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Abstract. Acute myeloid leukemia (AML) is one of the most 
common hematological malignancies. It is difficult to treat 
since it easily develops resistance to therapeutic drugs. Myeloid 
cell leukemia 1 (MCL-1), BCL-2 and BCL-XL, which belong 
to the anti‑apoptotic group of proteins in the BCL‑2 family, 
are overexpressed in AML. The effects of inhibitors that target 
anti‑apoptotic proteins of the BCL‑2 family in AML were 
evaluated in the present study. MCL‑1 protein levels of HL60, 
MOLM13, OCI‑AML3 and MV4‑11 cell lines were investi-
gated. Furthermore, following treatment with MCL‑1‑selective 
antagonist A‑1210477 and/or BCL‑2/BCL‑XL antagonist 
ABT‑737, cell viability was detected. The chimera rate of 
human CD45(+) cells of bone marrow from mouse models was 
analyzed via flow cytometry and immunohistochemistry using 
murine tissues (lung, spleen and liver). The data revealed that 
the HL‑60 cell line, which exhibited a low MCL‑1 protein level, 
and MOLM-13 and MV4-11 cell lines, whose MCL level was 
intermediate, were sensitive to ABT‑737, whereas OCI‑AML3 
cells, which exhibited a high MCL‑1 level, were insensitive to 
ABT‑737. However, multiple AML mouse models and AML 
cell lines were sensitive to the MCL‑1‑selective antagonist 
A‑1210477. The results of the present study indicated that the 
MCL‑1‑selective antagonist could overcome the resistance to 
the BCL-2/BCL-XL antagonist (ABT-737) in vitro and in vivo.

Introduction

Acute myeloid leukemia (AML) is one of the most common 
hematological malignancies worldwide (1). Multiple stress 
factors can damage cells and induce carcinogenesis (2), 
and apoptosis may eliminate malignant cells (3). However, 

malignant cells are capable of evading apoptosis, which 
makes tumors, including AML, difficult to treat (4). The 
aberrant upregulation of BCL‑2, an anti‑apoptotic protein of 
the BCL‑2 family, is associated with carcinogenesis and drug 
resistance (5). BCL‑XL, another BCL‑2 family anti‑apoptotic 
protein, has been demonstrated to be expressed in eight head 
and neck squamous cell carcinoma (HNSCC) cell lines (6). 
Reportedly, AML tumorigenesis and drug resistance are 
associated with myeloid cell leukemia 1 (MCL-1), which also 
belongs to the BCL‑2 family of anti‑apoptotic proteins (7,8). 
The aforementioned anti‑apoptotic proteins, including 
MCL‑1, BCL‑2 and BCL‑XL, can bind and sequester 
BAX, BCL2 antagonist/killer 1, BCL‑2‑like protein 11 or 
BAD, which are their pro‑apoptotic counterparts in the evasion 
of apoptosis (9).

BCL-2 anti-apoptotic antagonists, including BCL-2 
homology 3 (BH3) mimic small molecules, have been devel-
oped (10). Hitherto, Abbott Laboratories have developed BH3 
mimetics, including ABT-737 (BCL-2/BCL-XL antagonist) 
and ABT-199 (BCL-2-selective antagonist) (11). ABT-737 has 
a high affinity for BCL‑2/BCL‑XL and can promote apoptosis 
of malignant cells (12,13). The upregulation of anti‑apoptotic 
BCL‑2 family proteins is associated with multiple different 
types of tumor (14), including non‑small cell lung cancer (15), 
AML (7,8,13), lymphoma (4,16), multiple myeloma (12,16), 
neuroblastoma (17), HNSCC (6), hepatocellular carcinoma (10) 
and esophageal squamous cell carcinoma (ESCC) (18).

It has been reported that upregulation of MCL‑1 is associ-
ated with drug resistance (19,20); however, ABT‑737 or other 
ABT BH3 mimetics have low affinities for MCL‑1, thus, 
malignant cells with high MCL‑1 expression are resistant 
to ABT compounds (21). In addition, MCL‑1 amplification 
and upregulation are frequently associated with poor prog-
nosis in multiple different types of tumor (22). For example, 
high MCL‑1 expression in breast tumors is associated with 
high tumor grade and poor patient prognosis (23). It has 
been reported that MCL‑1 small interfering RNA knock-
down restores ABT‑737 sensitivity, indicating that MCL‑1 
serves a critical role in ABT‑737 resistance in leukemic 
cells (13,24).

A variety of approaches have been developed, including 
BH3 mimetics, which bind and antagonize MCL‑1 or other 
BCL‑2 family anti‑apoptotic proteins (25). Furthermore, it has 
previously been reported that BH3 mimetic MCL‑1‑selective 
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antagonist could inhibit the expression of MCL‑1 (26,27). 
A‑1210477, which binds to MCL‑1 with high affinity, was the 
first MCL‑1‑BH3‑only antagonist (6,18).

The present study assessed the efficacy of MCL‑1‑selective 
antagonist A‑1210477 and/or BCL‑2/BCL‑XL antagonist 
ABT-737 in AML cell lines and mouse models. A-1210477 
exhibited a high affinity for anti‑apoptotic protein MCL‑1. In 
the present study, the potential therapeutic effects of A‑1210477 
were evaluated in vitro and in vivo, and the results indicated 
that ABT‑resistant AML cell lines or mouse models could be 
inhibited by A‑1210477, which rendered it a potential targeted 
therapy that could be beneficial to patients with hematological 
malignancies or solid tumors.

Materials and methods

Cell lines. Human leukemia MV4‑11 and HL‑60 cell lines were 
obtained from the American Type Culture Collection. Human 
leukemia MOLM13 and OCI‑AML3 cell lines were purchased 
from Shanghai Bioleaf Biotech Co., Ltd., and cultured in 
RPMI‑1640 (Gibco; Thermo Fisher Scientific, Inc.), 10% fetal 
bovine serum (Gibco; Thermo Fisher Scientific, Inc.) at 37˚C, 
according to the manufacturer's protocol.

Mouse strains. NSG‑SGM3 mice were obtained from Jackson 
Laboratory, and housed in a specific pathogen‑free facility 
at 25˚C, (relatively humidity 50%, 12 h light/12 h dark). 
Sterile water and feed were delivered aseptically. The mice 
were allowed free access to food and water, The Institutional 
Animal Ethics Committee of Xinhua Hospital (Shanghai, 
China) approved all mouse experiments of the present study. 
A total of 1x106 cells, including MOLM‑13, MV4‑11, HL‑60 
and OCI‑AML3 cells, were injected into 8‑week‑old mice 
through the tail vein. In the present study, a total 192 of mice 
were used (96 male and 96 female), and the weight of the mice 
ranged from 20‑22 g.

Assessment of cell viability. ABT-737 was the selective 
BCL-2/BCL-XL antagonist (Active Biochem Ltd.), A-1210477 
was the MCL‑1‑selective antagonist (MedChemExpress) 
were solubilized in DMSO at different concentrations 
(0.1, 1.0, 5.0 and 10.0 µM). HL60, MOLM13, MV4‑11 and 
OCI‑AML3 cell lines were treated for 72 h at 37˚C with 
A‑1210477 and/or ABT‑737. DMSO was used as a control 
at a concentration of 0.001%. A Real‑Time‑Glo™ MT assay 
(Promega Corporation) was used to assess the cell viability 
according to the manufacturer's protocol. The present study 
also used a fluorescence microscope to visualize the cell 
luminescence.

MCL‑1 expression in AML cell lines. Total proteins from AML 
cell lines were extracted using mammalian protein extraction 
reagent according to the manufacturer's protocol (Thermo 
Fisher Scientific, Inc.). A Pierce BCA Protein Assay kit 
(Thermo Fisher Scientific, Inc.) was used to detect total protein 
concentration. The MCL‑1 levels in the cell lines were detected 
via an MCL‑1 ELISA kit (cat. no. LM‑MCL1‑Hu; LMAI Bio). 
The content of total protein or MCL‑1 protein was detected 
from each AML line, respectively. Subsequently, the ratio 
of MCL‑1/total protein was calculated in order to normalize 

the different total proteins in multiple AML cell lines. In the 
present study, the ratio of MCL‑1/total protein <0.02 was 
defined as low MCL‑1 level, the ratio of MCL‑1/total protein 
ranged from 0.02 to 0.1 was defined as intermediate MCL‑1 
level. The ratio of MCL‑1/total protein >0.1 was defined as 
high MCL-1 level.

Animal study. The 8‑week‑old mice (Jackson Laboratory) 
were irradiated (100 cGy). Subsequently, 1x106 MOLM-13, 
MV4‑11, HL‑60 or OCI‑AML3 cells were injected into the 
mice through the tail vein. After 7 days, the mice were admin-
istered ABT‑737 and/or A‑1210477 at the dosages of 50, 75 or 
100 mg/kg three times per week (a total of 15 injections in 
35 days) via intraperitoneal injection. The vehicle control mice 
were also injected with 1x106 MOLM‑13, MV4‑11, HL‑60 or 
OCI‑AML3 cells, respectively, and were treated with DMSO 
at a concentration of 0.001%.

Murine bone marrow (BM) preparation. BM cells were 
isolated from each mouse (treated and control). In addi-
tion, APC/Cy7 anti‑human CD45 (1:1,000; cat. no. 368516; 
BioLegend) and PE anti‑mouse CD45 antibodies (1:1,000; 
cat. no. 103106; BioLegend) were used to stain BM cells and 
were incubated at room temperature for 20 min.Flow cytometry 
(BD™ Digital Flow Cytometers, BD™ LSR II flow cytometer, 
BD FACSDiva™ software; version 4.1; BD Biosciences) was 
performed to analyze the chimera rates of hCD45(+) BM cells 
from treated and control mice. The examples were analyzed 
using a BD™ LSR II flow cytometer with BD FACSDiva™ 
software (BD Biosciences; version 4.1) using a two‑laser, 
6‑color configuration.

Immunohistochemistry (IHC). IHC analysis was performed 
in the treated and control mice. Numerous tissue samples 
(liver, spleen and lung) were obtained from each mouse 
to evaluate the chimera rate of the hCD45(+) cells. The 
5 µm‑thick sections were fixed with acetone for 10 min at 
4˚C and treated with 0.3% Triton X‑100 in PBS for 15 min 
at room temperature. These sections were blocked with 
10% goat serum (YEASEN) for 30 min at room temperature, 
and then stained with mouse‑anti‑hCD45 primary antibody 
(1:100; cat. no. MBS438093; Mybiosource) at 4˚C overnight. 
The following day the sections continued to be incubated 
at 37˚C for 60 min, and washed with PBS three times. 
The sections were then stained with secondary antibodies, 
namely, goat‑anti‑mouse IgG antibodies conjugated to 
Alexa Fluor 488 (1:100; cat. no. A11001; Invitrogen; Thermo 
Fisher Scientific, Inc.), incubated at 37˚C for 30 min, and 
washed with PBS three times. A fluorescence microscope was 
used to examine the aforementioned sections and acquired 
images (Leica Microsystems, Inc.) at x200 magnification 
x200 for the liver samples and x400 magnification for the 
spleen and lung samples.

Statistical analysis. The data are presented as the 
mean ± standard deviation. The experiments were performed 
in triplicate. Differences among groups were determined using 
ANOVA followed by a Newman‑Keul's post hoc test using 
SPSS (version 25.0; SPSS, Inc.). P<0.05 was considered to 
indicate a statistically significant difference.
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Results

AML cells with high MCL‑1 levels are resistant to ABT‑737. 
The effects of ABT‑737 on MOLM‑13, MV4‑11, HL‑60 and 
OCI‑AML3 cells were tested at 0.1, 1.0, 5.0 or 10 µM. As 
presented in Fig. 1A, following treatment with 0.1 µM ABT‑737 
for 72 h, the viability of HL‑60 (46%), MOLM‑13 (51%) and 
MV4‑11 (46%) cells was decreased significantly (P<0.05; 
Fig. 1A‑a‑c), compared with the vehicle control. MCL‑1 
serves a critical role in resistance to ABT‑737 (7,9,11). In this 
study, we used an MCL-1 ELISA kit to analyze the MCL-1 
protein levels of the aforementioned AML cell lines. The 
results indicated that the MCL‑1 level in HL‑60 cell line was 
low, MOLM‑13 cell line was intermediate, MV4‑11 cell line 
was intermediate, and the MCL‑1 level in OCI‑AML3 cell 
line was high. The cell viability assessment indicated that the 
OCI‑AML3 cell line did not exhibit a statistically significant 
decrease in cell viability following ABT‑737 single‑agent 
treatment (P>0.05; Fig. 1A‑d), suggesting that ABT‑737 
resistance of AML could be associated with high expression 
levels of MCL‑1. These results are consistent with those of a 
previous study (28).

In addition, the aforementioned AML cell lines were 
injected into transgenic NSG‑SGM3 mice via the tail vein. 
Following treatment with ABT‑737 alone, BM cells were 
isolated from each mouse. CD45 antigen (leukocyte common 
antigen), which is a unique and ubiquitous membrane glyco-
protein with a molecular mass of ~200 kDa, is expressed on 
almost all leukocyte cells (29). Human AML cell lines were 
hCD45(+), which could engraft in the BM of the recipient 
mice. Following single‑agent ABT‑737 treatment, BM cells 
were isolated from treated and control mice. ‘Chimera’ in 
this context referred to the proportion of engrafted human 
AML cells that were hCD45(+) in the HL‑60, MV4‑11, 
OCI‑AML3 or MOLM13 recipient mice. FCM was used 
to detect the positive rate of hCD45(+) cells in the BM of 
recipient mice. Fig. S1A indicates that in the human AML 
cell line MV4‑11, the anti‑hCD45(+) rate was 99.9%. Fig. S1B 
indicates that in blank control mice (without the injection of 
human AML cell lines), the anti‑hCD45(+) rate was 0.23%. 
These data indicated that normal murine BM cells did not 
express hCD45, suggesting that the hCD45 expression in the 
recipient mice was due to the engraftment of injected human 
AML cells.

Fig. 1B‑a‑c demonstrates that following ABT‑737 
single‑agent treatment, (at 50, 75 and 100 mg/kg), the 
hCD45(+) chimera rates of each recipient mouse injected with 
HL‑60 (9%), MV4‑11 (11%) or MOLM‑13 cells (9%), were 
decreased significantly (P<0.05) compared with the vehicle 
control. Fig. S1C demonstrates a representative FCM plot of 
OCI‑AML3 mice following treatment with ABT‑737 alone. 
Fig. S1D presents data for the vehicle control mice that were 
injected with 1x106 OCI‑AML3 cells and treated with DMSO 
at a concentration of 0.001%. The hCD45(+) chimera rate of the 
BM cells from OCI‑AML3‑injected mice was not significantly 
decreased (P>0.05) compared with the vehicle control, indi-
cating that the OCI-AML3 mouse model possessed ABT-737 
resistance (Fig. 1B‑d). Overall, the data suggested that AML 
cells with high MCL‑1 expression levels may exhibit resistance 
to ABT-737.

A‑1210477 inhibits viability of AML cell lines irrespective of 
their resistance to ABT‑737. HL‑60, MOLM‑13, MV4‑11, and 
OCI‑AML3 cell lines were treated with A‑1210477 at 0.1, 1.0, 
5.0 and 10 µM, in order to evaluate the inhibitory effects of 
A‑1210477. Fig. 2A‑a‑d demonstrates that following treatment 
with A‑1210477 (0.1 µM) for 72 h, the viability of HL‑60 (47%), 
MOLM‑13 (46%), MV4‑11 (38%) and OCI‑AML3 cells (43%) 
were decreased significantly compared with the corresponding 
vehicle control (HL‑60, 93%; MOLM‑13, 95%; MV4‑11, 93%; 
OCI‑AML3, 95%; all P<0.05). The aforementioned data 
suggested that AML cell lines, including OCI-AML3, 
possessed A-1210477 sensitivity, indicating that A-1210477 
inhibited AML cells as a single agent irrespective of their 
resistance to ABT‑737.

Furthermore, the aforementioned AML cell lines were 
injected into NSG‑SGM3 mice via the tail vein. Following 
treatment with A‑1210477 alone, BM cells were isolated 
from each experimental and control mouse. Human AML 
cell lines were hCD45(+), which could engraft in the BM of 
a recipient mouse. FCM was used to detect the hCD45(+) 
chimera rate. Fig. 2B‑a‑d demonstrates that following 
A‑1210477 single‑agent treatment (at 50, 75 and 100 mg/kg,), 
the hCD45(+) chimera rates of mice injected with HL‑60 (8%), 
MV4‑11 (10%), MOLM‑13 (9%) or OCI‑AML3 cells (9%) 
were decreased significantly compared with the corre-
sponding vehicle control mice (HL‑60, 30%; MV4‑11, 40%; 
MOLM‑13, 28%; OCI‑AML3, 25%, respectively; all P<0.05). 
These results indicated that A‑1210477 could counteract 
ABT‑737 resistance in vivo.

IHC was performed in different mouse groups that were 
treated with either A‑1210477 or ABT‑737. Tissues (liver, 
spleen and lung) were collected from these mice for the 
evaluation of engrafted AML cells. As aforementioned, the 
in vitro results indicated that HL‑60, MV4‑11 or MOLM‑13 
cells were sensitive to ABT‑737. As presented in Fig. 1B‑a‑c 
after ABT‑737 single‑agent treatment, the in vivo data also 
suggested that following ABT‑737 treatment alone, engrafted 
hCD45(+) cells in HL‑60, MV4‑11 or MOLM‑13 AML mouse 
models were decreased compared with vehicle control mice, 
The IHC of HL‑60, MV4‑11 or MOLM‑13 AML mouse 
models exhibited similar results to that in Fig. 1B‑a‑c, indi-
cating that the engrafted hCD45(+) cells in HL‑60, MV4‑11 
or MOLM‑13 AML mouse models were decreased compared 
with vehicle control mice (data not shown). Whereas, hCD45(+) 
chimera rate of the BM cells from OCI‑AML3‑injected mice 
was not significantly decreased (P>0.05) compared with the 
vehicle control, indicating that the OCI‑AML3 mouse model 
possessed ABT‑737 resistance (Fig. 1B‑d). However, Fig. 2B‑d 
demonstrated that following A‑1210477 single‑agent treatment, 
the hCD45(+) chimera rates of mice injected with OCI‑AML3 
cells (9%) were decreased significantly compared with vehicle 
control mice (25%; P<0.05). Furthermore, the IHC results 
indicated that even at the dosage of 100 mg/kg, ABT-737 only 
exerted little effects on engrafted hCD45 cells in OCI‑AML3 
mice (Fig. 3), suggesting that OCI‑AML3 cells were resistant 
to ABT‑737. By contrast, following treatment with A‑1210477 
alone, the engrafted hCD45 cells of OCI‑AML3 AML mouse 
models (Fig. 3) decreased compared with the vehicle control. 
These results further indicated that A‑1210477 could coun-
teract ABT‑737 resistance in vivo.
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Figure 1. Evaluation of the effect of ABT‑737 alone.  (A) Effect of ABT‑737 on cell viability. (a) HL‑60 AML cell line. (b) MOLM‑13 AML cell line. 
(c) MV‑4‑11 AML cell line. (d) OCI‑AML3 AML cell line. (B) Effect of ABT‑737 on AML cell engraftment in mouse models (n=5). (a) HL‑60‑injected mice. 
(b) MOLM‑13‑injected mice. (c) MV4‑11‑injected mice. (d) OCI‑AML3‑injected mice. The chimeras of engrafted hCD45(+) cells in the bone marrow were 
assessed. *P<0.05 vs. vehicle. AML, acute myeloid leukemia; hCD45, human CD45.
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Figure 2. Evaluation of the effect of A‑1210477 alone. (A) Effect of A‑1210477 on cell viability. (a) HL‑60 AML cell line. (b) MOLM‑13 AML cell line. 
(c) MV‑4‑11 AML cell line. (d) OCI‑AML3 AML cell line. (B) Effect of A‑1210477 on AML cell engraftment in mouse models (n=5). (a) HL‑60‑injected 
mice. (b) MOLM‑13‑injected mice. (c) MV4‑11‑injected mice. (d) OCI‑AML3‑injected mice. The chimeras of engrafted hCD45(+) cells in bone marrow were 
assessed. *P<0.05 vs. vehicle. AML, acute myeloid leukemia; hCD45, human CD45.
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A‑1210477 may exert a combined action with ABT‑737 
on AML cells. The combination effect of A-1210477 and 
ABT-737 was tested in AML cells. Following combination 

treatment of A‑1210477 and ABT‑737 (both at 1 µM) for 
72 h, the cell viability was tested in the aforementioned cell 
lines. Fig. 4A‑C demonstrates that the viability of MOLM‑13 

Figure 3. Immunohistochemistry analyses of the chimera of engrafted hCD45 cells in the liver, spleen and lung of OCI‑AML3‑injected NSG‑SGM3 mice. 
The sections were stained positive for hCD45 (green). The nuclei in the sections were counter‑stained with DAPI (blue). (A) Blank control mice (without the 
injection of OCI‑AML3 cells; n=3). (B) Vehicle control mice (treated with DMSO at a concentration of 0.001%; n=3). (C) ABT‑737 single‑agent (100 mg/kg) 
treated mice (n=3). (D) A‑1210477 single‑agent (100 mg/kg) treated mice (n=3). Magnifications, x200 (liver); x400 (spleen and lung). hCD45, human CD45.

Figure 4. Cell viability following treatment with 1 µM A‑1210477 and/or 1 µM ABT‑737. (A) HL‑60 AML cell line. (B) MOLM‑13 AML cell line. (C) MV4‑11 
AML cell line. (D) OCI-AML3 AML cell line. *P<0.05 vs. combination treatment of A‑1210477 and ABT‑737 (both at 1 µM).
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(11%), MV4‑11 (10%) and HL‑60 (13%) cells was decreased 
significantly following combined treatment compared with 
treatment with ABT‑737 alone (MOLM‑13 cells, 35%; 
MV4‑11, 33%; HL‑60, 32%; all P<0.05), or A‑1210477 alone 
(MOLM‑13, 28%; MV4‑11, 27%; HL‑60, 29%; all P<0.05). 
Fig. 4D demonstrates that, following combination treat-
ment, the viability of OCI‑AML3 cells that were resistant 
to ABT‑737 were not significantly decreased compared with 
ABT‑737 or A‑1210477 single‑agent (P>0.05). Furthermore, 
after the aforementioned mouse models received combination 
treatment of A‑1210477 and ABT‑737 (both at a dosage of 
75 mg/kg), the hCD45 chimera rate of BM was detected via 
FCM in AML cell‑injected mice. Fig. 5A‑C demonstrated that 
the hCD45(+) chimera rates of BM from AML‑cell‑injected 
mice following combined treatment (MOLM‑13, 6%; MV4‑11, 
7%; HL‑60, 5%), were significantly decreased compared with 
those of ABT‑737 alone (MOLM‑13, 11%; MV4‑11, 15%; 
HL‑60, 11%; all P<0.05), or A‑1210477 alone (MOLM‑13, 10%; 
MV4‑11, 13%; and HL‑60, 10%; all P<0.05). Fig. 5D indicated 
that after combination treatment, BM hCD45 chimera rate 
of OCI‑AML3 mice did not decrease significantly compared 
with ABT‑737 or A‑1210477 single‑agent, which was consis-
tent with the in vitro results. Therefore, it was speculated that 
A‑1210477 may exert a combined action with ABT‑737 in 
AML on a BCL‑2/MCL‑1 manner.

Discussion

Over the past decades, the treatment of AML relied on conven-
tional chemotherapies. At present, novel targeted therapies 

have started to emerge. Both targeted therapy or chemotherapy 
could result in apoptotic cell death (30,31). Jilg et al (32) 
demonstrated that in patients with high‑risk myelodysplastic 
syndrome (MDS) or secondary (s)AML, antagonizing BCL‑2 
family anti‑apoptotic proteins can promote apoptosis. ABT‑199 
and ABT‑737, which are BH3 mimic small‑molecules, inhibit 
multiple different types of tumor, such as non‑small cell 
lung cancer (15), AML (7,8,13), lymphoma (4,16), multiple 
myeloma (12,16), neuroblastoma (17), HNSCC (6), hepato-
cellular carcinoma (10) and ESCC (18), in a BCL‑2 and/or 
BCL‑XL‑dependent manner (13). Furthermore, researchers 
have developed BCL-XL-selective antagonists (33).

Abnormally high expression levels of MCL‑1 may result 
in resistance to ABT compounds (28). It has previously 
been reported that inhibition of MCL‑1 can eliminate AML 
cells, which suggests that MCL‑1 could serve a critical role 
in AML (7,8). It has been reported that MCL‑1 removal, 
without antagonizing BCL‑2 or BCL‑XL, can inhibit AML 
cells, thereby curing mice with AML (34). Therefore, 
targeting MCL‑1 may be a potential therapy option for AML. 
A‑1210477, which has a high affinity and selectivity for 
MCL‑1, was the first BH3 mimic MCL‑1‑selective antago-
nist (6). A‑1210477 specifically binds MCL‑1 and promotes 
apoptosis of cancer cells in an MCL‑1‑dependent manner (35). 
Lin et al (18) revealed that A‑1210477 treatment decreases 
ESCC formation and animal weight loss in a dose‑dependent 
manner. In addition, the authors of this study demonstrated 
that A‑1210477 treatment increases the number of apoptotic 
cells in ESCC tissues, which provides evidence towards the 
contribution of MCL‑1 to ESCC development by promoting 

Figure 5. Evaluation of A‑1210477 (75 mg/kg) and/or ABT‑737 (75 mg/kg) on the engraftment of AML cells in NSG‑SGM3 mice (n=5). (A) HL‑60‑engrafted 
mice. (B) MOLM‑13‑engrafted mice. (C) MV4‑11‑engrafted mice. (D) OCI‑AML3‑engrafted mice. The chimeras of engrafted hCD45(+) cells in bone marrow 
were assessed. *P<0.05 vs. vehicle control. ∇P<0.05 vs. A‑1210477 and ABT‑737. hCD45, human CD45.
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cell proliferation and inhibition of apoptosis, providing a 
potential therapy option for MCL‑1‑selective antagonist in 
treating ESCC (18).

It has been reported that in high‑risk MDS or sAML, high 
expression levels of MCL‑1 result in resistance to ABT‑199 and 
ABT‑737 (32). In the present study, the efficacy of A‑1210477 
and/or ABT‑737 was evaluated in AML cell lines. In addition, 
following treatment with ABT‑737 alone, the cell viability 
of MOLM‑13, MV4‑11 and HL‑60 cells was significantly 
decreased (P<0.05); however, ABT‑737 had little effect on the 
OCI‑AML3 cell line with high expression levels of MCL‑1. By 
contrast, following treatment with A‑1210477, the viability of 
HL‑60, MV4‑11, MOLM‑13 and OCI‑AML3 cells was signifi-
cantly decreased (P<0.05) irrespective of ABT‑737 resistance. 
Furthermore, the results indicated that hCD45(+) chimeras of 
BM from MOLM‑13, MV4‑11 and HL‑60 AML mouse models 
significantly decreased following treatment with ABT‑737 
alone (P<0.05). However, AML mice that exhibited high 
MCL‑1 expression, including OCI‑AML3‑injected mice, were 
resistant to ABT‑737. The data from the aforementioned AML 
mouse models indicated sensitivity to A-1210477, suggesting 
that MCL‑1‑selective antagonist could overcome ABT‑737 
resistance.

It has previously been reported that in the samples 
of 577 patients with AML, MCL-1, BCL-2 and BCL-XL 
were expressed heterogeneously, and their expression over-
lapped (36). To evade apoptosis, cancer cells use anti‑apoptotic 
BCL‑2 family proteins to bind and neutralize apoptotic activa-
tors (35). Since the overlapping of anti‑apoptotic proteins in 
the BCL‑2 family serves an important role in therapeutic resis-
tance, the simultaneous targeting of the anti‑apoptotic proteins 
of BCL‑2 family could overcome drug resistance (37,38). 
Lin et al (38) revealed that resistant AML cell lines could be 
resensitized to BCL‑2‑selective inhibitors by targeting MCL‑1 
and BCL‑XL, and by preemptively targeting MCL‑1 and/or 
BCL‑XL, alongside the administration of BCL‑2‑selective 
antagonist ABT-199, which is capable of delaying the 
acquisition of drug resistance (38).

Luedtke et al (39) evaluated the effect of BCL-2-selective 
antagonist ABT‑199 or A‑1210477 alone, and in combination 
with ABT‑199‑resistant AML cell lines U937 and THP‑1. 
Synergy has been observed between these two drugs for 
THP‑1 (CI<0.30) and U937 (CI<0.70) cell lines. Combination 
treatment of A‑1210477 and ABT‑199 has also been performed 
in an ABT‑199‑sensitive cell line (MOLM‑13), and the results 
indicated that A‑1210477 synergizes with ABT‑199 (CI<0.16), 
which suggests that A‑1210477 could synergize with ABT‑199 
regardless of ABT‑199 sensitivity (39). In the present study, 
combination treatment of A‑1210477 and ABT‑737 was evalu-
ated in AML. The data suggested that, following combination 
treatment with ABT‑737 and A‑1210477, viability of AML 
cell lines, including MOLM‑13, MV4‑11 and HL‑60, was 
significantly decreased (P<0.05) compared with that following 
ABT‑737 or A‑1210477 treatment alone. Furthermore, the 
results indicated that, following combination treatment with 
ABT‑737 and A‑1210477, the BM hCD45(+) chimera rates of 
MOLM‑13, MV4‑11 and HL‑60 AML mice were decreased 
significantly (P<0.05) compared with those of ABT‑737 or 
A‑1210477 alone. Therefore, it was speculated that A‑1210477 
may exert a combined action with ABT‑737 on AML cells, 

which depends on the anti‑apoptotic proteins of the BCL‑2 
family in a MCL‑1/BCL‑2/BCL‑XL‑dependent manner.

The results of the present study indicated that A‑1210477 
acted as a single agent to counteract resistance to ABT‑737 in 
AML. Therefore, MCL‑1‑selective antagonists may be imper-
ative for treatment of AML, making it a potential targeted 
therapy option for patients.
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