhibitors are still not largely used for thoracic malignancies neither as a single agent nor in combination 
with other treatments. Recently, a deeper understanding of HRR mechanisms, alongside the development of new targeted and 
immunotherapy agents, particularly against HRR-deficient tumors, traced the path to new treatment strategies for many tumor types 
including lung cancer and malignant pleural mesothelioma. The aim of this review is to sum up the current knowledge about cancer- 
DNA damage response pathways inhibition and to update the status of recent clinical trials investigating the use of PARP inhibitors, 
either as monotherapy or in combination with other agents for the treatment of thoracic malignancies. We will also briefly discuss 
available evidence on Poly(ADP-Ribose) Glycohydrolase (PARG) inhibitors, a novel promising therapeutic option in oncology. 
Keywords: lung cancer, PARP inhibitors, PARG inhibitors, homologous recombination repair, malignant pleural mesothelioma, 
targeted treatment

Introduction
Thoracic malignancies have emerged as models for development of novel targeted therapies due to a deeper under-
standing of key molecular alterations driving tumor development and progression, in particular considering oncogene- 
addicted non-small-cell lung cancer (NSCLC):1 it is estimated that around 70% of advanced NSCLC patients have 
druggable mutations in numerous genes, including epithelial growth factor receptor (EGFR), anaplastic lymphoma kinase 
(ALK), c-ros oncogene 1 (ROS1), Kirsten rat sarcoma virus (KRAS), V-raf murine sarcoma oncogene homolog B1 
(BRAF), MET, human epidermal growth factor receptor (HER2), and others. On the other hand, the identification of 
novel targetable alterations is still an unanswered need considering small-cell lung cancer (SCLC) and malignant pleural 
mesothelioma (MPM).

In recent years interest in developing drugs targeting mutations in different mechanisms involved in DNA repair is 
growing: poly (ADP-ribose) polymerases (PARP) and genes related to DNA homologous recombination repair (HRR) 
are crucially involved in the process of protecting cells from DNA damaging agents such as chemotherapy or ionizing 
radiation.

In particular, the DNA repair mechanisms involved in maintaining genomic integrity can be divided into base- 
excision repair (BER), nucleotide-excision repair (NER), mismatch repair (MMR), homologous recombination (HR) and 
non-homologous end-joining (NHEJ) recombination repair. Poly (ADP-ribose) polymerase-1 and -2 (PARP-1 and PARP- 
2) are nuclear enzymes that synthesize ADP-ribose polymers using Nicotinamide Adenine Dinucleotide (NAD)+ as 
a substrate; PARP-1 and -2 are essential components of BER, responsible for the protection of DNA damage induced by 
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radiation and monofunctional alkylating agents.2 In addition, some damage to DNA can be repaired directly; for 
example, methylation of guanine bases is directly reversed by the protein O6-methylguanine DNA methyltransferase 
(MGMT).

Poly(ADP-ribose) glycohydrolase (PARG) antagonizes the action of PARP enzymes, hydrolyzing the ribose–ribose 
bonds present in poly(ADP-ribose). Similarly to PARPs, PARG is involved in DNA replication and repair and PARG 
depleted/inhibited cells seem to be much more sensitive to DNA damaging agents exposure, thus providing an increased 
storage of perturbed replication intermediates which can lead to synthetic lethality. Moreover, PARG shares a main role 
in parthanatos, a caspase-independent cell death modality.3 Although agents able to specifically target PARP enzyme, 
universally known as PARP inhibitors (PARPi), have been initially developed for the treatment of BRCA1 (BReast 
CAncer gene 1) and BRCA2 (BReast CAncer gene 2) mutated tumors, they are now being explored in a wide variety of 
cancers presenting somatic deficiencies within the HRR pathways (Figure 1).4

Therefore, BRCA mutation and HRR status are exploited as biomarkers of PARPi response and the evaluation for the 
HRR-signature is currently of great interest in scientific research given its promising therapeutic implications.

The synthetic lethal interaction between PARP inhibitors and BRCA1/2 mutations has been documented since the first 
human clinical trial of PARP inhibitor olaparib in 2009. In the next few years olaparib was approved for ovarian, breast, 
and pancreatic cancer in 2014, rucaparib for ovarian cancer was approved in 2016, and niraparib for ovarian cancer was 
approved in 2017. In 2018, talazoparib was approved for breast cancer treatment.5

Figure 1 PARP inhibitor, mechanism of action. Chemotherapy, ionizing radiation can promote single-strand breaks (SSB) in the DNA. PARP, through the pathway of base 
excision repair (BER), is involved in SSB repair. In the presence of a PARP inhibitor the SSB cannot be repaired by BER pathway and can be turned into a double-strand break 
(DSB). The homologous recombination (HR) pathway is involved in DSB repair. A HR-deficient cell cannot repair DSB, the DSB accumulation is toxic and causes apoptosis 
and cell death. Created with BioRender.com.
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Although the introduction of PARPi as monotherapy or in combination with chemotherapy has proven to be 
ineffective in thoracic tumors, a thorough exploration of these new drugs in the biological and immunological landscape 
underlying HRR-deficient cancers is auspicable considering the advent of new targeted therapy and immunotherapeutic 
agents.

In this regard, although nowadays immunotherapy represents a solid therapeutic option in most thoracic malignancies, 
there are still a lot of patients getting no benefit from it due to a “cold” tumor microenvironment of unknown reasons. 
Novel combinations with unexploited therapeutic agents such as PARPi may help to significantly increase their number.

In this review, we briefly provide an overview of current clinical trials investigating several therapeutic strategies of 
different PARPi in combination with chemotherapy, radiotherapy, immunotherapy, and other targeted agents, in patients 
with small cell lung cancer (SCLC), non-small cell lung cancer (NSCLC), and malignant pleural mesothelioma (MPM).

In contrast to PARPi, the therapeutic potential of PARG inhibitors (PARGi) has been largely ignored. Nevertheless, 
interest in these molecules is rising as they may represent a novel valuable option in cancer treatment, both as single 
agents and in combination with cytotoxic drugs or radiotherapy.

Non-Small Cell Lung Cancer (NSCLC)
PARPi with or without Chemotherapy
Biological Background and Preclinical Data
Although early clinical trials suggested that only tumors with germline and somatic mutations in BRCA 1/2 genes would 
benefit from PARP inhibition, new evidence has recently shown that these targeted agents can also be effective in other 
somatic deficiencies of the HRR pathway that altogether define the “BRCAness” phenotype.4

In particular, both BRCA mutations and BRCAness alterations have been detected in patients with NSCLC6,7 and 
studies on NSCLC models have already shown that mutations of genes involved in DNA repair, for example ERCC1 
(excision repair cross-complementation group 1) deficiencies, led to PARPi sensitivity.8,9

However, a higher prevalence of loss of heterozygosis (LOH) of the mutant allele was identified in lung cancer 
patients with germline BRCA mutations.7 The process of LOH, in which a wild-type allele is lost and only an inactivated 
allele is left in the cancer genome, is frequently involved in the function loss of tumor suppressor genes and a large 
number of potential tumor suppressors were identified by analyzing sites of prevalent LOH in human cancers.10 

Therefore, molecular features other than BRCA mutation also need to be considered.
The SAFIR02-Lung is an open-label, randomized, Phase II trial investigating the efficacy of targeted therapies and 

immune checkpoint inhibitors (ICIs) compared with standard-of-care in patients with advanced epithelial growth factor 
receptor (EGFR) and anaplastic lymphoma kinase (ALK) wild-type NSCLC without progression after first-line che-
motherapy, based on high-throughput genome analysis.11

Considering the 379 patients with a druggable alteration identified, BRCA mutations were found in 20 patients 
(5.3%), though only 2.1% harbored a pathogenic BRCA1/2 mutation, with 75% of somatic mutations and 75% targeting 
BRCA 2 gene. Interestingly, while many genomic alterations in NSCLC are more common in females as they are usually 
related with non-smoking habits,12 all patients with pathogenic BRCA mutations were men and mainly heavy smokers. 
The overall response rate to chemotherapy was 13%. In 12 patients (3.2%), BRCA mutations of uncertain relevance were 
found, leading to an 8.3% overall response rate to treatment. Biallelic inactivation with a high HRD score were seen in 
one-third of tumors carrying pathogenic BRCA mutations or variations of uncertain relevance and overall survival of this 
cohort was 12.8 months.

In conclusion, pathogenic BRCA1/2 mutations occur in 2.1% of patients with advanced NSCLC and the predictive 
role of BRCA mutation for making treatment decisions in NSCLC seems limited based on clinical response (low 
platinum sensitivity) and molecular features (discrepancy between biallelic inactivation and high HRD score).

These results, although from a small cohort, surely contribute to determining BRCA mutation prevalence in a real- 
world population of NSCLC patients and are also coherent with literature: Heeke et al,13 who considered a DNA 
sequencing database of around 52,000 patients that underwent NGS or Sanger sequencing panel testing between 
July 2013 and September 2017, found a BRCA mutation in around 1–2% of patients analyzed.
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Focusing on other HRR genes, changes in coding sequence of ATM (ataxia-telangiectasia mutated) were discovered 
in 12% of lung adenocarcinomas during large-scale genomics research.14

ATR (Ataxia-telangectasia and Rad3 related) kinase inhibitors sensitize lung cancer cell lines to cisplatin in vitro and 
in cell line and patient-derived xenografts in vivo15–18: cisplatin and ATR kinase inhibitors have been demonstrated to 
cooperate in vitro to kill ATM-deficient lung cancer cells and in vivo to resolve ATM-deficient xenografts.15,16,18 

A multicenter Phase 1/1b clinical trial with AZD6738 (NCT02264678) is currently ongoing to test this hypothesis.19

Jette et al20 tested the effects of PARP inhibitor olaparib and ATR inhibitor VE-821 in ATM-knockout A549 cells 
lung adenocarcinoma cells: considering drug sensitivity data from the Genomics of Drug Sensitivity in Cancer (GDSC) 
project in lung cancer cell lines, IC50 (half-maximal inhibitory concentration) values for both olaparib and talazoparib 
were positively linked with ATM mRNA levels and gene amplification status. Conversely, ATM loss was linked to 
a considerable drop in the IC50 for olaparib. In cells with ATM deletion, olaparib caused phosphorylation of DNA 
damage markers and reversible G2 arrest, whereas olaparib with VE-821 caused cell death, evidencing the potential 
efficacy of PARP inhibitors in ATM mutated tumors.

PTEN (Phosphatase and tensin homolog) loss caused by a variety of inherited germline mutations, somatic mutations, 
epigenetic and transcriptional silencing, post-translational modifications, and protein–protein interactions occurs in 4–8% 
of NSCLC and seems to predict a response to PARPi in lung cancer cell lines.21

Sargazi et al22,23 found that the combination of valproic acid, an histone deacetylase inhibitor capable of down-
regulating the DNA repair genes pathway, and AZD2461, a novel PARP1, PARP2, and PARP3 inhibitor, effectively 
induces apoptosis in prostate cancer cell cultures (PC-3) harboring mutations in PTEN. Although the same anti- 
proliferative effect has already been evidenced in breast cancer cells (MCF-7), there is still no evidence of similar 
activity in NSCLC models.24

Considering the combination of PARPi with other therapeutic agents, chemotherapy with platinum compounds or 
other alkylating drugs and ionizing radiation are considered quite promising as they act on tumor cells by damaging 
DNA; on the other hand, the existence of DNA repairing abnormalities is a possible mechanism involved in the tumor 
sensitivity to therapies25,26 and activation of DNA repair pathways induced by these treatment modalities contributes to 
tumor resistance,27 thus offering a strong biological rationale for combining DNA-damaging agents with PARPi.

In preclinical studies, veliparib has demonstrated increased cytotoxicity when administered with platinum com-
pounds, topoisomerase inhibitors, and alkylating agents in general.28,29 The combination of veliparib plus temozolomide 
(TMZ) was investigated in multiple xenograft models: tumor burden, expression of poly (ADP-ribose) polymer, and O6- 
methylguanine methyltransferase were used to assess the combination effectiveness in xenografts from divergent 
histologic tumor types, including B-cell lymphoma, SCLC, NSCLC, ovarian, breast, pancreatic, and prostate models 
implanted in subcutaneous, orthotopic, and metastatic sites. Veliparib (25 mg/kg/day, orally, twice daily for 5–6 days) 
seems to enhance TMZ efficacy (50 mg/kg/day, orally, once daily for 5 days), although different levels of effectiveness 
were reported (from 55 to 100% of tumor growth inhibition), including several regressions. Most interestingly, the 
addition of PARPi to TMZ seems to overcome both TMZ primary and secondary resistance in cancer cells.

Clinical Evidence and Predictive Factors of Response and Efficacy
Starting from this preclinical rationale, several clinical trials are ongoing in investigating PARPi either as a single agent 
or in combination with other therapies in the treatment of thoracic malignancies.

A randomized phase II trial investigated the addition of iniparib to a standard treatment with gemcitabine and 
cisplatin. One hundred and nineteen Stage IV NSCLC patients were randomly assigned to receive gemcitabine (1,250 -
mg/m2, days 1–8) and cisplatin (75 mg/m2, day 1) with or without iniparib (5.6 mg/kg, days 1, 4, 8, and 11) every 3 
weeks for six cycles. Even if the experimental arm improved activity (overall response rate (ORR)=25.6%; 95% 
Confidence Interval (CI)=13.0–42.1% vs 20%; 95% CI=11.9–30.4%), no statistically significant and clinically relevant 
benefit was found in terms of PFS (median PFS=4.3; 95% CI=2.8–5.6 vs 5.7; 95% CI=4.6–6.6 months, Hazard Ratio 
(HR)=0.89; 95% CI=0.56–1.40 and median OS=8.5; 95% CI=5.5 to not reached vs 12; 95% CI=8.9–17.1 months, 
HR=0.78; 95% CI=0.48–1.27). Toxicity was similar between the two cohorts, with no higher incidence of neutropenia/ 
febrile neutropenia or serious systemic infections in the experimental arm.
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The failure of adding iniparib to a chemotherapy backbone in this context may be related with its peculiar mechanism 
of action that differs from other PARPi. In fact, this is since iniparib acts by eliciting cell response by non-selective 
cysteine adduct alteration of multiple proteins.30 Moreover, this proof-of-concept trial was not powerful enough to 
properly assess efficacy of iniparib + chemotherapy combination, even if it is highly likely a single-arm study design 
would have produced similar results.

The combination of the PARPi veliparib (days 1–7 q21 schedule) with carboplatin and paclitaxel (AUC6 and 
200 mg/m2, respectively, day 3 q21 schedule) in naïve stage IV NSCLC patients has been investigated in a phase II 
trial enrolling 158 patients. No differences in PFS, OS, and ORR between the veliparib and placebo group have been 
founded, even if an interesting exploratory analysis31 highlighted a trend toward a PFS benefit in patients with squamous 
histology (above 48% of the ITT population). In addition, the study also stratified patients by smoking history and 
revealed that recent smokers who were given veliparib had significantly better PFS and OS than former smokers 
(HR=2.09; p=0.02 and HR=1.62; p=0.23) and never-smokers (HR=1.02; p=0.97 and HR=1.30; p=0.63).

These results led to the design of a Phase III trial investigating the efficacy and safety of veliparib in combination 
with conventional chemotherapy for untreated advanced squamous NSCLC.32 Patients were randomized to receive 
carboplatin and paclitaxel with either veliparib 120 mg twice daily or placebo twice daily for up to six cycles. Primary 
outcome was OS in the veliparib arm among current smokers, biomarker analysis was performed on archival tumor 
samples using a 52-gene expression histology classifier (LP52) whose positive predictive value had been proved in two 
different trials evaluating veliparib in NSCLC patients. Unfortunateluy, no significant OS benefit with veliparib in current 
smokers was found (median OS=11.9 vs 11.1 months, HR=0.90; 95% CI=0.74–1.10; p=0.26) even if a trend toward 
better OS was found in the veliparib cohort in the overall population (median OS=12.2 vs 11.2 months, HR=0.85; 95% 
CI=0.75–0.97). Focusing on patients with biomarker-evaluable tumor samples, an OS benefit due to veliparib was 
confirmed in the LP52-positive population (median 14.0 vs 9.6 months; HR=0.66; 95% CI=0.49–0.89). To sum up, 
veliparib in combination with first-line chemotherapy provided no therapeutic advantage in current smokers with 
advanced squamous NSCLC, but the LP52 classifier might help to identify a subset of patients who could benefit 
from PARP inhibition.

Another phase II study (NCT02154490) evaluating the clinical efficacy of the PARP inhibitor talazoparib in advanced 
stage and platinum sensitive squamous NSCLC harboring HRR deficiency failed to demonstrate efficacy in the primary 
analysis population, so it was closed early for futility.

Finally, first results from the aforementioned SAFIR02-Lung trial have recently been published: among 116 patients 
receiving NGS-driven target therapies (including PARPi olaparib), no difference in PFS was found in any molecular 
subgroup. Median PFS was 2.7 months (95% CI=1.6–2.9) vs 2.7 months (95% CI=1.6–4.1) both in the experimental and 
in the SOC arm (HR=0.97; 95% CI=0.7–1.36; p=0.87). Though no subgroup analysis exclusively considering olaparib is 
currently available, the results of the target therapy arm are definitely quite disappointing.11

Ongoing clinical trials evaluating the role of PARPi with or without chemotherapy in NSCLC patients are listed in Table 1. 
Published clinical trials evaluating the role of PARPi with or without chemotherapy in NSCLC patients are listed in Table 2.

PARPi + Radiotherapy
Biological Background and Preclinical Data
In the field of radiation therapy, ionizing radiation combined with radiotherapy-enhancing chemicals has the potential to 
improve the efficacy of radiotherapy as a therapeutic method while reducing harmful side-effects and potential damage to 
healthy surrounding tissues.

In particular, PARPi combination with radiotherapy is an interesting matter because of radiation's DNA disrupting effect 
and the paramount role of the PARP enzyme in DNA repair. It follows that PARPi may act as potential radiosensitizers, 
especially for BRCA mutated tumors exploiting PARP enzyme as their main tool to fix DNA alterations: there is evidence in 
literature that the absence of PARP-1 and -2 enzymes, that are both triggered by DNA damage and assist DNA repair, 
enhances tumor sensitivity to ionizing radiation by extending strand breaks and triggering a cell-death signaling cascade. This 
effect could be amplified in tumors with HRR abnormalities and through a synthetic lethality mechanism. However, the impact 

OncoTargets and Therapy 2023:16                                                                                                 https://doi.org/10.2147/OTT.S272563                                                                                                                                                                                                                       

DovePress                                                                                                                         
589

Dovepress                                                                                                                                                            Parisi et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


of PARPi is not limited to modifying DNA damage repair as PARPi show numerous properties that are essential for their 
radio-sensitizing action such as chromatin remodeling inhibition, G2/M arrest, and a vasodilatory action.33

A third of individuals with NSCLC are diagnosed at a locally advanced stage, a setting where chemo-radiotherapy 
(CRT) eventually followed by immunotherapy rather than surgery is the current standard of care. Despite technological 
progress in radiation therapy, tumor intrinsic radio-resistance still affects patients’ outcome and offers an interesting 
application for PARPi in this setting.

Albert et al34 found that veliparib and concomitant radiation reduced endothelial tubule development in vitro and reduced 
vessels formation in vivo, suggesting that this method may also target tumor angiogenesis. Veliparib hindered DNA repair in 
H460 lung cancer cells, as evidenced by increased production of the DNA strand break marker histone -H2AX (H2A histone 
family member X), seems to favor tumor cells death due to both apoptosis and autophagy. Veliparib also delayed tumor growth 
in murine models at well-tolerated doses: cancer cells proliferation was delayed by 1 day for veliparib alone, 7 days for 
radiation alone, and 13.5 days for combination treatment for a 5-fold increase in tumor volume. After the combined treatment, 
immunohistochemical staining of tumor sections suggested an increase in terminal deoxyribonucleotide transferase-mediated 
nick-end labeling apoptotic staining and a decrease in Ki-67 proliferative staining.

Another trial analyzed the effect of PARPi olaparib on H1299 lung cancer cell line with depletion or mutation of p53 
gene using the γH2AX focus formation assay to examine the influence of olaparib on induction and repair of double- 
stranded DNA breaks after exposure to radiation. Even at 0.01 μM, and after a brief exposure interval (2 h) olaparib 
demonstrated a promising radio-sensitizing effect and, although p53-knockout H1299 cells were more radio-resistant 
than p53 wild-type, a benefit from olaparib administration was demonstrated in both subgroups. As tumor cells may be 
exposed to low amounts of olaparib and/or have varying levels of p53 mutation, these properties could be useful to guide 
therapeutic radiotherapy pre-planification.

Table 1 Main Ongoing Clinical Trials Evaluating the Role of PARPi +/- Chemotherapy in NSCLC Treatment

Trial PARPi Other 
Agent(s)

Tumor 
Type

Setting Ph Biomarker 
Selection

Country Estimated 
Sample 
Size

Primary 
Outcome 
Measure/s

NCT04171700 

LODESTAR

Rucaparib – Solid 

tumors

≥2nd line II HRD positive US 220 Best ORR by 

investigator

NCT03845296 

Lung-MAP

Rucaparib – Squamous 

NSCLC

Stage IV II LOH high and/or 

deleterious 
BRCA1/2

US 64 ORR

NCT00576654 Veliparib CPT-11 Solid 

tumors

Stage IV I – US 36 OBD, MTD, 

RP2D

NCT03377556 

Lung-MAP

Talazoparib – Squamous 

NSCLC

2nd line II HRD positive Canada, 

US

51 ORR

NCT04672460 Talazoparib – Solid 

tumors

Metastatic 

or 

advanced

I – Australia, 

US

75 AUC24

NCT04644068 AZD5305 Paclitaxel 

Carboplatin

Solid 

tumors

Metastatic 

or 
advanced

I/II – Global 715 DLT/AEs

NCT02498613 Cediranib 
Olaparib

– Solid 
tumors

Metastatic 
or 

advanced

II – Canada, 
US

126 ORR

Abbreviations: Ph, phase; ORR, Observed Response Rate; HRD, Homologous recombination deficiency; LOH, Loss of Heterozygosity; CPT-11, Irinotecan; OBD, optimal 
biologic dose; MTD, maximally tolerated dose; RP2D, recommended phase II dose; AUC24, 24H-Area Under Curve; DLT, Dose-Limiting Toxicity; AEs, Adverse Events; US, 
United States; UK, United Kingdom; NSCLC, non-small-cell lung cancer.
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Table 2 Main Published Clinical Trials Evaluating the Role of PARPi +/- Chemotherapy in NSCLC Treatment

Trial PARPi Other 
Agent(s)

Tumor 
Type

Setting Ph Biomarker 
Selection

Country/ies Sample 
Size

PrimaryOutcome 
Measure/s

Result

NCT01086254 Iniparib Gemcitabine 

Cisplatin

NSCLC Stage IV II – France, Germany, Italy, 

Spain, UK

119 ORR Neg

NCT01560104 Veliparib Carboplatin 

Paclitaxel

NSCLC Previously untreated 

metastatic or 
advanced

II – Not provided 160 PFS Negative (in squamous 

histology the trend of 
apparent advantage in 

PFS supported the 

design of an ad hoc 
phase III)

NCT02106546 Veliparib Carboplatin 
Paclitaxel

SqNSCLC Previously untreated 
metastatic or 

advanced

III – Europe, Brazil, Canada, 
Egypt, Mexico, 

Netherlands, New 

Zealand, Puerto Rico, 
Russian Federation, South 

Africa, Turkey, US

970 OS in current 
smokers

Neg

NCT02154490 Talazoparib Docetaxel SqNSCLC Stage IV II HRD 

positive

Canada, US 1864 PFS; ORR; OS Closed (the study failed 

to show efficacy in the 
primary analysis 

population so it closed 

earlier)

Abbreviations: Ph, phase; ORR, Observed Response Rate; PFS, Progression-Free Survival; OS, Overall Survival; HRD, Homologous recombination deficiency; US, United States; UK, United Kingdom; NSCLC, non-small-cell lung cancer.
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Clinical Evidence and Predictive Factors of Response and Efficacy
A Phase I–II study (SWOG S1206) evaluated the addition of veliparib to CRT for patients affected by unresectable 
NSCLC35: in the Phase I dose-finding part of the trial, patients received weekly carboplatin (AUC 2) and paclitaxel 
(45 mg/m2) during concurrent thoracic radiotherapy (2 Gy fractions/day, total dose 60 Gy) and veliparib administered at 
three different dose levels (40, 80, and 120 mg, respectively) throughout radiotherapy duration. No dose-limiting toxicity 
(DLT) was seen at veliparib dose of 120 mg twice daily, which was selected for the next phase II part of the study. Thirty- 
one patients were subsequently randomized to receive veliparib or placebo during thoracic radiotherapy with concurrent 
weekly carboplatin and paclitaxel, followed by two cycles of consolidation treatment with carboplatin and paclitaxel plus 
either veliparib or placebo. No difference in PFS was detected between the two arms but an interesting benefit in 1-year 
OS (89% vs 54%) was found in the veliparib arm, though ORR slightly favored placebo (56% vs 69%).

In addition, another recent study with a similar design,36 the M14-360/AFT-07 phase I trial, confirmed the good 
tolerability with promising antitumor activity with a mPFS of 19.6 months for the combination of veliparib + CRT with 
carboplatin and paclitaxel followed by veliparib plus chemotherapy in 48 stage III NSCLC patients.

A phase 1 study evaluated the safety of olaparib in association with loco-regional radiotherapy, with and without 
concurrent cisplatin for locally advanced NSCLC.37 The dose of olaparib was increased in two groups respectively 
treated with radiation (66 Gy/24 fractions in 2.75 Gy/fraction) with and without daily cisplatin (6 mg/m2) using the time- 
to-event continuous reassessment technique with a 1-year DLT period. The maximum tolerable dose (MTD) was 
determined as the highest dose level having a DLT probability of less than 15%. The study enrolled 28 patients with loco- 
regional or oligometastatic disease, of whom 11 were treated with olaparib 25 mg twice daily and 17 with olaparib 25 mg 
once daily. Due to hematologic and late esophageal DLT, the lowest dose level with cisplatin was over the MTD, while 
25 mg once daily was the MTD for olaparib without cisplatin. Severe pulmonary adverse events were detected in five 
patients across all dose levels with a latency of 1–2.8 years, probably due to radiation exposure to the lungs as observed 
in preliminary studies. Olaparib lowered PARP levels (determined in peripheral blood cells) by more than 95% and 
stopped radiation-induced PARylation at the MTD. After an average of 4.1 years, 2-year loco-regional control was 84% 
and median overall survival was 28 months. However, considering high rates of esophageal and hematologic toxicity, 
a combination of moderately hypofractionated radiation with low-dose daily cisplatin and olaparib was not acceptable 
and, even without cisplatin, severe pulmonary damage occurred, thus suggesting that more conformal radiation schedules 
saving the lungs and esophagus should be investigated.

Ongoing clinical trials evaluating the role of PARPi with or without radiotherapy in NSCLC patients are listed in 
Table 3. Published clinical trials evaluating the role of PARPi with or without radiotherapy in NSCLC patients are listed 
in Table 4.

Table 3 Main Ongoing Clinical Trials Evaluating the Role of PARPi + Radiotherapy in NSCLC Treatment

Trial PARPi Other 
Agent(s)

Tumor 
Type

Setting Phase Biomarker 
Selection

Country/ 
ies

Sample 
Size

Primary Outcome 
Measure/s

NCT01386385 Veliparib RT + Carbo 

+ PTX 
vs 

Placebo + RT 

+ Carbo + 
PTX

NSCLC Locally 

advanced

I/II – US 53 MTD determined 

according to incidence 
of DLT; PFS

NCT04550104 

Concorde

Olaparib Radiotherapy NSCLC Locally 

advanced

I – UK 200 DLT within 13.5 

months of starting 

radiotherapy, RP2D of 
each DDRi-RT 

combination

Abbreviations: Ph, phase; PFS, progression-free survival; Carbo, carboplatin; PTX, paclitaxel; US, United States; UK, United Kingdom; RP2D, recommended phase II dose; 
DLT, Dose Limiting Toxicities; MTD, maximum tolerated dose; DCR12, disease control rate at 12 weeks; DDR, DNA Damage Repair; NSCLC, non-small-cell lung cancer.
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PARPi + Immunotherapy
Biological Rationale and Preclinical Data
In the last years the introduction of ICIs in the treatment algorithm of almost every tumor specimen has deeply changed 
clinical practice. NSCLC was among the first tumor type to receive the benefits from this therapeutic revolution.38–44

There is robust evidence about the deep correlation between inhibition of DNA repair pathways and ICIs activity:45,46 

DDR alterations lead to an increase in the tumor mutational burden (TMB) and intrinsic immunogenicity due to tumor- 
specific neoantigen formation,46 while the stimulator of IFN genes (STING) pathway that activates innate antitumor 
immunity acts as an additional DNA damage recognition mechanism via neo-antigen independent pathways (Figure 2).47

The role of PARPi, such as niraparib, combined with anti-programmed cell death-1 (PD-1), has been evaluated in 
BRCA-proficient and BRCA-deficient preclinical models of sarcoma, lung squamous cell carcinoma, colon adenocarci-
noma, breast cancer, and urothelial carcinoma. Following evidence supporting niraparib's role in increasing CD4+ and 
CD8+ immune cell infiltration and type I and type II interferon pathways activity,48 many clinical trials evaluating the 
combination of PARPi and ICIs have been designed, in particular including NSCLC patients where immunotherapy is 
a main option in the clinicians’ therapeutic arsenal.

Clinical Evidence and Predictive Factors of Response and Efficacy
The tumor mutational landscape seems to play an important role in predicting clinical response to ICIs. In NSCLC patients 
treated with anti-PD1 pembrolizumab, TMB has been associated with clinical efficacy in terms of PFS, ORR, OS, and durable 
clinical benefit,49,50 as from a biological standpoint higher TMB levels enhance CD8-positive T-cell intratumoral infiltration 
and inflammatory T-cell-mediated response.51 Finally, DDR mutations in NSCLC patients treated with ICIs have been 
associated with longer PFS (5.4 vs 2.2 months) and OS (18.8 vs 9.9 months) in a study by Ricciuti et al.52

Based on this rationale, several trials were designed to evaluate the association of PARPi and ICIs in NSCLC 
(Table 5). Among these, JASPER study is a multicenter, open-label, 2-stage Phase 2 trial evaluating the association of the 
PARPi niraparib in combination with the PD-1 inhibitor pembrolizumab as first-line treatment in patients affected by 
metastatic and/or locally advanced NSCLC. Patients were enrolled in two cohorts, according to PD-L1 expression 
evaluated by tumor proportion score (TPS): ≥50% (cohort 1) and 1–49% (cohort 2): ORR (primary endpoint) was 56.3% 
with two complete responses and 20.0% in cohort 1 and 2 while focusing on secondary endpoints, in the two groups 
median duration of response (DoR) was 19.7 and 9.4 months and PFS was 8.4 and 4.2 months, respectively. OS was not 
reached for patients with TPS ≥50 vs 7.7 months for the 1–49% group.53

The safety profile detected on JASPER study was concordant with known safety profiles of single agents niraparib 
and pembrolizumab.53 With the strong bias of an indirect comparison with limited numbers, it is remarkable that, 
considering pembrolizumab monotherapy provided and ORR of 44.8% on patients with TPS ≥50% in the KEYNOTE- 
024 trial that led to its registration in the stage IV NSCLC setting,39 the addition of PARPi seems to improve the ORR to 
56.3% in the same patients’ subgroup. The study was not powerful enough to compare efficacy between cohorts 1 and 2.

Table 4 Main Published Clinical Trials Evaluating the Role of PARPi + Radiotherapy in NSCLC Treatment

Trial PARPi Other 
Agent(s)

Tumor 
Type

Setting Ph Biomarker 
Selection

Country/ies Sample 
Size

Primary Outcome 
Measure/s

Result

NCT01562210 Olaparib Cis 
RT

NSCLC Locally 
advanced

I – US 220 Incidence; DLT Neg

NCT01386385 Veliparib Carbo 
PTX 
RT

NSCLC Unresectable 
stage III

I/II – US 53 MDT; DLT; PFS Good 
tolerability; 

Neg

NCT02412371 Veliparib Carbo 
PTX 
RT

NSCLC Locally 
advanced

I – Czechia, 
Greece, Spain

48 DLT Good 
tolerability

Abbreviations: Ph, phase; PFS, progression-free survival; US, United States; DLT, Dose Limiting Toxicities; MTD, maximum tolerated dose; NSCLC, non-small-cell lung 
cancer.
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The clinical role of PARPi in NSCLC was also studied in a phase 1 open-label dose-escalation trial 
(NCT02944396).54 Twenty-five patients were treated with veliparib and nivolumab, a PD-1 inhibitor, plus chemotherapy 
with carboplatin and paclitaxel or carboplatin and pemetrexed, a four-drug combination that had never been studied 
before, and were subsequently divided into five dosing cohorts: the first one was treated with veliparib 120 mg twice 
daily in combination with nivolumab 360 mg (Q3W), carboplatin AUC 6 mg/mL∙min and paclitaxel 200 mg/m2 (C/PAC 
regimen), whereas the other four groups received veliparib, 80/120/200/240 mg, respectively, twice daily in combination 
with nivolumab 360 mg (Q3W), carboplatin AUC 6 mg/mL∙min, and pemetrexed 500 mg/m2 (C/PEM regimen).

Chemotherapy and veliparib were administered for six cycles as nivolumab and pemetrexed were then continued as 
maintenance therapy until disease progression or unacceptable toxicity occurred. The safety profile was concordant with 
known data available for the combination of nivolumab plus double chemotherapy55 as the addition of veliparib did not 
increase the rate of hematologic toxicities and the drug combination was well tolerated.54 ORR (primary endpoint) in the 
overall cohort was 40%, quite similar to the 38% showed in a CheckMate227 trial that considered NSCLC patients 
treated with nivolumab plus chemotherapy.56

Figure 2 Interlink between DNA damage and immune checkpoint inhibitors (ICIs) via cGAS-STING activation. In homologous recombination (HR) proficient and HR 
deficient tumor cells the action of chemotherapeutics, ionizing radiation and PARPi generates cytosolic double-stranded DNA (dsDNA) fragments. These fragments of 
cytosolic dsDNA bind to cyclic GMP-AMP synthase (cGAS) and activate the stimulator of interferon genes (STING) that, through NF-kB and IRF-3, induce type I IFN and 
other transcriptional targets. The binding between the type I IFN to the IFN receptor stimulates the transcription of IFN-stimulated genes (ISGs) and production of 
cytokines like CXCL10 that promote the T-Cell recruitment. The IFN I also determines a PD-L1 upregulation on the cancer cell surface and promotes the tumor neoantigen 
presentation on the major histocompatibility complex (MHC) of dendritic cell to the T-cell receptor (TCR). Created with BioRender.com.
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Table 5 Main Ongoing Clinical Trials Evaluating the Role of PARPi + Immunotherapy in NSCLC Treatment

Trial PARPi Other Agent(s) Tumor Type Setting Phase Biomarker 
Selection

Country Estimated 
Sample 

Size

Primary Outcome 
Measure/s

UNITO–001 Niraparib Dostarlimab NSCLC; MPM ≥2nd line II HRR- 

mutated and 

PDL1 ≥ 1%

Global 70 PFS

NCT03976323 KEYLYNK-006 Olaparib Pembrolizumab 

Compared to: 
Pembrolizumab

Non-squamous 

NSCLC

Maintenance III Global 792 PFS, OS

NCT03775486 ORION Olaparib Durvalumab 
Compared to: 

Durvalumab

NSCLC Maintenance II Global 327 PFS

NCT04380636 KEYLINK-012 Olaparib Pembrolizumab 

Compared to: 

Pembrolizumab + 
placebo

NSCLC Maintenance III Global 870 PFS, OS

NCT03976362 KEYLINK-008 Olaparib Pembrolizumab 
Compared to: 

Pembrolizumab + 

placebo

Squamous NSCLC Maintenance III Global 735 PFS, OS

NCT03334617 HUDSON trial Olaparib Durvalumab NSCLC ≥2nd line II HRR- 
mutated

Western 200 ORR

NCT03559049 Rucaparib Pembrolizumab NSCLC Maintenance I/II US 55 PFS

NCT04173507 Lung-MAP Talazoparib Avelumab Non-squamous 

NSCLC

≥2nd line II STK11 

positive

US 44 ORR, DCR12

NCT02484404 Olaparib Durvalumab +/- 

cediranib

Solid tumors ≥2nd line I/II US 112 RP2D, safety of doublet 

therapies of Durvalumab/ 
olaparib and Durvalumab/ 

cediranib

NCT03330405 Javelin Parp 

Medley

Talazoparib Avelumab Solid tumors N line II Global 296 DLT, OR

(Continued)
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Table 5 (Continued). 

Trial PARPi Other Agent(s) Tumor Type Setting Phase Biomarker 
Selection

Country Estimated 
Sample 

Size

Primary Outcome 
Measure/s

NCT03565991 Javelin BRCA/ 
ATM

Talazoparib Avelumab Solid tumors N line II BRCA/ATM 
defect

Global 200 OR

NCT03772561 MEDIPAC Olaparib Durvalumab + 
AZD5363

Solid tumors N line I Singapore 40 ORR, best objective response

NCT03842228 Olaparib Durvalumab + 

Copanlisib 

Hydrochloride

Solid tumors N line I DDR- 

mutated

US 102 Safety, RP2D

NCT04169841 GUIDE2REPAIR Olaparib Durvalumab + 

Tremelimumab

Solid tumors ≥2nd line II HRR- 

mutated

France 270 PFS

NCT03637491 Talazoparib Avelumab + 

Binimetinib

Solid tumors 2nd and 3rd 

line

I/II RAS- 

mutated

Belgium, 

Singapore, 
US

127 DLT, OR

NCT03061188 Veliparib Nivolumab Solid tumors ≥2nd line I US 50 MTD

NCT04276376 Rucaparib Atezolizumab Solid tumors ≥2nd line II DDR- 

deficient or 
platinum 

sensitive

France 1000 ORR

Abbreviations: Ph, phase; PFS, progression-free survival; US, United States; UK, United Kingdom; RP2D, recommended phase II dose; ORR, objective response rate; DLT, dose limiting toxicities; MTD, maximum tolerated dose; OS, 
overall survival; DCR12, disease control rate at 12 weeks; DDR, DNA damage repair HRR, homologous recombination repair; NSCLC, non-small-cell lung cancer; MPM, malignant pleural mesothelioma.
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Given the good safety profile shown in several trials with the combination of PARPi and immunotherapy, future 
studies with large sample size could better investigate the efficacy of PARPi in addition to immunotherapy in NSCLC.

Published clinical trials evaluating the role of PARPi with or without immunotherapy in NSCLC patients are listed in Table 6.

PARPi + Targeted Agents
Biological Rationale and Preclinical Data
Scientific research on PARPi acquired/innate resistance is based on studies with combinations of different DNA Damage 
Response Inhibitors (DDRi). In pre-clinical models with ATM deficiency, the combination of ATR inhibitor and PARPi 
improved the efficacy of PARPi.20

A member of the antiapoptotic BCL-2 proteins, MCL-1, is an important prosurvival agent due to its DNA repair 
function.57 Mattoo et al58 recently demonstrated both in vitro and in xenografts that mTOR inhibitors everolimus or 
AZD2014 deplete MCL-1 expression and lead to DNA repair suppression, thus increasing sensitivity to PARPi olaparib. 
In addition, inhibition of another important protein of the same axis as m-TOR, PI3K, caused DNA homologous 
recombination repair impairment and sensitization to PARP inhibitor olaparib in triple negative breast cancer cells 
in vivo59 and also in ex vivo cultured PIK3CA wild type ovarian cancer tissues independently of BRCA genes status.60

The role of vascular endothelial growth factor (VEGF) inhibition-driven hypoxia in providing DNA damage and 
genetic instability has already been highlighted.61 In particular, an interesting preclinical experience from Bizzarro et al62 

demonstrated a wide anti-tumor activity due to the combination of olaparib and the VEGFR inhibitor cediranib on 
patient-derived ovarian cancer xenografts, regardless of the HRR status.

The role of PARPi therapy has also been studied in lung cell lines with EGFR mutation: the EGFR-mutant cells 
showed sensitivity to PARPi in vitro and in vivo due to an EGFR kinase-independent regulation of DNA repair.63

Clinical Evidence and Predictive Factors of Response and Efficacy
OLAPCO trial is a phase 2 basket trial recruiting patients in a range of tumor types with the potential to identify novel 
tumor indications for combination therapy with olaparib based on molecular markers from genetic profiling performed on 
their tumors prior to study entry. Patients with tumors harboring PTEN, PIK3CA, AKT, or ARID1A mutations or other 
molecular alterations leading to dysregulation of the PI3K/AKT pathway will be treated with target inhibitor AZD5363 
plus olaparib. Another arm of the same trial, whose first results have already been published,64 has demonstrated an 8.3% 

Table 6 Main Published Clinical Trials Evaluating the Role of PARPi +/- Immunotherapy in NSCLC Treatment

Trial PARPi Other 
Agent(s)

Tumor 
Type

Setting Phase Biomarker 
Selection

Country Estimated 
Sample 

Size

Primary 
Outcome 
Measure/s

NCT03307785 

IOLite

Niraparib Dostarlimab, 

Bevacizumab

Solid 

Tumors

≥2nd line I US 66 Number of 

participant 
with DLT

NCT04475939 
ZEAL-1L

Niraparib Pembrolizumab 
Compared to: 

Pembrolizumab 

+ placebo

NSCLC Maintenance III Global 650 PFS, OS

NCT02944396 Veliparib Nivolumab; 

Pemetrexed; 
Carboplatin; 

Paclitaxel

NSCLC 1st line I US 184 RP2D, PFS

NCT03308942 

JASPER

Niraparib Pembrolizumab 

or Dostarlimab

NSCLC 1st line II US 136 ORR

Abbreviations: Ph, phase; PFS, progression-free survival; US, United States; UK, United Kingdom; RP2D, recommended phase II dose; ORR, objective response rate; DCR, 
disease control rate; DLT, dose limiting toxicities; NSCLC, non-small-cell lung cancer.
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overall response rate and 62.5% clinical benefit rate among a 25 patients cohort with different solid tumors, though none 
with NSCLC, treated with ATR selective inhibitor ceralasertib. The same drug in combination with carboplatin, 
durvalumab, or olaparib is also under evaluation in an ongoing phase I dose escalation study in patients affected by 
advanced solid tumors.65

Focusing on the PIK3CA-AKT-mTOR pathway, a phase Ib NCT04586335 clinical trial is currently evaluating safety, 
tolerability, and preliminary efficacy of novel PIK3CA inhibitor CYH33 in combination with olaparib in patients with 
DDR gene mutations and/or PIK3CA mutations. The study aims at recruiting at least 350 patients and comprehends 
a dose escalation part followed by a dose expansion phase.

Two different trials, NCT02588105 and NCT04267939, respectively, are evaluating PARP inhibitors olaparib and 
niraparib in combination with ATR inhibitor AZD0156 and ATM inhibitor BAY1895344 (Elimusertib). Both studies are 
still ongoing and no results have been published yet. On the other hand, first data from the NCT02723864VX trial by 
Mitra et al66 showed a promising activity producing two partial responses (6%) and 22 stable disease (65%, median four 
cycles, range=2–11) in 37 heavily pretreated patients with solid tumors though high toxicity (in particular anemia, 41% 
G3) prevented adequate veliparib delivery and the drug combination has not been studied further.

Following strong preclinical rationale and satisfactory results obtained in ovarian cancer, the phase II NCT02498613 
trial is studying the mutual administration of PARPi olaparib with anti-VEGF target agent cediranib in patients with solid 
tumors. With the limitations of no report available focusing on NSCLC cohort, preliminary data considering other tumor 
specimens are encouraging (14% ORR in biomarker-unselected 37 patients with heavily pre-treated, metastatic triple- 
negative breast cancer)67 with a manageable toxicity, though 24% of patients reported hypertension often requiring 
prompt antihypertensives initiation.

Despite the combination of PARPi olaparib, EGFR inhibitor gefitinib in EGFR mutant NSCLC did not show 
a significant benefit in terms of PFS, compared to EGFR inhibitor alone in the phase 1–2 GOAL trial,68 further analysis 
evidenced that olaparib may instead be effective in a subset of patients with higher expression of BRCA1 mRNA (PFS 
12.9 vs 9.2 months, p=0.0449).69

The tolerability and efficacy of the combination of niraparib and the 3rd generation EGFR inhibitor osimertinib, is 
under investigation in a phase I trial recruiting patients with EGFR-mutated advanced NSCLC (NCT03891615).

However, further studies are needed to better stratify those patients who might benefit from these therapeutic 
combinations.

Main ongoing clinical trials evaluating the role of PARPi with DDRi and other targeted agents in NSCLC patients are 
listed in Table 7.

Small Cell Lung Cancer (SCLC)
PARPi Alone or in Association with Chemotherapy
Biological Rationale and Preclinical Data
Despite the introduction in clinical practice of chemo-immunotherapy combining standard platinum etoposide with 
atezolizumab70 and, more recently, durvalumab,71 SCLC prognosis still remains abysmal, with a median overall survival 
of 13 months according to CASPIAN trial last update. It follows that there is much interest in novel drugs or alternative 
therapeutic strategies in order to improve patients’ outcomes.

There is preclinical evidence in the literature suggesting that SCLC is often characterized by alterations of the DNA 
damage repair pathways, in particular RB1 and TP53 lack of function72 or SOX2 and MYC genes amplification.73 

Moreover, PARP enzyme and other DNA repair proteins,74 significant overexpression,75 and alterations among several 
HRR system genes identified in SCLC cell lines slightly contribute to tumorigenesis and growth,74 strongly supporting 
the idea of investigating PARPi in this disease setting treatment, alone or in combination with chemotherapy.76

Clinical Evidence and Predictive Factors of Response and Efficacy
PARPi alone as maintenance treatment after front-line chemotherapy has shown no significant benefit in terms of PFS 
and OS in the 220 patients recruited in the STOMP trial77 and randomized to receive PARPi olaparib or placebo after 
partial or complete response to first-line chemotherapy or chemoradiotherapy for SCLC proving no differences in PFS 
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Table 7 Main Ongoing Clinical Trials Evaluating the Role of PARPi +/- Target Therapy in NSCLC Treatment

Trial PARPi Other Agent(s) Tumor Type Setting Ph Biomarker 
Selection

Country Estimate 
Sample 

Size

Primary Outcome Measure/s

NCT02264678 Olaparib Ceralasertib Adv Solid Malig - H&N 

SCC, NSCLC, Gastric, 

Breast and Ovarian 
Cancer

2nd line I/II ATM Pro / Def Global 119 Safety and tolerability

NCT02723864 Veliparib VX-970 + Cisplatin Solid tumors N line I - US 60 Number of participants with worst Grade 2 
or higher adverse events in >5% of 

participants at least possibly related to study 

drugs

NCT02576444 

OLAPCO

Olaparib AZD5363/AZD1775/ 

AZD6738

Solid tumors N line II - US 64 ORR

NCT04267939 Niraparib BAY1895344 Solid tumors (excluding 
prostate cancer)

≥2nd line I DDR 
deficiency

US 56 MTD, RP2D, Incidence and severity of 
treatment emergent adverse events (TEAEs)

NCT02588105 Olaparib AZD0156 Solid tumors N line I - Global 225 Safety and tolerability

NCT03891615 Niraparib Osimertinib NSCLC ≥2nd line I EGFR-mutated US 30 MTD Niraparib

NCT04586335 Olaparib CYH33 Solid tumors ≥2nd line Ib DDR3 gene 

mutation, 

PIK3CA 
hotspot 

mutation

N/A 350 Dose limiting toxicity, ORR

NCT02498613 Olaparib Cediranib Solid tumors ≥2nd line II - N/A 126 ORR

Abbreviations: Ph, phase; US, United States; UK, United Kingdom; MDT, maximum dose tolerated; DDR, DNA damage repair; NSCLC, non-small-cell lung cancer; SCC, squamous cell carcinoma; EGFR, epidermal growth factor 
receptor.
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between olaparib and placebo cohorts for either twice-a-day schedule (HR=0.87; 90% CI=0.64–1.18; stratified logrank 
p=0.29) or the three-times-a-day schedule arm (HR=0.89; 90% CI=0.67–1.20; p=0.43). There was also no significant 
difference in OS between olaparib and placebo for both treatment schedules (HR=0.97; 90% CI=0.69–1.37; p=0.7 and 
HR=1.05; 90% CI=0.76–1.46; p=0.73, respectively).

Also, another phase III trial (NCT03516084) evaluating niraparib as maintenance therapy following first-line 
chemotherapy was stopped early due to the slow accrual.

It follows that interest in the potential role of PARPi as main actors in a maintenance strategy has declined and the 
most promising role for these therapeutic agents in SCLC seems to be in combination rather than following chemother-
apy in the extended disease (ED) setting.

The phase II ECOG-ACRIN 2511 trial (NCT01642251)78 studied veliparib in association with standard chemother-
apy with cisplatin and etoposide versus chemotherapy alone in 128 patients with treatment-naive ED-SCLC: median PFS 
was 6.1 months (95% CI=5.9–6.7 months) vs 5.5 months (95% CI=5.0–6.1 months) with an HR of 0.63 and a statistically 
significant p=0.001. However, no significant improvement in terms of both median OS (10.3 versus 8.9 months, 
HR=0.83; 80% CI=0.64–1.07), and ORR (71.9% vs 65.6%, two-sided p=0.57) were found.

A phase II trial investigated the efficacy of veliparib combined and following as a maintenance therapy with carboplatin 
and etoposide in first-line ED-SCLC treatment.79 One hundred and eighty-one patients were randomized 1:1:1 to receive 
veliparib plus chemotherapy followed by veliparib maintenance, veliparib plus chemotherapy followed by placebo, or placebo 
plus chemotherapy followed by placebo until unacceptable toxicity or progression, with PFS as the primary endpoint. An 
improvement in PFS (HR=0.67; 80% CI=0.50–0.88; p=0.059) with no OS benefit and an acceptable safety profile was shown 
in the veliparib arms.

Pietanza et al80–82

Several other clinical trials investigating the efficacy of PARPi combined with cytotoxic agents in ED-SCLC after 
first-line platinum-based chemotherapy are currently ongoing.

Clinical trials evaluating the role of PARPi with or without chemotherapy in SCLC patients are listed in Table 8.

PARPi + Radiotherapy
Biological Rationale and Preclinical Data
Radiotherapy plays an important role in the management of SCLC as thoracic CRT, typically with an etoposide and 
platinum-based regimen, is still is standard of care in limited stage (LS) SCLC.83 Results from two meta-analys 

Table 8 Main Ongoing Clinical Trials Evaluating the Role of PARPi Alone or + Chemotherapy in SCLC Treatment

Trial PARPi Other 
Agent(s)

Setting Ph Biomarker 
Selection

Country Estimated 
Sample 

Size

Trial 
Status

Primary 
Outcome 
Measure/s

NCT03009682 
(SUKSES-B)

Olaparib - ≥2nd line II HRR 
pathway 

mutation(s)

SOUTH 
KOREA

28 Completed ORR

NCT03516084 Niraparib Placebo Maintenance after 
induction with 

platinum doublet

III - CHINA 591 Early 
stopped

PFS/OS

NCT02446704 Olaparib TMZ ≥2nd line I/II - US 66 Active, not 
recruiting

MTD, ORR

NCT02769962 Olaparib EP0057, 
a Nanoparticle 
Camptothecin

≥2nd line I/II - US 123 Recruiting MTD, PFS

NCT03227016 Veliparib Topotecan ≥2nd line I/II - GERMANY 30 Recruiting DLT/AEs

NCT03672773 
(TRIO-US L-07)

Talazoparib Low-dose TMZ ≥2nd line II - US 28 Active, not 
recruiting

ORR

Abbreviations: Ph, phase; PFS, progression-free survival; US, United States; MDT, maximum dose tolerated; ORR, objective response rate; AEs, adverse events; DLT, dose- 
limiting toxicity; OS, overall survival; TMZ, Temozolomide.
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es revealed that the addition of radiotherapy to chemotherapy provides a small but significant improvement of 3 years 
overall survival (5.4%),84 in particular in younger patients under 55 years of age. Moreover, radiation treatment also 
improved locoregional progression by 25% (95% CI=16.5–34.1%) compared with chemotherapy alone.85

Conversely, radiotherapy is not routinely adopted for the treatment of ED-SCLC, and the mainstay of treatment is 
a combination strategy of chemotherapy and immunotherapy. Traditionally, radiotherapy in this setting is primarily used 
with palliative intent of chest symptoms86 or as consolidation after response/stability to first line therapy. However, 
a systematic review found that consolidation radiotherapy provides a PFS benefit (HR=0.72, p<0.0001; 95% CI=0.61– 
0.83, I2=0%) but no improvement in OS (HR=0.88, p=0.36; 95% CI=0.66–1.18, I2=52%) compared to an exclusive 
chemo-immunotherapy regimen.87

With these varied results, new strategies need to be developed in order to better define the role of radiotherapy in the 
contest of ED-SCLC.

It is hypothesized that PARP inhibition in combination with other DNA damaging agents such as radiotherapy may 
result in increased sensitivity of tumor cells due to deficiency in DNA repair.88

SCLC has a very high level of PARP enzyme expression in comparison to other cancer types, thus suggesting 
a biologically relevant role for this protein in SCLC development and progression. In particular, it was demonstrated in 
SCLC lines that the sensitivity to PARPi is associated with elevated expression of PARP-189 and preclinical investigation 
also highlighted that PARP inhibition with veliparib enforces the cytotoxic effects of radiation in SCLC both in vitro and 
in vivo.90

Laird et al91 also showed that PARP trapping is effective in the radiosensitization of SCLC cell lines and patient- 
derived xenograft (PDX) models and that talazoparib, at the same concentration determined to cause equivalent 
enzymatic inhibition, may be an even better radiosensitizer than veliparib.

Clinical Evidence and Predictive Factors of Response and Efficacy
Several early phase trials are testing the combination of PARP inhibition and radiation in ED-SCLC.

An ongoing phase I trial (NCT03532880) is evaluating the safety of olaparib together with consolidative radiotherapy 
as well as reporting on the clinical outcomes for patients treated with this approach. This study plans to enroll 24 patients 
with SCLC receiving varying doses of olaparib orally twice daily for 3 weeks (administered at 50 mg to 300 mg until 
progression or unacceptable toxicity) and thoracic radiation once daily 5 days per week beginning 1 week after the 
initiation of olaparib for a total of 30 Gy in 10 fractions. The coprimary end-points are MTD of olaparib in association 
with radiotherapy and the safety of the combination based on the adverse events profile.

An additional analogous phase I trial (NCT04170946) will explore the same strategy with talazoparib in combination 
with the exactly alike consolidative radiation therapy regimen in ED-SCLC patients and another phase I/II trial 
(NCT04728230) of sequential treatment with olaparib, thoracic radiotherapy, and durvalumab or olaparib plus durvalu-
mab as consolidation and maintenance therapy in ED-SCLC patients post-chemo-immunotherapy is also ongoing.

Finally, a phase I trial combining PARPi and CTLA-4 inhibitors and thoracic radiotherapy is currently underway. The 
trial specifically includes three arms to assess the activity and safety of durvalumab plus thoracic radiotherapy, 
durvalumab combined with tremelimumab plus thoracic radiotherapy, and durvalumab combined with olaparib plus 
thoracic radiotherapy in ED-SCLC after first-line chemotherapy (NCT03923270).

Ongoing clinical trials evaluating the role of PARPi with radiotherapy in SCLC patients are listed in Table 9.

PARPi + Immunotherapy
Biological Rationale and Preclinical Data
The recent integration of immunotherapy in the first-line treatment of SCLC has improved patients’ OS and provided 
a new therapeutic option in a disease with such an abysmal prognosis as SCLC.92

Due to the molecular signaling pathways between intracellular DNA and PD-L1 expression, interest in the potential 
synergy between PARP inhibitors and immune checkpoint inhibitors is rising.

The cGAS (cyclic GMP–AMP synthase)-STING pathway is the main cellular cytosolic double-stranded DNA 
(dsDNA) sensor, enabling innate immunity to respond to virus and bacteria attacks, inflammation, and eventually 
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cancer.93,94 dsDNA interacts with cGAS, promoting a conformational change catalyzing the formation of 2′,3′-cyclic 
GMP-AMP (Cyclic guanosine monophosphate–adenosine monophosphate) and producing the activation of the STING 
pathway (Figure 2),95,96 thus leading to the recruitment and phosphorylation of TANK binding kinase 1 (TBK1) and 
interferon regulatory factor 3 (IRF-3)97 and inducing interferon stimulated genes expression including PD-L1.98,99

PARPi increase DNA damage and upregulate the PD-L1 expression by cGAS-STING pathway and there are 
preclinical studies suggesting that PARPi synergize with PD-1/PD-L1 blockade regardless of the BRCA status.48,100 

Overall, these results provide a mechanistic rationale to exploit the PARPi immunomodulatory effect to reinforce 
immune-checkpoint blockade.

Sen et al101 have shown that olaparib activates the cGAS-STING pathway in SCLC, promoting the phosphorylation 
of TBK1 and IRF3 and the secretion of chemokines CCL5 and CXCL10 and increased surface expression levels of PD- 
L1 in SCLC models.

This study also highlighted that, as PARP inhibition with olaparib alone does not impact CD8+ cytototoxic T-cell 
infiltration, the simultaneous inhibition of PARP and PD-L1 leads to a clear rise in CD8+ cytotoxic T-cell infiltration and 
reduces regulatory T-cells levels in a triple-knockout RB-/-/p53-/-/p130-/- genetically engineered mouse model.

Clinical Evidence and Predictive Factors of Response and Efficacy
Despite these auspicious preclinical results, available evidence on PARPi plus ICIs combinations in SCLC patients has 
been questionable until today.

The results of a phase II trial by Thomas et al102 (NCT02484404) demonstrated that only two (10.5%) out of 19 
evaluable relapsed ED-SCLC patients treated with durvalumab 1,500 mg every 4 weeks with olaparib 300 mg twice 
a day responded with a median PFS and OS of 1.8 months (95% CI=0.9–2.4) and 4.1 months (95% CI=2.4–9.2), 
respectively, and the most common treatment-related adverse event was cytopenia (45% G3–4). Of note, it has been 
observed that pre-existing tumor CD8+ T-cell infiltration predicts tumor response, suggesting that an inflamed-phenotype 
at baseline may help to identify patients who are most likely to respond to an ICI-based strategy in SCLC.

Similar results were reported in the phase II MEDIOLA study103 (NCT02734004) that analyzed 38 patients with 
relapsed SCLC receiving the same doses of olaparib and durvalumab but with a 4-week olaparib run-in period: only two 
patients had confirmed partial or complete responses and DCR at 12 weeks was 29%, below the futility bound-
ary (<40%).

Another multicenter, open-label, phase 1a/b trial104 (NCT02660034) enrolled 49 patients with advanced solid tumors 
including patients with SCLC in order to assess the safety and activity of pamiparib, a novel oral PARP 1–2 inhibitor, 

Table 9 Main Ongoing Clinical Trials Evaluating the Role of PARPi + Radiotherapy in SCLC Treatment

Study Name PARPi Other Agent(s) Selected 
Population

Ph Country Study 
Start 
Year

Estimated Number of 
SCLC Patients 

Enrolled

Trial 
Status

Primary 
Outcome 
Measure/s

NCT03532880 Olaparib Low-dose RT Patients 
with ED- 

SCLC

I US 2018 24 Recruiting MTD 
Safety

NCT04170946 Talazoparib Consolidative 
thoracic RT

Patients 
with ED- 

SCLC

I US 2020 24 Recruiting MTD 
Safety

NCT04728230 Olaparib Durvalumab + 
Carboplatin + 

Etoposide +/- RT

Patients 
with ED- 

SCLC

I/II US 2021 63 Recruiting Incidence of 
dose limiting 

toxicity

NCT03923270 Olaparib RT + Durvalumab 
Compared to: 
Durvalumab + 
Tremelimumab

Patients 
with ED- 

SCLC

I US 2019 54 Recruiting SAEs 
PFS

Abbreviations: Ph, phase; PFS, progression-free survival; US, United States; MDT, maximum dose tolerated; SAEs, unacceptable serious adverse events; ED-SCLC, 
extended disease small cell lung cancer; RT, radiotherapy.
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combined with tislelizumab, an anti-PD-1. After a median follow-up of 8.3 months, ORR was 20% and treatment 
combination was well tolerated with anemia as the most common G3–4 adverse event.

An additional phase II trial (NCT03958045) including patients with pathological (biopsy) or cytologically confirmed 
stage IV SCLC achieving either partial or complete response after frontline chemotherapy with platinum doublet, is 
currently assessing survival and response rate of the combination of rucaparib and nivolumab as a maintenance therapy.

Other studies aiming to evaluate novel immunotherapy-based combinations as maintenance therapy following first- 
line treatment are currently underway (Table 10).

PARPi + DDR Inhibitors
Biological Rationale and Preclinical Data
Both in vitro and in vivo SCLC models support the rationale of combining PARPi with other drugs targeting the HRR 
pathways, especially the ATR/CHK1 (Checkpoint kinase 1) axis.105 Preclinical models showed a higher activity of ATR 

Table 10 Main Ongoing Clinical Trials Evaluating the Role of PARPi + Immunotherapy in SCLC Treatment

Study Name PARPi Other 
Agent(s)

Selected 
Population

Ph Country Study 
Start 
Year

Estimated 
Number of 

SCLC 
Patients 
Enrolled

Primary Outcome 
Measure/s

NCT02484404 Olaparib Durvalumab Patients 

progressed to 
prior platinum- 

based 

chemotherapy

II US 2015 384 Safety 

RP2D 
ORR

NCT02734004 Olaparib Durvalumab Patients with 

relapsed SCLC

I/II Global 2016 264 patients 

enrolled

Safety 

DCR 
ORR

NCT02660034 Pamiparib Tislelizumab Patients with 
ED-SCLC

I Western 2016 229 patients 
enrolled

Number of participants 
experiencing AEs, DLT, 

ORR, PFS, DOR, DCR, 

CBR, OS

NCT03958045 Rucaparib Nivolumab Patients with 

platinum- 
sensitive ED- 

SCLC

II US 2019 36 PFS

NCT04624204 Olaparib Compared to: 

Olaparib + 

Pembrolizumab 
Or 

Pembrolizumab 

alone

Patients with 

LD-SCLC

III Global 2020 672 PFS 

OS

NCT03958045 Rucaparib Nivolumab Patients with 

platinum- 
sensitive ED- 

SCLC

II US 2019 36 PFS

NCT04334941 Talazoparib Atezolizumab Patients with 

ED-SCLC

II US 2020 94 PFS

(Continued)
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inhibitors in tumors with TP53/ATM lack of function15 and CHK1 inhibition effectively overcome PARPi resistance 
in vitro, supporting the rationale for testing combination treatment.106

Clinical Evidence and Predictive Factors of Response and Efficacy
Though there are concerns regarding patients’ selection, safety profile and possible mechanisms of resistance, the 
rationale for combining different HRR inhibitors is strong and several ongoing clinical trials will provide clinical 
evidence about this novel strategy.

Adavosertib, a WEE1 kinase inhibitor, in association with olaparib has been tested in a phase Ib study 
(NCT02511795),107 showing a promising ORR of 30.8%. A phase II trial (NCT03428607, SUKSES-N2) investigating 
combination treatment with ceralasertib, a CHK1 inhibitor, and olaparib as second-line treatment of ED-SCLC has 
completed its enrollment, and primary analysis results are awaited soon.

Main ongoing clinical trials evaluating the role of PARPi with DDRi in SCLC patients are listed in Table 11.

Malignant Pleural Mesothelioma (MPM)
PARPi Alone or in Association with Chemotherapy
Biological Rationale and Preclinical Data
Until a few years ago, the only therapeutic option with proven effectiveness in the treatment of MPM was platinum and 
pemetrexed chemotherapy,108 but promising new options have recently emerged from the use of immunotherapy, in 

Table 10 (Continued). 

Study Name PARPi Other 
Agent(s)

Selected 
Population

Ph Country Study 
Start 
Year

Estimated 
Number of 

SCLC 
Patients 
Enrolled

Primary Outcome 
Measure/s

NCT03830918 Niraparib Temozolomide + 
Atezolizumab

Patients with 
ED-SCLC

I/II US 2019 74 RP2D of Niraparib + 
Temozolomide 

PFS

NCT02937818 Olaparib Ceralasertib 

Compared to 

Durvalumab + 
Tremelimumab 

or Adavosertib + 

Carboplatin

Patients with 

ED-SCLC

II Western 2016 72 Number of participants 

with overall response

Abbreviations: Ph, phase; PFS, progression-free survival; US, United States; PE, primary endpoint; MDT, maximum dose tolerated; SAEs, unacceptable serious adverse events; ED, 
extended disease; RP2D, recommended phase II dose; ORR, objective response rate; DCR, disease control rate; UK, United Kingdom; N/R, not reported; AEs, adverse events; DLT, 
dose-limiting toxicity; DOR, duration of response; DCR, disease control rate; CBR, clinical benefit rate; OS, overall survival; SCLC, small-cell lung cancer.

Table 11 Main Ongoing Clinical Trials Evaluating the Role of PARPi + DDR Inhibitors in SCLC Treatment

Trial PARPi Other 
Agent(s)

Setting Ph Biomarker 
Selection

Country Estimated 
Sample 

Size

Trial 
Status

Primary 
Outcome 
Measure/s

NCT02511795 Olaparib AZD1775 
(Adavosertib)

≥2nd 
line

Ib – US, 
CANADA

128 Completed DLT/AEs

NCT04158336 Talazoparib ZN-c3 
(WEE1Ki)

≥2nd 
line

I – US 110 Recruiting MTD

NCT03428607 
(SUKSES-N2)

Olaparib AZD6738 
(Ceralasertib)

≥2nd 
line

II – SOUTH 
KOREA

45 Completed ORR

Abbreviations: ORR, overall response rate; US, United States; PH, phase; MTD, maximum dose tolerable; DLT, dose limiting toxicities; AEs, adverse effects.
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particular the combination of Nivolumab and Ipilimumab (Checkmate 743).109 In MPM, activating mutations are rare and 
genomic losses/alterations are more widespread, hence alternative treatments to current standards are still an open issue.

In addition, better understanding of cancer biology has opened the targeted therapies era also for neglected tumors 
such as MPM.

In particular, an important percentage (5–10%) of patients with MPM with germline mutations in the DDR genes 
pathway have shown a relevant sensitivity to asbestos110 and BRCA1/2 or mutations of other genes involved in the HRR 
pathway have been observed in many MPM patients.111 Moreover, more than 20% of MPM showed somatic inactivating 
mutations in the BRCA-1 associated gene (BAP1),112 which seem to play an important role in tumor pathogenesis.113 

Hence, the idea that cells presenting mutated BAP1 may require PARP-1 enzyme to survive has led to the initiation of 
several preclinical studies exploring the potential efficacy of PARPi in this setting.114

Interestingly and partially negating the potential interaction between BAP1 gene and PARP enzyme specific inhibi-
tion, two different preclinical studies have shown that both niraparib and olaparib had potential efficacy against MPM 
cells, regardless of the presence of BAP1 mutations.115,116 Borchert et al,117,118 performing analysis with luminescence 
assays, also highlighted the promising combination of PARPi with cisplatin-based chemotherapy.

Clinical Evidence and Predictive Factors of Response and Efficacy
Further exploring evidence from preclinical studies, many trials have been evaluating the efficacy and tolerability of 
PARPi in MPM.112,119 Ghafoor et al120 studied olaparib in 23 patients with advanced MPM with somatic or germline 
mutations of DNA repair genes in a phase 2 single-center trial. Patients were given olaparib 300 mg twice daily in 21-day 
cycles until disease progression or intolerable toxicity. Definitive results were quite disappointing in particular in the 
germline mutation cohort: in germline and somatic BAP1 mutants, median PFS was 2.3 months (95% CI=1.3–3.6 
months) versus 4.1 months (95% CI=2.7–5.5 months) with a median OS of 4.6 months (95% CI=3.1–4.9 months) vs 9.6 
months (95% CI=5.5 months–not estimable) (p=0.0040). Among ongoing clinical trials, the UNITO-001, a prospective 
phase 2 single arm study, is evaluating the combination of niraparib and dostarlimab in metastatic mesotheliomas with 
both HRR deficiency and PD-L1 positivity (TPS>1%). The primary endpoint is PFS, secondary endpoints are overall 
survival, objective response, duration of response, and safety.121

The TALAMESO trial (NCT04462809) is an open-label phase II trial with three independent cohorts including patients 
with advanced malignant pleural (cohort A) or peritoneal (cohort B1 and B2) mesotheliomas without any sign of disease 
progression after four to six cycles of platinum-based chemotherapy (including a minimum one cycle of pemetrexed). The 
primary endpoint is the non-progression proportion (defined as the proportion of patients free of progression 6 months after 
talazoparib start); secondary endpoints are PFS, toxicity, and safety assessment.

The MiST trial is a Phase II, single arm study that is testing the efficacy of rucaparib in MPM patients with BAP1 or 
BRCA mutation.122 The primary endpoint is DCR, secondary endpoints are ORR, toxicity, and safety assessment. 
Moreover, new studies with PARPi started in mesothelioma with homologous recombination deficiency associated with 
BRCA1 mutation.123

The main ongoing clinical trials evaluating the role of PARPi in MPM patients are listed in Table 12.

PARG Inhibitors in Thoracic Malignancies
Biological Rationale and Preclinical Data
Poly (ADP-ribose) glycohydrolase is the primary hydrolase involved in the degradation of PAR. PARG localizes at 
replication forks by binding PCNA and promotes recovery from prolonged replication stress.

PARG isoforms have a cytoplasmic and perinuclear distribution and seem to migrate to the nucleus when activated 
due to genotoxic insult. However, how the different isoforms fully contribute to PAR metabolism and its significance is 
yet to be elucidated.

The consensus opinion is that PARP and PARG share an important function in downstream cellular processes 
enhancement. Just like PARP, PARG inhibition weakens cancer cells’ resistance to DNA damaging agents due to 
PARG enzymes’ role in DNA repair mechanisms.
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In contrast to PARP inhibitors, a clear correlation between HR deficiency and PARGi-related synthetic lethality still 
needs to be fully demonstrated.3–124

Clinical Evidence and Predictive Factors of Response and Efficacy
Depletion of HR involved proteins such as BRCA1, BRCA22, PALB2, ABRAXAS, and BARD1 in MCF7 breast cancer 
lines was shown to elicit synthetic lethal interactions with PARG inhibition.125

Pillay et al,126 evaluating PARGi PDD00017273 on ovarian cancer cell lines, found that cancer cells were differen-
tially sensitive to PARG and PARP inhibition. In particular, a “replication catastrophe” event (identified as pan-nuclear 
γH2AX staining) due to underlying DNA replication vulnerabilities occurred upon PARGi administration; on the other 
hand, the same chain reaction was not seen with the PARPi olaparib. Despite the analysis being performed only on 
in vitro models, this study suggests that low expression of key replication factors promoting DNA fork stabilization may 
be a biomarker predictive of PARGi effectiveness also alternatively to PARPi. Moreover, BRCA1 mutated cells with 
acquired resistance to PARPi due to loss of 53BP-1 were still more sensitive to the PARGi COH34 than BRCA1 wildtype 
cells.127 PARGi have also been reported to be synthetic lethal in XRCC1 depleted and deficient cells.128 It follows that 
PARGi may have efficacy in XRCC1 tumors, probably because of the function of XRCC1 in stabilizing stalled forks. 
Furthermore, PARG depletion via siRNA was reported to be synthetic lethal with dual specificity phosphatase 22 
(DUSP22) via suppression of the mTOR/PI3k/AKT in lung cancer.129

Nevertheless, PARG depletion did not show synthetic lethality with BRCA1 mutations in different cancer cell lines130 

and PARG overexpression was even related with tumor-promoting genes downregulation and suppression in prostate 
cancer PC-3 cell lines.131

Focusing on the potential association of PARGi with other drugs, evidence supporting a chemosensitizing effect of 
PARG inhibition has already been reported in literature, in particular considering DNA-damaging agents. Chen and Yu127 

described that a a novel small molecule identified from the NCI database, COH34, specifically inhibiting PARG can 
sensitize different tumor cell lines with DNA repair defects to topoisomerase I inhibitors and DNA-alkylating agents, 
which are widely used in cancer chemotherapy, such as cisplatin, temozolomide, and doxorubicine. Pillay et al126 

demonstrated a similar effect of gemcitabine in combination with PARGi PDD00017273 in ovarian cancer cell lines.
Finally, Jain et al132 evaluated PARG as a target in ductal pancreatic adenocarcinoma models using both genetic 

silencing of PARG and established small-molecule PARGi PDDX-01/04. Homologous repair-deficient cells compared 
with homologous repair-proficient cells were more sensitive to PARGi in vitro, while in vivo silencing of PARG 
significantly decreased tumor growth. PARGi also seemed to synergize with DNA-damaging agents, in particular 
oxaliplatin and 5-fluorouracil, that are commonly used in pancreatic cancer treatment.

Table 12 Main Ongoing Clinical Trials Evaluating the Role of PARPi in MPM Treatment

Trial PARPi Other 
Agent(s)

Tumor 
Type

Setting Ph Biomarker 
Selection

Country Estimated 
sample Size

Primary Outcome 
Measure/s

MiST Rucaparib – MPM ≥2nd line I BRCA1/BAP1 
negative

United 
States

200 DCR

TALAMESO Talazoparib – MPM Maintenance 
therapy

II France 40 Non progression 
proportion

UNITO-001 Niraparib Dostarlimab MPM Stage IV II HRR-mutated and 
PD-L1 ≥ 1%

Italy 70 PFS

LuPARP Olaparib 177Lu- 
DOTA- 
TATE

MPM 
NET 

Thymoma

Metastatic or 
advanced

I Somatostatin 
receptor positive

Australia 52 Dose limited toxicity, 
maximum tolerated 

dose 
recommended Phase 

2 dose

NERO Niraparib – MPM ≥2nd line II UK 84 PFS

Abbreviations: PFS, progression-free survival; UK, United Kingdom; DCR, disease control rate; MPM, malignant pleural mesothelioma; PH, phase; NET, neuroendocrine 
tumors.
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A potential synergistic effect between PARG inhibition and radiation therapy has been reported in different in vitro 
models due to the occurrence and accumulation of mitotic defects, finally culminating in cancer cell apoptosis.133

Most interestingly, Gravells et al134 provided a comparison of the potential radiosensitizing effect of PARP inhibitor 
olaparib and novel PARG inhibitor PDD00017273: both olaparib and PDD00017273 altered the repair of radiation- 
induced DNA damage, resulting in delayed resolution of RAD51 foci compared with control cells but only PARG 
inhibition was able to effectively induce a perturbed mitotic progression leading to cell death, thus suggesting that PARG 
plays different functions in the cell compared with inhibition of PARP1/2/3, likely via reversal of tankyrase enzyme 
activity. However, solid evidence of the potential application of PARGi radiosensitizing effect in clinical practice is still 
lacking.

Despite preclinical evidence in selected scenarios, PARG inhibition still represents a niche option in cancer treatment 
and we still lack a clinical trial demonstrating some sort of benefit. Nowadays, there is great expectation in the phase I–II 
NCT05787587 trial that is going to evaluate PARG Inhibitor IDE161 efficacy in patients with advanced solid tumors 
harboring BRCA1/2 loss of function alterations and/or other defects in the homologous recombination (HR) pathway.

Conclusions
Despite FDA approval in HR-deficient castration resistant prostate cancer and BRCA1/2 mutated ovarian, breast, and 
pancreatic tumors, the efficacy of PARPi is restricted by inevitable drug resistance, whereas dose-limiting toxicities are 
frequently linked to its use in conjunction with chemotherapy and targeted medicines. ICIs have shown persistent 
responses in a variety of solid tumors, however single agent action is only seen in a small proportion of patients and drug 
resistance is still a problem.135 Based on the success of both drug classes and considering the growing evidence in 
literature on the potential synergy between PARP inhibition and immunotherapy, a combination strategy may represent 
a turning point.135 Preclinical data revealed that the activation of the cGAS-sting pathway by PARP inhibition results in 
an important PD-L1 expression on cancer cells creating an appropriate tumor immune microenvironment to take 
advantage of ICB. The combination of ICB and PARPi has been encouraged by clinical trials showing improved survival 
outcomes in prostate, breast, ovarian, and SCLC, regardless of mutational status or even in the case of platinum 
sensitivity.

Considering NSCLC, trials investigating PARPi as monotherapy did not show improved outcomes, but associations 
with other therapies, such as immunotherapy, might result in better outcomes.136,137

PD-L1 expression has been identified as putative predictive biomarkers of response for ICB therapy selection in 
NSCLC; however, these have not been consistently shown to have predictive potential in the context of PARPi and ICB 
combination strategies.138 Similarly, in SCLC and prostate cancer, no clear correlation between PD-L1 expression and 
treatment response has been demonstrated.102,139

In this regard, new technologies such as Next Generation Sequencing (NGS) might be crucial in opening new paths as 
the identification of reliable molecular predictive factors other than MMR deficiency constitutes a critical issue that must 
be thoroughly addressed in future investigations. As most clinical trials designed so far lacked an adequate patient 
selection, new studies are underway and will help determine the potential role for PARPi in thoracic malignancies 
treatment.

Another open question is also the low oral bioavailability of PARPi, as these drugs effective and safe delivery during 
clinical cancer therapy still represents a challenge. In this regard, the development of drug delivery has advanced because 
of nanotechnology: this term commonly refers to structures that are up to several hundred nanometers in size.140 In recent 
decades, a number of nanoformulations, as drug delivery systems (DDSs), have been reported for the treatment of 
cancers, such as liposomes, polymeric micelles, hydrogels, nanoemulsions, nanosuspensions, and nanoparticles.141 Drug 
delivery systems could provide protection for drugs in blood circulation, increasing the amount of time of their 
circulation and they could gather in the leaking vasculature of the tumor and cancer cells releasing the chemotherapeutic 
moiety into the tumor microenvironment. At the same time nanoparticles are unable to pass through the body’s organs 
and tissues, so nanosystems may not only enhance drug efficiency but also reduce adverse side-effects.142

In conclusion, PARPi represent a solid reality in numerous solid tumors and several trials are exploring their potential 
employment in diseases such as thoracic malignancies where they might represent a novel therapeutic option. However, 
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these drugs still face several serious downsides, including resistance mechanisms and unintended adverse effects and 
their efficacy as single agents still need to be fully demonstrated in the context of thoracic malignancies. In this regard, 
considering available evidence in the literature we already discussed in our review, interest is growing in exploring the 
potential synergistic effect and consequently combined administration of PARPi and PARGi with other agents such as 
chemotherapy, immunotherapy, or radiotherapy. Novel strategies such as tumor profiling with NGS might be helpful in 
determining reliable predictive factors guiding patients selection in clinical practice.

In addition, with the recent introduction of nanomedicine, off-site toxicity or drug resistance might be reduced in the 
next few years, thus opening new interesting scenarios for PARPi and PARGi in clinical practice.

Abbreviations
SCLC, Small Cell Lung Cancer; NSCLC, Non-Small Cell Lung Cancer; MPM, malignant pleural mesothelioma; EGFR, 
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