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* Correspondence: agatapaneth@umlub.pl (A.P.); pawel.staczek@biol.uni.lodz.pl (P.S.)

Abstract: Compounds targeting bacterial topoisomerases are of interest for the development of
antibacterial agents. Our previous studies culminated in the synthesis and characterization of
small-molecular weight thiosemicarbazides as the initial prototypes of a novel class of gyrase and
topoisomerase IV inhibitors. To expand these findings with further details on the mode of action
of the most potent compounds, enzymatic studies combined with a molecular docking approach
were carried out, the results of which are presented herein. The biochemical assay for 1-(indol-2-
oyl)-4-(4-nitrophenyl) thiosemicarbazide (4) and 4-benzoyl-1-(indol-2-oyl) thiosemicarbazide (7),
showing strong inhibitory activity against Staphylococcus aureus topoisomerase IV, confirmed that
these compounds reduce the ability of the ParE subunit to hydrolyze ATP rather than act by stabilizing
the cleavage complex. Compound 7 showed better antibacterial activity than compound 4 against
clinical strains of S. aureus and representatives of the Mycobacterium genus. In vivo studies using time-
lapse microfluidic microscopy, which allowed for the monitoring of fluorescently labelled replisomes,
revealed that compound 7 caused an extension of the replication process duration in Mycobacterium
smegmatis, as well as the growth arrest of bacterial cells. Despite some similarities to the mechanism
of action of novobiocin, these compounds show additional, unique properties, and can thus be
considered a novel group of inhibitors of the ATPase activity of bacterial type IIA topoisomerases.

Keywords: thiosemicarbazides; antibacterial agents; molecular modelling; bacterial type IIA topoiso-
merases; DNA replication; time-lapse microfluidic microscopy

1. Introduction

The need for novel antibacterial agents to effectively treat drug-resistant infections
remains unfulfilled [1–5]. The accumulation of mutations in DNA gyrase and topoiso-
merase IV genes, jeopardizing the efficacy of fluoroquinolones [6], is an example of such
resistance development and highlights the urgent need to develop novel antibiotic scaffolds.
Even though resistance to fluoroquinolones among clinical isolates was detected relatively
quickly after their introduction [7], bacterial topoisomerases still remain clinically validated
targets due to their conservation across all bacteria and also their strong structural differ-
ences to eukaryotic topoisomerases [8–12]. Moreover, because of the structural similarities
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between DNA gyrase and topoisomerase IV, dual targeting is possible, which prolongs the
onset of resistance [13–19].

DNA gyrase and topoisomerase IV (Topo IV) belong to the group of DNA topoi-
somerases, the enzymes essential for cell viability. They are critical for maintaining the
topological state of DNA by homeostatic control of global and local supercoiling, as well
as introducing or removing knots and tangles in DNA molecules during processes such
as DNA replication, transcription, DNA repair, and recombination [20,21]. In particu-
lar, DNA gyrase is primarily responsible for reducing the linking number of the DNA,
and thus the introduction of negative supercoils into DNA, whereas Topo IV is involved
in the decatenation of chromosomes after replication, DNA unknotting, and relaxation
of supercoiled DNA [22–25]. Both enzymes were found to be involved in resolving the
DNA topological conflicts which occur during head-on collisions between replication and
transcription machinery [26].

These two enzymes are homologous heterotetrameric proteins comprised of two GyrA
and two GyrB subunits, which together form an A2B2 complex for gyrase, or two ParC
and two ParE subunits forming a C2E2 complex for topoisomerase IV, respectively. The
GyrA and ParC subunits are involved in the DNA cutting and resealing process, while
the GyrB and ParE subunits contain ATPase domains [21]. So far, two antibiotic classes,
fluoroquinolones [27] and aminocoumarins [28], have clinically validated DNA topoi-
somerases as viable targets. The fluoroquinolones bind at the enzyme–DNA interface
in the cleavage–ligation active site, where they stabilize double-stranded breaks in the
bacterial DNA, induce rapid killing of the cells, and exhibit broad-spectrum antibacterial
activity [29]. In turn, the aminocoumarins bind to the ATPase subunits of topoisomerases—
GyrB and, to a lesser extent, ParE, and block the ATP hydrolysis function of the proteins.
Aminocoumarins exhibit antibacterial activity that is mostly limited to Gram-positive
pathogens [30,31]. Novobiocin is the only aminocoumarin ever licensed for clinical use.
However, due to reasons of safety or effectiveness, and the introduction of more effective
antibiotics, it was later withdrawn from the market. Despite the efforts to discover further
GyrB or dual targeting GyrB/ParE inhibitors, no other antibiotics have advanced into the
clinic so far, although a plethora of compounds, both natural and synthetic, have been
shown to exhibit antibacterial activity by competing with ATP in DNA gyrase and topoi-
somerase IV [32,33]. In turn, widespread availability and uncontrolled use of the second
class of bacterial DNA topoisomerases inhibitors, i.e., fluoroquinolones, has contributed
to the rapid emergence of resistance to these agents [13,34,35]. Despite the fact that the
resistance to fluoroquinolones is still increasing in numerous bacterial species, clinical
isolates of fluoroquinolone-resistant bacteria are typically susceptible to ATPase inhibitors
with no elevation in the minimal inhibitory concentration (MIC) [36]. Furthermore, there
are no well-documented examples of bacterial resistance to ATPase inhibitors in the clinic.
Thus, the search for new chemical scaffolds targeting the ATPase activity of bacterial
DNA topoisomerases has emerged as an important strategy in the development of novel
antibacterial agents.

In continuation of the above efforts, we have reported the synthesis of thiosemicar-
bazide derivatives, which act as inhibitors of bacterial topoisomerases (Figure 1) [37–39].
The results presented in our previous work culminated in the identification of 4-benzoyl-1-
(indol-2-oyl)thiosemicarbazide (compound 7) as the initial prototype of a novel class of
bacterial DNA gyrase and Topo IV inhibitors. To expand these initial findings with more
detail on the mode of action, further studies were undertaken, the results of which are
presented herein.
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Figure 1. Inhibitory activity (IC50, (µM)) of thiosemicarbazide derivatives 1–8 against bacterial DNA topoisomerases [37–
39]. Gyrases were tested for their supercoiling activity using relaxed pBR322 as a substrate, while Topo IV compounds 
were tested for their decatenation activity using kDNA. 
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Bacterial topoisomerases (DNA gyrase and Topo IV) belonging to class IIA utilize 
the energy from ATP hydrolysis to catalyze topological transactions in the DNA that are 
crucial for bacterial life. Gyrase, together with topoisomerase I, maintain global DNA 
supercoiling homeostasis and also act locally during processes requiring DNA unwind-
ing, such as DNA replication or transcription. These processes result in the accumulation 
of positive supercoils ahead of the advancing enzyme or protein complex (e.g., repli-
some), and negative supercoils are formed behind it. The excess of both types of super-
coils needs to be removed to provide proper DNA metabolism. Along with the super-
coiling changes, metabolic processing of the DNA double helix results in the formation of 
intramolecular knots and intermolecular catenanes. While catenanes impair the resolu-
tion of the newly replicated, interlinked sister chromosomes or plasmids, knots may in-
terrupt the movement of the enzymes, such as RNA polymerase, along the DNA [40] and 
weaken the strength of the DNA filament [41]. Both types of DNA tangles were proposed 
to be involved in the formation of the topological barriers dividing bacterial chromo-
somes, also referred to as the nucleoid, into superhelical domains [42]. Topo IV was 

Figure 1. Inhibitory activity (IC50, (µM)) of thiosemicarbazide derivatives 1–8 against bacterial DNA topoisomerases [37–39].
Gyrases were tested for their supercoiling activity using relaxed pBR322 as a substrate, while Topo IV compounds were
tested for their decatenation activity using kDNA.

2. Results and Discussion
2.1. Rationale

Bacterial topoisomerases (DNA gyrase and Topo IV) belonging to class IIA utilize
the energy from ATP hydrolysis to catalyze topological transactions in the DNA that are
crucial for bacterial life. Gyrase, together with topoisomerase I, maintain global DNA
supercoiling homeostasis and also act locally during processes requiring DNA unwinding,
such as DNA replication or transcription. These processes result in the accumulation of
positive supercoils ahead of the advancing enzyme or protein complex (e.g., replisome),
and negative supercoils are formed behind it. The excess of both types of supercoils needs
to be removed to provide proper DNA metabolism. Along with the supercoiling changes,
metabolic processing of the DNA double helix results in the formation of intramolecular
knots and intermolecular catenanes. While catenanes impair the resolution of the newly
replicated, interlinked sister chromosomes or plasmids, knots may interrupt the movement
of the enzymes, such as RNA polymerase, along the DNA [40] and weaken the strength
of the DNA filament [41]. Both types of DNA tangles were proposed to be involved in
the formation of the topological barriers dividing bacterial chromosomes, also referred
to as the nucleoid, into superhelical domains [42]. Topo IV was found to be responsible
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for decatenation activity, and, at the same time, it is the strongest unknotting enzyme in
E. coli cells [24], while gyrase prepares optimally supercoiled products for these opera-
tions [43]. During their activity, both gyrase and Topo IV, in an ATP-independent manner,
create a double-stranded break in one segment of DNA (called a G-segment), forming a
transient “cleavage complex”. Then, using energy derived from ATP hydrolysis, another
DNA segment (T-segment) is passed through this break, followed by ATP-independent
phosphodiester bond restoration. Drugs belonging to the quinolone family of antibiotics,
such as nalidixic acid or ciprofloxacin, can inhibit the enzyme by stabilizing the cleavage
complex before resealing a DNA break, which converts the protein into an endogenic
toxin and leads to cell death. Others, such as aminocoumarin antibiotics (e.g., novobiocin,
clorobiocin) compete with ATP for access to its binding site, thus impairing energy produc-
tion by inhibiting ATP binding and its subsequent hydrolysis. As a result of targeting the
enzymes which are essential for bacterial DNA function, which differ significantly from
their eukaryotic counterparts, both groups of antibiotics are considered to be potent antimi-
crobials. However, due to the increasing problem of drug-resistance among bacteria, the
need for the development of new classes of antimicrobial drugs, including those directed
against topoisomerases, has become urgent. In 2011, kibdelomycin (KBD) (Figure 2A), a
natural bactericidal agent against Gram-positive bacteria, was reported as a new class of
ATPase inhibitor of DNA gyrase B (GyrB) and topoisomerase IV (ParE) subunits, without
cross-resistance to other known DNA gyrase inhibitors [44]. Three years later, its crys-
tal structures in complex with S. aureus GyrB and ParE proteins were published, which
resolved the molecular details of its interactions with those targets [45]. KBD binds to
ParE in a U-shaped “dual arm” conformation (Figure 2B), and most of its contacts with
the surrounding residues are through the two stretched arms. The pyrrolamide moiety of
its “lower arm” occupies the same pocket as the adenine group of ATP and is H-bonded
to the conserved Asp76 (or Asp81 in GyrB), while the “upper arm”, together with the
hydrophobic linker connecting these arms, protrudes from the pocket and wraps around
the ATP-binding domain (Figure 2C). The overall binding mode of KBD to GyrB is very
similar to that of KBD bound to ParE, with only a slight shift in the “upper arm”, while
most of the hydrophobic and all polar residues surrounding the pyrrolamide moiety in the
lower binding pocket are identical to those in ParE.

This U-shaped binding mode of KBD is unique and distinctly different from other
known GyrB/ParE small molecule inhibitors, including novobiocin, clorobiocin, and the
ATP substrate analogue, ADPNP [45]. Indeed, as presented in Figure 3 for a representative
small molecule pyrrolamide GyrB inhibitor [46], the binding mode of this inhibitor does
not overlap with the “upper arm” of KBD, while it closely mimics the binding pose of the
pyrrolamide and sugar sub-structural fragments of its “lower arm”. In a similar manner to
the pyrrolamide moiety of KBD, the pyrrolamide group of the inhibitor is buried in the ATP-
binding pocket and hydrogen-bound to the conserved Asp81, whereas its nitropyridine
substituent extends outside of the pocket and is positioned close to the residues Arg84
and Arg54.

Other pyrrolamide and indolamide bacterial DNA topoisomerases inhibitors, such
as the natural product clorobiocin [47] and synthetic compounds [36,48,49], have also
been predicted by enzymatic assays or X-ray crystallography to act as ATPase inhibitors.
Thus, it was reasonable to assume that our thiosemicarbazides with pyrrolamide (3 and
6) and indolamide (4, 7, 8) structural motifs will also bind to the ATP binding pocket.
Therefore, prior to enzymatic studies, their proposed inhibitory mechanism was validated
by computational docking.
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2.2. Docking Studies

Since the FlexX program correctly reproduced the experimentally determined crystal
structure of KBD in complex with S. aureus ParE 43 kDa (PDB entry 4URL) and closely
mimicked the crystal structure of a small inhibitor molecule, pyrrolamide, within the
S. aureus GyrB ATP-binding domain, we found this protocol suitable for the molecular
docking analysis.

According to the docking results presented in Table 1, the thiosemicarbazides with
an indolamide moiety (4, 7, and 8) were identified to bind to the ATP binding pocket of
S. aureus ParE with a much higher affinity than native kibdelomycin. Their predicted
binding sites overlap well with the “lower arm” of the KBD binding site, with only a
slight shift of the binding site of 8, which was out of the ATP pocket towards Asp52
(Figure 4A). In all cases, the indole nitrogen occupies an almost superimposable position
with the pyrrole nitrogen of KBD and forms a hydrogen bond with conserved Asp76. The
binding of the indole moiety of 4, 7, and 8 is further stabilized by numerous hydrophobic
interactions with surrounding residues, and most of these interactions are identical to
those in the crystal structure of kibdelomycin in complex with 43 kDa ParE. A hydrogen
bonding network is in all cases formed between the thiosemicarbazide chain, Glu53, and
water molecules, while for 4, an additional hydrogen bond interaction between its nitro
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group and Ser50 is predicted. Contrary to expectations, however, the pyrrolamide core of 3
(Figure 4B) is rotated by approximately 90◦ relative to that in 4, 7, 8, and shifted towards the
sugar substructural fragment of KDB. As a result, the specific hydrogen bonding interaction
between the nitrogen pyrrole of 3 and Asp 76 is lost. Instead, a rich network of intermolecular
interactions involving its nitro group, residues Asn49, Ala102, Gly103, Gly119, Ala122, and
Thr168, and structural water molecules is observed, which resulted in its best docking score
as predicted by the docking protocol. In turn, the replacement of the indole moiety in 7 with
the pyrrole led to the U-shaped 6 (Figure 4C) with a hydrogen bonding interaction with
Asp76 predicted for its nitrogen atom of the pyrrole ring. The substitution of the pyrrole in
U-shaped 6 with a similar in size imidazole moiety provided compound 5 in its extended
binding conformation. Due to its binding similarity to the native KBD, compound 5 is
expected to be a potent ATPase inhibitor as well. The imidazole nitrogen of 5 is positioned
in a hydrogen bonding interaction with Asp76. In the calculated binding profiles for 1
and 2, in turn, the binding site for 1 (Figure 4D) is close to but does not overlap with the
kibdelomycin binding site, whereas the binding mode of 2 is closely similar to 3.

Table 1. Scores of top poses of thiosemicarbazides 1–8 docked to proteins: PDB entry: 4URL (S. aureus 43 kDa ParE) and
PDB entry: 4URM (S. aureus 24 kDa GyrB). * native ligand kibdelomycin.

1 2 3 4 5 6 7 8 KBD *

S. aureus ParE
(PDB ID: 4URL) −29.0 −23.7 −38.0 −32.9 −33.1 −34.4 −37.0 −31.3 −26.8

S. aureus GyrB
(PDB ID: 4URM) −22.2 −23.5 −33.1 −33.0 −27.6 −27.4 −33.3 −29.4 −12.4
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acids in the active site (middle). With the exception of 2, the remaining thiosemicarbazides are predicted to bind in a similar
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For comparison, the binding mode of thiosemicarbazides 1–8 was also studied in
the ATP binding site of S. aureus GyrB (PDB entry: 4URM). In line with expectations, all
compounds are predicted to bind to the ATP binding pocket with much higher affinities
than those predicted for native kibdelomycin (Table 1, second entry). As presented in
Figure 5, the binding sites for 1, 3, and 5 are seen in a more distal region of the ATP
binding pocket, while the binding mode of the remaining compounds (2, 4, and 6–8) is
very similar to that of KBD. Hydrogen bonding interactions with the conserved Asp81
are predicted for the indole nitrogen of 4 and 7 and the pyrrole nitrogen of 6, whereas
for 8, close hydrophobic interactions between its thiosemicarbazide chain and Asp81 are
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expected. Their binding to the ATP binding pocket is further stabilized by numerous
hydrophobic interactions with surrounding residues, and most of these interactions are
identical to those in the crystal structure of kibdelomycin in complex with GyrB.
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Figure 5. Overlay of calculated binding modes of thiosemicarbazides (in grey): (A) 3; (B) 6 and native kibdelomycin (in
green) in the ATP binding pocket of S. aureus GyrB (PDB entry: 4URM). Remaining thiosemicarbazides are predicted to
bind in manner similar to 6 (2, 4, 7, and 9) or to 3 (1 and 5), respectively.

Compound 7, which was later found to be the most active against two strains of the
Mycobacterium genus, was also studied for its binding potential in the ATPase region of
Mycobacterium tuberculosis GyrB protein (PDB entry: 3ZM7), where it was predicted to bind
with a higher affinity than predicted for the native inhibitor, AMPPCP (−27.1 vs. −23.0).
As presented in Figure 6, it binds to the same site as AMPPCP and is stabilized by several
hydrogen bonding interactions and close hydrophobic contacts with the surrounding
amino acids. However, this observation was not confirmed later in the in vitro assay
against the supercoiling activity of M. tuberculosis gyrase (data not shown).
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2.3. Enzymatic Assays

According to the docking studies, there was sufficient evidence that at least the in-
hibitors that form H-bond interactions with Asp76 (Asp81), i.e., 4, 5, 6, 7, and 8, should
exhibit inhibition of ATPase activity of type IIA topoisomerases. However, among these
compounds, only 4 and 7 showed strong inhibitory activity when tested in vitro against the
purified enzymes, and in both cases, it was the decatenation process conducted by topoiso-
merase IV that was affected the most (Figure 1). To provide experimental confirmation of
the assumption that the observed inhibition of decatenation by topoisomerase IV indeed
may be due to the impairment of ATPase activity and not its cleavage ability, two enzy-
matic tests were performed. Inhibition of the resealing process after the introduction of the
double-stranded break in the DNA, proven for fluoroquinolone antibiotics, results in the
accumulation of double-stranded DNA breaks and, finally, in bacterial cell death [50]. Their
inhibitory action against bacterial DNA topoisomerases might be due to their interactions
with DNA within the cleavage complex. Thus, in the first test, we subjected compounds
4 and 7, as well as norfloxacin, a common drug from the fluoroquinolones group, to the
non-radiolabeled cleavage assays with a supercoiled pBR322 used as the substrate. The
appearance of linear DNA formed during denaturation of the drug–enzyme–DNA com-



Int. J. Mol. Sci. 2021, 22, 3881 12 of 23

plex was monitored. The relaxed, linear, and supercoiled DNA forms were resolved and
visualized by agarose gel electrophoresis followed by ethidium bromide staining. The
inhibitory activity of norfloxacin was observed at a concentration of ≥10 µM (Figure 7,
lanes 10–12). In contrast, no increase in linear plasmid DNA was detected for compounds
4 and 7 when tested at concentrations ranging from 0.1–100 µM (Figure 7, lanes 3–9).
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IV and the tested compounds. Lane 1, supercoiled plasmid (control); lane 2, linearized plasmid
(control); lane 3, no drug (control); lane 4, compound 4 (0.1 µM); lane 5, compound 4 (10 µM); lane 6,
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The second assay, focused on the ability of the tested compounds to inhibit the process
of ATP hydrolysis by the enzyme, confirmed the predictions of the docking studies in the
case of derivatives 4 and 7 (Table 2). The percentages of the inhibition of ATPase activity
of topoisomerase IV by the control drug novobiocin and the tested compounds at 20 µM
concentration were similar, reaching the highest value in the case of novobiocin (67.25%)
and lowered slightly in the case of 4 and 7 (55.76% and 49.35%, respectively).

Table 2. ATPase activity of S. aureus topoisomerase IV treated with the tested compounds 4 and 7
(20 µM), demonstrated as a percentage of ATP hydrolysis inhibition compared to control (%) ± SEM
from two independent experiments.

S. aureus Topoisomerase IV ATPase Assay

Compound 4 7 Nov

ATP Hydrolysis Inhibition

% 55.76 ± 1.59 49.35 ± 2.27 67.25 ± 10.50
** * **

Nov: novobiocin (20 µM). * p < 0.05, ** p < 0.01 using one-way analysis of variance (ANOVA) with Tukey’s
multiple comparison test.

Given the above results, it is clear that thiosemicarbazides 4 and 7 did not act as ParC
inhibitors (topoisomerase IV subunit involved in the cleavage/resealing reaction), however,
in line with the predictions arising from the molecular docking studies, they were able to
reduce the rate of ATP hydrolysis by the ParE subunit similarly to novobiocin.

2.4. Evaluation of Antibacterial Activity of the Selected Compounds

Both compounds were tested previously against Gram-positive reference strains of
S. aureus, S. epidermidis, Micrococcus luteus, and Bacillus cereus [37,38]. To expand the
range of the analyzed strains, we decided to test a set of 12 clinical strains of S. aureus
described in [51], including two MRSA strains (D15 and D17; Table 3), as well as two
reference representatives of the Mycobacterium genus, namely M. smegmatis mc2 155 and
M. tuberculosis H37Rv (Table 4).
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Table 3. In vitro activity of 4 and 7 against clinical isolates of S. aureus expressed as the minimal inhibitory concentra-
tion (MIC) (µg/mL) and minimal bactericidal concentration (MBC) (µg/mL). AMP: ampicillin, OXA: oxacillin, NTF:
nitrofurantoin.

4 7 AMP OXA NTF

Strain MIC MBC MIC MBC MIC MBC MIC MBC MIC MBC

Nasopharynx Isolates
S. aureus C4 64 >256 16 128 >256 >256 0.4 0.4 16 16
S. aureus C7 64 >256 16 128 64 128 0.2 0.4 16 16
S. aureus C8 64 >256 16 128 >256 >256 1.5 1.5 16 16
S. aureus C19 64 >256 32 256 64 128 0.2 0.2 32 32

Ulcer/Furuncle Isolates
S. aureus D12 64 >256 32 256 256 256 0.2 0.2 32 32
S. aureus F1 64 >256 16 128 128 128 0.8 0.8 32 32
S. aureus F7 64 >256 16 128 4 4 0.2 0.4 16 16
S. aureus F12 64 >256 8 64 64 128 0.2 0.2 16 32

Bone Isolates
S. aureus D14 64 >256 32 >256 256 >256 0.2 0.2 32 32
S. aureus D15 64 >256 32 >256 >256 >256 64 128 32 32
S. aureus D17 64 >256 32 >256 >256 >256 64 128 32 32
S. aureus D20 64 >256 32 >256 128 256 0.4 0.4 16 32

Table 4. Antibacterial activity of 4 and 7 against M. smegmatis and M. tuberculosis (µg/mL). nd—
not defined.

4 7

Strain MIC MBC MIC MBC

M. smegmatis mc2 155 128 256 8 8
M. tuberculosis H37Rv nd nd 32 32

Compound 7 showed stronger growth inhibitory activity against staphylococci than
compound 4 (MIC = 8–32 µg/mL vs. MIC = 64 µg/mL, respectively). For all but one
strain (S. aureus F7), compound 7 was also 2–8 times more active than the commonly used
β-lactam antibiotic ampicillin. However, two other common antibiotics (oxacillin and ni-
trofurantoin) were more or equally potent against all tested strains, except for S. aureus D15
and D17 strains (which were twice more susceptible to 7 than to oxacillin), and S. aureus F12
(which was twice more susceptible to 7 than to nitrofurantoin). For both thiosemicarbazide
derivatives, MBC values were eight times higher than their corresponding MICs, which
highlights their bacteriostatic activity. Interestingly, compound 7 showed high activity
against M. smegmatis and M. tuberculosis strains, and in these cases, MIC values were equal
to MBCs, indicating its bactericidal mode of action.

2.5. Cytotoxicity Analyses

Cytotoxic activities were preliminarily tested for compounds 1, 3, 5, 6, and 7, as
we described previously [37–39]. However, for a more in-depth view of the effect of
compounds 4 and 7 on HeLa cells, we used the ApoToxGlo™ Triplex Assay (Promega),
which enables the simultaneous measurement of cytotoxicity as well as cell viability and
the induction of apoptosis. Cisplatin, a strongly cytotoxic compound with proven pro-
apoptotic activity, was used as a control. HeLa cells were incubated with the tested
compounds for 24 h at a concentration of 16–128 µg/mL and cisplatin at a concentration of
2–16 µg/mL.

The results presented in Figure 8 show that during the treatment of the cells with
the tested thiosemicarbazide derivatives, a significant decrease in the number of viable
cells could be observed without any cytotoxic effect. Therefore, it can be concluded that
the tested compounds probably inhibit cell proliferation, e.g., as a result of an impaired
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replication process, but do not cause their death. Only at concentrations above 64 µg/mL
for compound 4, a slight increase in cytotoxicity could be observed. This differed for
cisplatin, where a strong increase in cytotoxicity was observed, which resulted in a decrease
in cell viability. Induction of apoptosis (an increase in caspase 3/7 concentration) was seen
only in the case of cisplatin (data not shown).
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2.6. Time-Lapse Microfluidic Microscopy

Since the inhibition of the ATPase activity of type II topoisomerases may directly
influence the passage of replication forks, and compound 7 revealed its high potency against
M. smegmatis, we performed time-lapse microfluidic microscopy (TLMM) experiments
using the M. smegmatis DnaN-EGFP (JH01) reporter strain, in which the enhanced green
fluorescent protein (EGFP) encoding gene was fused to the gene encoding the sliding clamp
(DnaN, beta subunit of DNA polymerase III) in its native chromosomal locus. This allowed
us to observe the dynamics of the replisomes (the multiprotein complexes involved in DNA
synthesis) during chromosome replication [52] and the impact of compound 7 on replisome
movement at the single-cell level. The growth of this strain was similar to that of the wild-
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type (WT) M. smegmatis mc2 155. In our experiments, we used a concentration of 5× the
MIC of compound 7 (Table 4), because this concentration allowed us to monitor the changes
in the replication dynamics without rapidly killing the bacterial cells. Mycobacterial cells
were observed for 5 h under optimal conditions (without the drug), followed by 5 h of
the tested compound treatment (this constituted approximately twice the chromosome
replication time) and then for an additional 7 h in fresh medium after the washout of the
compound. The bacterial cell cycle can be divided into the C period (the time of synthesis of
daughter chromosomes, which lasts from the moment of the replication initiation until its
termination), and the B + D period, which lasts from replication termination to the initiation
of replication in daughter cells. In TLMM experiments, replication initiation corresponded
to the appearance of a fluorescent foci of DnaN-EGFP. During the replication process
(C period), the replisomes (seen as fluorescent foci) frequently split and merged back
together. Finally, replication was terminated, which was observed as the disappearance
of fluorescent foci (see the video in the Supplementary Materials). The duration of the C
and B + D periods under optimal growth conditions and treatment with 7 is summarized
in Figure 9.
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ble during the entire time of incubation with the compound due to the delay in replica-
tion fork passage. The second group comprised cells that terminated replication in the 
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Figure 9. The duration of the C and the B + D periods during the cell cycle of M. smegmatis expressing DnaN-EGFP protein
fusion (JH01 strain) measured under optimal growth conditions (A) and when treated with compound 7 (B).

In the presence of 4-benzoyl-1-(indol-2-oyl)thiosemicarbazide (7), the replisomes re-
mained visible but their progression was decreased along the chromosome. This was
observed as a moderate prolongation of the C period compared to the untreated control
(mean, 168 ± 41 min, n = 120), which may be related to the impairment in nucleoid unknot-
ting, resulting in the accumulation of the topological barriers defining the boundaries of
superhelical domains. Two major groups of cells were observed during exposure to 7. The
first group (34% of 183 cells) comprised cells in which replisome foci were visible during the
entire time of incubation with the compound due to the delay in replication fork passage.
The second group comprised cells that terminated replication in the presence of 7 (66% of
183 cells). In the latter group, 50% of the cells did not initiate the next replication round in
daughter cells, 8% initiated replication only in one daughter cell, and 42% initiated the next
replication round in both daughter cells. Interestingly, the shorter the interval between
replication initiation and the addition of compound 7, the longer duration of replication
(the C period) was observed. As shown in Figure 10 (left), the relationship is non-linear,
i.e., the bacterial cells which initiated replication closer to the addition point of 7 to the
medium replicated for disproportionately longer than the cells that initiated replication
much earlier before the compound was added. This may suggest that the activity of the
tested compound affects the process of replication initiation and/or that the inhibition of
DNA untangling results in difficulties resolving sister chromosomes, which may play a
role as the important checkpoint(s) before initiation of the next round of DNA replication.
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Comparing the obtained results of C period duration in M. smegmatis cells treated
with compound 7 with the results described by Trojanowski et al. [52] for known inhibitors
of type IIA topoisomerases (novobiocin and nalidixic acid), it should be noted that the
tested thiosemicarbazide derivative shows a mechanism of action similar to novobiocin.
Novobiocin, like compound 7, stalled the replication fork; however, the mobility of the
replisomes was reduced by 175% ± 60% at 5× the IC50. As in the case of compound 7,
two groups of cells were observed: those in which replication lasted throughout antibiotic
treatment, and those that terminated replication during the action of novobiocin. The
percentage of cells in both groups was almost identical to that of compound 7. In contrast
to novobiocin and 7, quinolones completely abolished replication.

Significant differences, however, were observed during the B + D period. In the cells
terminating replication and starting a new replication round under compound 7 treatment,
we observed a prominent (330%) increase in time spanning the sum of the B and D periods
(mean = 142 ± 62 min, n = 110) compared to the untreated control. These results show that
even when some of the cells complete the replication process during incubation with the
tested compound, the B + D phase is significantly disturbed, which also affects the next
round of replication in the daughter cells. In the case of quinolones, after disassembly of
the replisomes in the presence of nalidixic acid, replication was restarted at the same sites
from which they had previously disappeared [52].

The use of TLMM allows us to simultaneously observe the target process along with
other processes e.g., cell growth. During exposure to compound 7, mycobacterial cells
elongated much slower (72% inhibition of the cell elongation rate) than they did in optimal
conditions (Figure 10, right). Cells grew more than three times slower (mean = 0.4 µm/h,
n = 50) compared to untreated cells (mean = 1.45 µm/h, n = 50). Interestingly, novo-
biocin had only a moderate effect on bacterial cell elongation compared to the tested
thiosemicarbazide derivative: cells elongated only 30~50% more slowly than the untreated
control, depending on the concentration used [52]. The similarity of the mode of action
of compound 7 to novobiocin in the replication process, and, at the same time, its greater
impairment of cell growth, may indicate the existence of an additional antibacterial activity
of this thiosemicarbazide derivative, different from the inhibition of the ATPase activity of
type II topoisomerases.

3. Materials and Methods
3.1. Docking Studies

Flexible docking was performed by means of the FlexX algorithm [53] as implemented
in the LeadIT software [54]. The energies of binding of thiosemicarbazides 1–8 into the
ATP binding pocket of S. aureus 43 kDa ParE (PDB entry: 4URL) and GyrB (PDB entry:
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4URM), for which 3D structures were taken from the crystal structures deposited in the
Protein Data Bank [55], were analyzed. The active sites were defined to include all atoms
within a 6.5 Å radius of the native ligands. The first 100 top-ranked docking poses were
saved for each docking run.

3.2. Cleavage Assay

Two thiosemicarbazide derivatives, 4 and 7, were tested in vitro for their activity to
inhibit the DNA breakage–rejoining step of the topoisomerase reaction using an E. coli
gyrase cleavage kit, S. aureus gyrase cleavage kit and S. aureus topoisomerase IV cleavage
kit (INSPIRALIS, Norwich, UK, cat no. GCK001, SAGC001, SATC001). For E. coli and
S. aureus gyrases, substrate DNA (0.5 µg) of supercoiled pBR322 was incubated with 1 U
of the enzyme under supercoiled conditions in 1× assay buffer in the absence of ATP.
The tested compounds were added to the reaction at a final concentration of 100 µm (1%
DMSO). The total volume of the sample was 30 µL. After 1 h incubation at 37 ◦C, the
samples were treated with 3 µL of 2% SDS and 1.5 µL of 10 mg/mL Proteinase K and then
incubated for 30 min at 37 ◦C to release trapped cleavage complexes. Then, the reaction was
stopped with Stop Tris-EDTA-Bromophenol blue buffer (STEB) buffer (40% (w/v) sucrose,
100 mM Tris-HCl pH 8, 1 mM EDTA, 0.5 mg/mL bromophenol blue) and the products
were analyzed by agarose gel electrophoresis (80 V, 2 h). For the S. aureus topoisomerase IV
reaction, supercoiled pBR322 was incubated under relaxation conditions. The following
steps were similar to the gyrase cleavage assay. Also, ciprofloxacin was used as a positive
control drug in the gyrase assay and norfloxacin was used in the topoisomerase IV assay
at concentrations of 0.1 µM, 10 µM and 100 µM. The occurrence of the linear DNA band
on the agarose gel with a simultaneous decrease of the density of a band representing
supercoiled DNA indicates the inhibition of enzyme activity.

3.3. ATPase Assay

Thiosemicarbazide derivatives 4 and 7 were also studied for their ability to interrupt
the ATP hydrolysis reaction of topoisomerase IIA using the E. coli topoisomerase IV AT-
Pase kit and S. aureus topoisomerase IV ATPase kit (INSPIRALIS, Norwich, UK, cat no.
ATPECT001, ATPSAT001). Class IIA topoisomerases use energy from ATP hydrolysis for
their proper action (supercoiling or decatenation). Some drugs, such as coumarins (e.g.,
novobiocin), inhibit hydrolysis by competing with ATP molecules for a binding site on
the enzyme. The ATPase assay is based on the conversion of phosphoenolpyruvate (PEP)
to pyruvate kinase (PK), coupled with the conversion of pyruvate to lactate by lactate
dehydrogenase (LDH). This step requires NADH, which is oxidized to NAD+. NADH
absorbs strongly at 340 nm but NAD+ does not; thus, the reduction of NADH over time
can be measured by a decrease in absorbance (Scheme 1). The reaction was performed in
96-well, clear flat-bottomed plates and the protocol for gyrase and topoisomerase IV was
the same. In brief, 1 U of the enzyme was incubated at 37 ◦C in a final volume of 100 µL
containing 1× assay buffer, 800 µm PEP, 400 µm NADH, 1.5 µL PK/LDH, 10 nm linear
pBR322 and the tested compound at a final concentration of 20 µM. Also, novobiocin at
20 µM was used as a control inhibitor. The mix was equilibrated for 10 min at 37 ◦C. The
hydrolysis reaction was then initiated by the addition of ATP (2 mM) and the decrease
in A340 was measured for 1 h at 5 min intervals. The decrease in OD340 over time was
converted to ATP hydrolysis rate using an extinction coefficient of 6.22 mM−1 × cm−1 for
NADH (and assuming 1 NADH molar equivalent to 1 ATP mol), and the percentage of
inhibition compared to the untreated control was determined.
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3.4. Antibacterial Activity

The in vitro antimicrobial activity of compounds 4 and 7 was evaluated using twelve
clinical isolates of S. aureus received from the collection of the Department of Immunology
and Infectious Biology, University of Łódź (described in [51]). All strains were kept
frozen at −80 ◦C in Tryptic soy broth with 15% glycerol until testing. The minimum
inhibitory concentration (MIC) was determined using two-fold dilutions of the tested
compounds in Mueller–Hinton broth at a concentration range of 1–256 µg/mL in 96-
well plates according to The European Committee on Antimicrobial Susceptibility Testing
(EUCAST) guidelines (International Organization for Standardization, ISO 20776-1 (2006)).
The final concentration of DMSO (compound diluent) was 1%, which did not influence
bacterial growth. Bacteria were added at approximately 5 × 105 CFU mL−1. The plates
were incubated at 37 ◦C for 18 h and the optical density (OD600) was measured using a
SpectraMax i3 Multi-Mode Platform (Molecular Devices, San Jose, CA, USA). Minimum
bactericidal concentration (MBC), defined as the lowest concentration of a compound
that resulted in a >99.9% reduction in CFU mL−1 of the initial inoculum, was determined
following MIC evaluation by plating the contents of the first well that showed no visible
growth of bacteria and the next two wells with higher concentrations of the compound onto
Mueller–Hinton agar plates. Then, the plates were incubated at 37 ◦C for 18 h. Ampicillin,
oxacillin, and nitrofurantoin were used as reference antimicrobial agents for both MIC
and MBC determination. To evaluate the activity against M. smegmatis mc2 155, nutrient
broth (NB) (BD, Franklin Lakes, NJ, USA) was used, and the inoculum at a density of
OD600 = 0.6–0.9 was used to prepare fresh cultures in 96-well plates starting at OD600 = 0.08,
which then were incubated with the tested compounds for 48 h at 37 ◦C. Additionally,
compound 7 was tested for its activity against M. tuberculosis H37Rv (American Type
Culture Collection, ATCC 25618) cultured in Middlebrook 7H9 broth (BD, Franklin Lakes,
NJ, USA) supplemented with 10% oleic acid, albumin, dextrose, and catalase (OADC)
and incubated at 37 ◦C until the optical density of the inoculum reached OD600 = 0.080.
Then, two-fold dilutions of the compounds were added, and the plate was incubated for
96 h at 37 ◦C. Determination of the MIC and MBC was conducted as described above. All
evaluations were performed in triplicate.

3.5. ApoToxGlo Assay

To determine the type of cytotoxic activity induced by compounds 4 and 7, the ApoTox-
Glo™ Triplex assay (Promega, Madison, WI, USA) was performed. This test enables the
simultaneous assessment of cell viability, drug cytotoxicity, and caspase activity. The
viability of cells was determined fluorometrically using a GF-AFC (glycyl-phenylalanyl-
aminofluorocoumarin) protease substrate conjugated to a fluorochrome. This substrate
can penetrate the cell interior through the intact cell membrane, where it is cleaved by
a protease active only in living cells. The protease cleavage of the substrate results in
the emission of fluorescence, and its intensity is directly proportional to the number of
living cells. The cytotoxic activity of the compounds was determined fluorometrically
using a bis-AAF-R110 (bis-alanylalanyl-phenylalanyl-rhodamine 110) protease substrate
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coupled to a second fluorescent label. This substrate cannot penetrate the cell membrane;
therefore, it is cleaved by a protease released from dead cells. The protease cleavage of the
substrate results in the emission of fluorescence, and its intensity is directly proportional
to the number of dead cells. The activity of caspases 3/7, which are markers of cells
entering the apoptotic pathway, was measured using a third substrate containing the DEVD
(Asp-Glu-Val-Asp tetrapeptide) caspase recognition sequence coupled to the luciferase
substrate aminoluciferin. After cell lysis, caspases 3/7 cleaves the DEVD sequence and
releases the luciferase substrate, resulting in luminescence emission, and its intensity is
directly proportional to the caspase activity. The experiment was performed according
to the manufacturer’s protocol. The HeLa cells (ATTC® CCL-2™), cultured in Iscove’s
Modified Dulbecco’s Medium Iscove’s Modified Dulbecco’s Medium (IMDM) medium
supplemented with 10% FBS, were adjusted to a density of 7.5 × 103 cells per well. The 96-
well black plate with cells was incubated for 24 h at 37 ◦C and 10% CO2. After incubation,
the growth medium was removed and 100 µL of fresh medium containing the tested
compounds in the concentration range of 16–128 µg/mL was added (the DMSO content in
the highest concentration of the compound did not exceed 1% and had no significant effect
on cell growth). Cells grown without the addition of compounds were used as a positive
control. Additionally, the activity of an antitumor compound (cisplatin) in the concentration
range of 2–16 µg/mL was determined. After 24 h of incubation with the compounds, 20 µL
of the viability/cytotoxicity assay reagent containing both substrates (GF-AFC and bis-
AAF-R110) was added to each well. The plate was vigorously mixed and then incubated
for 1 h at 37 ◦C and 10% CO2. The fluorescence was measured at Ex/Em = 400/505 nm
(viability) and 485/520 nm (cytotoxicity) using the SpectraMax i3 Multi-Mode Platform
(Molecular Devices, San Jose, CA, USA). For caspase activity determination, 100 µL of
Caspase-Glo® 3/7 reagent was added to all wells. The plate was incubated for 1 h at 37 ◦C
and the luminescence was then measured. The results were presented as mean arithmetic
values of relative fluorescence units (RFU) from two independent experiments.

3.6. Time-Lapse Microfluidic Microscopy

The DnaN-EGFP (JH01) strain used for TLMM experiments has been described in
detail previously [56]. In short, the dnaN gene encoding the beta clamp of DNA polymerase
III was replaced with the dnaN-egfp fusion gene in the native chromosomal locus.

TLMM was performed as previously described [52,56,57] using B04A plates and the
CellASIC Onix flow-control system (Merck-Millipore, Burlington, MA, USA). Cells loaded
into the observation chamber were exposed to fresh 7H9 + 10% OADC medium+ 0.05%
Tween 80 for 5 h, followed by 7H9 + 10% OADC + 0.05% Tween 80 + inhibitor for 5 h, and
then back again to fresh 7H9 + 10% OADC + 0.05% Tween 80 without antibiotic for 7 h
under continuous pressure (1.5 psi) at 37 ◦C. Images were recorded at 10 min intervals
using a Delta Vision Elite inverted microscope equipped with a 100× oil immersion
objective and a CoolSnap HQ2 camera (Photometrics, Tucson, AZ, USA). The exposure
conditions were as follows: for the FITC filter for EGFP illumination (excitation wavelength
= 475/28 nm; emission wavelength = 525/48 nm): 80 ms and 50% intensity, and for the
differential interference contrast (DIC): 50 ms and 5% intensity. All measurements were
taken manually and analyzed with the ImageJ Fiji suite and R software platforms [58]. The
p-value was determined by paired, two-sided, parametric Student’s t-tests with pooled
SD. To avoid the generation of false assumptions in the case of non-normal distributions,
statistical significance was confirmed with the non-parametric two-sided Wilcoxon test
with minimum 0.995 confidence intervals.

4. Conclusions

The work presented previously [37–39] culminated in the identification of six thiosemi-
carbazide derivatives as initial prototypes of a novel class of bacterial DNA gyrase and topoi-
somerase IV inhibitors. Among them, 1-(indol-2-oyl)-4-(4-nitrophenyl)thiosemicarbazide (4)
and 4-benzoyl-1-(indol-2-oyl)thiosemicarbazide (7) showed the highest inhibitory activities
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against topoisomerase IV (Topo IV) from S. aureus, with IC50 values of 14 µm. To expand
these initial findings with further detail on their mode of action, the molecular docking ap-
proach combined with enzymatic studies and antimicrobial activity testing against clinical
S. aureus, as well as M. smegmatis and M. tuberculosis strains, were conducted, followed by
time-lapse microfluidic microscopy.

Docking studies revealed that two thiosemicarbazides with an indolamide core, 4
and 7, bind to the ATP binding pocket of S. aureus ParE with much higher affinity than
native kibdelomycin (a known inhibitor of GyrB/ParE subunits). Comparative analysis of
KBD binding sites to the enzyme indicated that the indole nitrogen of 4 and 7 occupies an
almost superimposable position with the pyrrole nitrogen of KBD and forms a hydrogen
bond with the conserved Asp76 residue. Moreover, the binding of the indole moiety was
stabilized by numerous hydrophobic interactions with surrounding residues, and most
of them were identical to those in the crystal structure of the 43 kDa ParE–KBD complex.
These results have been confirmed in vitro in enzymatic studies, which showed that the
inhibition of Topo IV by 4 and 7 did not occur by stabilizing the cleavage complex as in the
case of quinolones and fluoroquinolones. The evaluation of the level of ATP hydrolysis
by Topo IV indicated that the tested compounds bind to the ParE subunit, competing for
the binding site with the ATP molecule, which confirmed the earlier assumption from
the docking studies. Compound 7 was found to be active against methicillin-resistant S.
aureus strains (MRSA) and mycobacteria. Supplementary docking studies demonstrated
the ability of compound 7 to bind to the ATPase region of M. tuberculosis GyrB; however,
the in vitro analysis of M. tuberculosis gyrase activity in the presence of 7 did not show
any inhibitory activity of this compound against the enzyme. Thus, it can be assumed
that the anti-mycobacterial activity of 7 is due to its action on another molecular target in
Mycobacterium cells. This microorganism does not have a typical Topoisomerase IV [59];
however, Jain and Nagaraya revealed the presence of a topoisomerase with decatenating
activity in M. smegmatis that was different in its structure and origin, called Topo NM [60].
Perhaps the function of this enzyme is specifically impaired in the presence of 7, or the
function of some other important enzyme(s) is disrupted. These observations were further
supported by the in vivo analysis using TLMM and a target-tagged fluorescent reporter
strain of M. smegmatis. The real-time monitoring of replisome dynamics and cell elongation
at the single-cell level enabled us to confirm our hypothesis (the novobiocin-like pattern
of activity of the tested compounds on the replication process), but also revealed the
existence of a putative additional mechanism of action resulting in a strong inhibition
of bacterial growth. A thorough understanding of the basics of this mechanism requires
further research. Thiosemicarbazide derivatives bearing indole moieties may be considered
as novel inhibitors of the ATPase subunit of bacterial topoisomerases with dual antibacterial
activity and open up the opportunity to be considered in the future as an alternative to
aminocoumarin antibiotics and fluoroquinolones.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22083881/s1, Video S1: TLMM analysis.avi.
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Mycobacterium Replication Machinery During the Cell Cycle. mBio 2015, 6, e02125-14. [CrossRef] [PubMed]
57. Trojanowski, D.; Hołówka, J.; Ginda, K.; Jakimowicz, D.; Zakrzewska-Czerwińska, J. Multifork chromosome replication in
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