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Abstract: Systemic autoimmune diseases can damage nearly every tissue or cell type  

of the body. Although a great deal of progress has been made in understanding the 

pathogenesis of autoimmune diseases, current therapies have not been improved, remain 

unspecific and are associated with significant side effects. Because dendritic cells (DCs) 

play a major role in promoting immune tolerance against self-antigens (self-Ags), current 

efforts are focusing at generating new therapies based on the transfer of tolerogenic DCs 

(tolDCs) during autoimmunity. However, the feasibility of this approach during systemic 

autoimmunity has yet to be evaluated. TolDCs may ameliorate autoimmunity mainly by 

restoring T cell tolerance and, thus, indirectly modulating autoantibody development.  

In vitro induction of tolDCs loaded with immunodominant self-Ags and subsequent  

cell transfer to patients would be a specific new therapy that will avoid systemic 
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immunosuppression. Herein, we review recent approaches evaluating the potential of 

tolDCs for the treatment of systemic autoimmune disorders. 
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1. Introduction 

Central and peripheral immune tolerance are key mechanisms responsible for avoiding the initiation 

of immune responses against self-antigens [1]. Although much progress has been made in understanding 

the immunological pathways underlying autoimmunity, current therapies for systemic autoimmune 

diseases have not been improved [2,3]. Although it is widely known that dendritic cells (DCs) play  

a crucial role at initiating the immune response against pathogens, this cell type also contributes to 

maintain peripheral immune tolerance [4]. Chronic progression and complexity of systemic autoimmune 

diseases, such as Systemic Lupus Erythematosus (SLE) and Rheumatoid Arthritis (RA) has dampened 

the development of new specific therapies. SLE preferentially affects women and is characterized by 

the presence of a wide spectrum of symptoms, including vasculitis, glomerulonephritis, serositis, skin 

lesions and central nervous system involvement. It is known that many immune cell types contribute to 

SLE pathogenesis [5–8]. Our group, as well as others, has reported that DCs from SLE patients show 

increased expression of co-stimulatory molecules, as well as a higher ratios of activating to inhibitory 

Fc gamma receptors (FcγRs) as compared to healthy controls. These data suggest that DCs may be 

involved in the initiation of SLE pathogenesis [6,9,10]. 

Experimental therapies for SLE, based on monoclonal antibodies, have failed to show the promising 

results observed for other autoimmune diseases, such as rheumatoid arthritis (RA), anti-neutrophil 

cytoplasm antibody (ANCA)-associated vasculitis and type 1 diabetes [11,12]. For instance, the latest 

results of phase III clinical trials of the new biological agent belimumab, a monoclonal antibody that 

blocks the soluble B-lymphocyte stimulator (BLyS), has shown positive effects lasting through  

52 weeks, nevertheless, benefits from treatment did not result in improvement when compared to 

placebo at week 76. Furthermore, belimumab produces deletion of naïve B and plasma cells, but not 

memory cells, which is likely to impair anti-microbial immunity and render the patient susceptible to 

infections [13–16]. 

The use of DCs for immunotherapy has become an attractive possibility for the treatment of 

autoimmune diseases in an Ag-specific manner, which is thought to avoid both systemic 

immunosupression and the adverse effects of steroids [17–19]. In this review, we discuss current 

approaches relative to the use of in vitro generated tolerogenic DCs (tolDCs) as a therapeutic approach 

for systemic autoimmune diseases. 

2. Targeting DC-T Cell Interactions to Prevent Autoimmunity 

In autoimmune susceptible individuals, the autoreactive immune response is possibly initiated when 

antigen presenting cells (APCs) present self-Ags to autoreactive T cells that have leaked from thymic 

central and peripheral tolerance [1,20]. APCs, including DCs, express crucial molecules for T cell 
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priming, such as peptide-MHC complexes and the co-stimulatory molecules CD40, CD80, and CD86. 

Activated CD4+ T cells interact with Ag-specific B cells and promote the initiation of the humoral 

response [21–25]. CD80/CD86 binding to CD28 expressed on T cells leads to full activation, IL-2 

production and cell proliferation [26,27]. Interestingly, DCs from lupus patients show higher expression 

of co-stimulatory molecules, such as CD86 and CD40, than DCs from healthy controls suggesting an 

immunogenic prone state for these cells [6,28]. Furthermore, blockade of ligand-receptor interactions 

at the APC-T cell interface, including OX40-OX40L and CD30-CD30L engagement, can lead to a delay 

of autoimmune disease onset by inhibiting the expression of pro-inflammatory cytokines, such as IFN-γ 

and IL-4 and a subsequent reduced leukocyte infiltration into peripheral tissues [29,30]. Furthermore, 

it has been reported that targeting CD40-CD40L interactions between APCs and T cells by the 

administration of an anti-CD40L mAb can significantly ameliorate symptoms of autoimmune diseases 

including Experimental Autoimmune Encephalitis (EAE) and uveo-retinitis [31,32]. In addition,  

in vitro blockade of ICOS/ICOS-L interaction inhibits IL-10 release by T cells without affecting IL-2 

production [33]. ICOS/ICOS-L ligation modulates T cell proliferation, survival and polarization [34,35]. 

In contrast, regulatory T cells (Treg) may also express ICOS, indicating that the ICOS/ICOS-L axis can 

influence effector T cell responses [36]. Interestingly, it has been shown that ICOS−/− and ICOS-L−/− 

NOD mice were protected from spontaneous diabetes [37]. However these mice strains developed other 

autoimmune symptoms related to neuromuscular disorders, suggesting that ICOS/ICOS-L signaling would 

play a crucial role in regulating immune tolerance by modulating the balance between Treg cells and 

diabetogenic effector T cells (Figure 1). 

CTLA-4 engagement with CD80/CD86 negatively regulates TCR signaling and T cell function  

and promotes immune tolerance. Therefore, modulating this molecular interaction could be a powerful 

regulator of the immune response. This notion is supported by the phenotype shown by CTLA-4 deficient 

mice, which develop massive lymphoproliferation and autoimmunity [38]. Major progress has been 

made in designing new therapies for autoimmune diseases with the use of CTLA-4-related biological 

agents [39]. Immunosuppressive effects of CTLA-4 settle in the blockage of CD28-CD80/CD86 

interaction by binding to CD80/CD86 on the DCs. Different forms of CTLA-4 have been designed, 

such as CTLA-4-Ig, CTLA-4-Fas and membrane-bound anti-CTLA-4 antibody [39,40]. CTLA-4-Ig 

(Abatacept) treatment is used in RA and has been extensively evaluated in different autoimmune 

disorders and new clinical trials are being conducted in T1D patients [12,39,41]. An other interesting 

fusion protein is CTLA-4-FasL which may bind to CD80/CD86 on APCs triggering activation-induced 

cell death on activated T cells by Fas ligation [42,43]. Interestingly, the administration of adenovirus 

vectors expressing CTLA-4-FasL ameliorated pancreatic insulitis, by inducing apoptosis of pancreatic 

T cells and ameliorating the immune response against pancreatic antigens [44]. Additionally, it has 

been reported that the expression of membrane-bound anti-CTLA-4 antibody on B cells in NOD mice 

prevented the development of spontaneous autoimmune diabetes [40] (Figure 1). 

Programmed cell death-1 (PD-1) molecule is another inhibitory receptor expressed by T cells  

and binds to PD-L1 and PD-L2, which are expressed on DCs and other APCs [45]. It is known  

that DCs can inhibit T cell activation by PD-L1-PD-1 interaction, as well as promoting Treg cell 

development [46–48]. Furthermore, it has been reported that immature DCs prevent experimental 

autoimmune encephalomielitis (EAE) by the induction of PD-1+Tregs cells [49,50]. PD-L1 deficiency 

enhances IFN-γ production by CD4+ T cells and the activation of CD8+ T cell responses, conferring an 
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increased susceptibility to autoimmunity [51]. In addition, mice lacking PD-1 develop autoimmune 

symptoms as those observed during SLE, including glomerulonephritis and lymphoproliferative 

disorders [52]. 

Figure 1. Modulation of DC-T cell interactions as a therapeutic strategy. T cells, key 

effectors of immunity, depend on signals on the surface of DCs and other APCs to become 

activated. The process of T cell activation may be modulated to prevent the exacerbated 

inflammatory activity in autoimmune diseases and restore tolerance. This goal can be achieved 

by blockage of activating molecules and receptors on DCs or T cells resulting in decreased 

expression of inflammatory genes and transcription factors involved in effector T cell 

commitment, while inducing expression of anti-inflammatory genes. Cross-linking inhibitory 

receptors with antibodies or ligands is another interesting way to reduce T cell activity.  

A complete understanding of the function of co-stimulatory and co-inhibitory molecules and 

respective receptors and their role in autoimmune pathogenesis will help to establish more 

efficient approaches for immunotherapy. Black arrows indicate inflammatory pathways. Grey 

arrows indicate anti-inflammatory pathways. 

 

B and T lymphocyte attenuator (BTLA) is an inhibitory receptor that modulates lymphocyte 

activation [53]. Mice lacking this receptor show leukocyte infiltration of several tissues similarly as 

observed in Sjögren’s syndrome and autoimmune hepatitis [54]. Toso/Faim3 is a surface molecule 

expressed on lymphocytes and myeloid cells that has been implicated in the regulation of Fas- and 

TNF receptor (TNFR)-dependent T cell apoptosis [55]. Interestingly, Toso deficient mice shows a 

decreased susceptibility to develop EAE, due to lower CD4+ and CD8+ T cell responses, suggesting that 

Toso is a crucial mediator of inflammatory autoimmune responses [56]. Although CD137-CD137L 

ligation between T cells and APCs leads to cellular activation, CD137 deficiency in MRL/lpr lupus 

murine model paradoxically induces an accelerated disease [57]. Furthermore, in vivo administration 

of agonistic anti-CD137 monoclonal antibody to lupus mice reduces symptoms, strongly suggesting 

that CD137-CD137L is involved in immune regulation and tolerance [58] (Figure 1). 
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On the other hand, it has been shown that APCs expressing CD2 without surface co-stimulatory 

molecules could promote the differentiation of Tregs, which produce high amounts of IL-10 and 

suppresses T cell responses [59]. In contrast, it has been reported that IL-6 produced by DCs play a 

critical role in the activation of effector T cell, as well as limiting Treg-mediated suppression [60,61]. 

The molecular mechanism underlying Treg modulation by DCs is unknown but it is thought that is 

independent of co-stimulatory molecules [60]. In the Sle1/Sle2/Sle3 lupus murine model, lymphoid 

tissues show higher numbers of DCs producing IL-6, which may promote effector T cell priming while 

impairing Treg cell function [61]. 

It has been reported that DCs play a crucial role in T cell priming during lupus development. 

Interestingly, the transfer of DCs loaded with apoptotic antigens could initiate a transient autoreactive 

immune response in autoimmune resistant mice and systemic autoimmunity in susceptible strains [62–64]. 

Understanding the complex scenario of activation and inhibitory molecules simultaneously expressed 

on DCs is crucial to design new therapies for autoimmune diseases based in autologous DCs transfer. 

3. Targeting DC-B Cell Interactions to Prevent Autoimmunity 

Although T-B cells interactions has been extensively studied, much less data on DCs-B cells 

crosstalk is known. One of the most important findings of B cell biology is the discovery of the B-cell 

survival and maturation factor, B cell-activating factor of the TNF family (BAFF) (also known as  

B-lymphocyte stimulator (BLyS)) and the development of BAFF-blocking monoclonal antibody 

(belimumab) in clinical practice for lupus disease treatment [15,65]. Lupus patients with nephritis  

and central nervous system affections show higher levels of BAFF than lupus patients with other  

organ involvement suggesting an active role in autoimmune pathogenesis [66]. Similarly, patients with 

myasthenia gravis, Grave’s disease, anti-GBM syndrome and anti-neutrophil cytoplasmic autoantibody 

associated vasculitis show increased serum levels of BAFF [67–70]. While BAFF deficiency in  

mice leads to immunodeficiency, BAFF overproduction leads to an increase in mature B cells, and 

auto-antibodies, subsequently triggering a lupus-like disease [65,71]. In addition, the administration of 

TACI-Ig (a soluble form of BAFF receptor) in a lupus murine model prevents glomerulonephritis and 

prolongs survival of lupus mice [72]. However a clinical trial based in the administration of TACI-Ig 

(atacicept) in patients with active lupus nephritis had to be stopped due to infectious disease onset 

secondarily to IgG depletion [73] (Figure 2). 

Interestingly, DCs (among other immune cells) can produce high amounts of BAFF and APRIL, 

suggesting that the B cell response could be modulated by innate immune cells [74]. It has been 

reported that DCs activated with IFN-α and IL-6 may produce IL-12, IL-6 and BAFF that in turn 

induces B cell differentiation to plasma cell and Igs production [75]. In addition, the administration of 

tocilizumab, a humanized antibody that blocks IL-6 function by targeting the IL-6 receptor, ameliorate 

clinical outcome in RA and systemic juvenile idiopathic arthritis [76,77]. In RA patients, the administration 

of tocilizumab ameliorates synovitis leading to a reduction in joint damage. [78]. Additionally, many 

anti-IL-6 or anti-IL-6-R have been developed and tested for immunosupression of autoimmune 

diseases [79]. Moreover, human DCs and monocytes induce BAFF production after IFN-α and IFN-γ 

stimulation while monocytes from lupus patients show higher production of BAFF than healthy 

controls [80,81]. Furthermore, anti-IFN-α therapy in lupus patients decreased BAFF mRNA levels [82]. 
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Also, it is known that BAFF levels are higher in CD11c+ cells from female than male mice and estrogen 

stimulation of immune cells induced BAFF mRNA and protein levels, thus linking BAFF with the sex 

female bias [83]. Most importantly, DCs could transfer Ags and ICs to naive B cells in lymphoid organs 

in order to initiate the humoral immune response [84]. Moreover, it has been reported that DCs may 

induce IgA class switch after CD40 ligation of naive B cells, suggesting that DCs directly modulate B-T 

cell cooperation [85]. All these data on lupus patients and murine models strongly suggest an 

association between BAFF, IFN-α and DCs (Figure 2). 

Figure 2. Modulation of DC-B cell interactions as a therapeutic strategy. Interactions 

between DCs and B cells are poorly understood yet, but increasing number of reports 

remark the relevance of DC-B cell communication in the onset of SLE and other autoimmune 

diseases. Engage of CD27 by CD70 expressed on pDCs induces B cell differentiation into 

plasma cells, which secrete high amounts of immunoglobulin. Additionally, DCs secrete 

soluble cytokines, which trigger B cell activation, proliferation and differentiation into 

plasma cells. Obstruction of these signals may prove to be beneficial as therapy for 

autoimmune diseases in which autoantibodies production is involved such as SLE. 

 

Similarly to IFN-α, DCs stimulated with TLR4 ligand induce B cell proliferation, antibody 

production and chemokine receptors expression which are involved in cell trafficking to germinal 

centers leading to IgG production [86]. In addition, it has been shown that the interaction of  

CpG-stimulated pDCs with B cells induced the expression of co-stimulatory molecule CD86, thus 

suggesting an active role in the modulation of T cell priming [87]. On the other hand, B cells could 

also modulate DCs function. It has been reported that activated B cells could modulate the expression 

of MHCII, CD80, CD86 and the production of IL-12p70 on DCs, which in turn prevents DC-induced 

T-cell proliferation [88]. 

It has been reported that CD27-CD70 interaction is crucial for B cell-DC crosstalk. It has been 

reported that CpG stimulation of pDCs induces IFN-α and CD70 expression, which in turn leads to 

plasma cell differentiation and antibody production on B cells [89]. Interestingly, when B cell-DCs 

interaction CD27-CD70 was antagonized by the administration of an anti-CD70 antibody, the ability 

of activated pDCs to induce B cell proliferation was significantly reduced, which is highly relevant for 
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the design of new immunosuppressive therapies [89]. Studies in mice have shown that CD70 ligation 

with anti-CD70 antibody induces B cell proliferation and that the administration of anti-CD70 or the 

presence of its ligand CD27 induce substantial B cell activation [90] (Figure 2). 

The role of DCs in autoimmune development and autoantibody production has been highlighted by 

studies using a CD11c-specific diphtheria toxin-α chain system to delete DCs [91]. It has been currently 

shown that DCs depletion ameliorates lupus disease including kidney infiltration and decreases renal 

damage in the MRL. Faslpr lupus murine model [91]. Surprisingly, DCs are crucial for plasmablast 

generation and Ig class switching [91]. In the other hand, a subset of splenic tolerogenic DCs may 

induce regulatory B cell differentiation that produces high amounts of IL-10 and could regulate T cell 

responses [92]. 

Taken together, these data highlight the potential of designing new therapies targeting DCs as well 

as protocols based in the generation of DCs expressing a tolerogenic phenotype that could modulate B 

cells, plasma cell differentiation and Ig production, which is essential for an efficient therapy against 

systemic autoimmunity. 

4. DC Abnormalities in Human Autoimmune Diseases 

Plasmacytoid DCs (pDCs) and conventional DCs (cDCs) have been reported to show abnormalities 

in patients with autoimmune diseases. [93,94]. During multiple sclerosis (MS), cDCs showed an  

increased expression of co-stimulatory molecules such as CD80 and CD40; an increase secretion of  

pro-inflammatory cytokines such as IL-12 and TNF-α; and a decreased expression of PD-L1, 

suggesting an active role in T cell priming [94]. 

Lupus patients show lower numbers of blood cDCs as compared to healthy control while pDCs  

are increased, suggesting that this cell type is affected [95–97]. Our group has shown lupus patients 

have an increased expression of co-stimulatory molecules such as CD40 and CD86, suggesting that 

DCs immunogenicity is augmented [6]. cDCs from lupus patients show higher expression of activating 

FcγRs and lower expression of the inhibitory FcγRIIb, which correlates with the activity index of  

SLE (SLEDAI) [6]. Several studies on lupus patients report that DCs show an aberrant phenotype, 

mostly dominated by a high expression of co-stimulatory molecules [9,10]. In addition, the expression 

of inhibitory receptors have been reported to be decreased in DCs from lupus patients such as the 

expression of LAIR-1 on pDCs of juvenile lupus patients [98]. Contrary to expected, it has been 

recently reported that Mer, a receptor involved in the process of apoptotic cell recognition and removal, 

is increased in DCs from lupus patients and corticosteroids may induce Mer expression, favoring its 

beneficial effects in SLE [99]. Synovial fluid from active RA patients showed a subpopulation of DCs 

that expressed an activated phenotype with high expression of co-stimulatory molecules such as CD80, 

CD83 and CD86 [100]. 

During type 1 diabetes onset, it has been reported that the number of both cDCs and pDCs were 

decreased in peripheral blood, showing a altered chemokine receptor expression [101]. 

Poly:IC and CpG ligation of TLR7 and TLR9 on pDCs endosomes produces high amounts of type I 

IFN via IRF7 signaling pathway [102–104]. Salivary glands from Sjögren’s Syndrome (SS) patients show 

higher levels of IFN-inducible genes, such as TLR8, TLR9, IFITM1, BAFF and BCMA, which may be 

crucial for DCs maturation, B cell activation and the subsequent T cell priming [105]. Furthermore, 
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patients with SS showed an increase infiltration of pDCs in salivary glands highlighting a major role for 

this cell type during autoimmunity [105]. The role of IFN-α in triggering autoreactive immune responses or 

lupus-like syndrome has been linked to the clinical finding that patients receiving IFN-α therapy for 

non-autoimmune diseases may develop anti-nuclear antibodies and glomerulonephritis [106–109]. 

Understanding the complex network of co-stimulatory/co-inhibitory receptors and cytokine signaling 

on DCs and T cells that leads to the activation or regulation of the immune response will favor the 

designing of new therapeutic targets for autoimmune disease treatments. 

5. DC Maturation Stimuli during Autoimmunity 

Toll like receptors (TLRs) may recognize pathogen associated molecular patterns (PAMPs) as well 

as endogenous molecules released during stress conditions and cell death such as HMGB1, HSP60-70, 

fibronectin, fibrinogen, hyaluronic acid fragments, ssRNA and immunocomplexes (ICs) containing 

chromatin [110–112]. TLR engagement may lead to the production of proinflammatory factors leading 

to tissue damage. Interestingly, during lupus pathogenesis, circulating immunocomplexes (IC) may be 

recognized by DCs and other immune cells promoting inflammation and tissue injury in SLE. ICs 

containing HMGB1 are crucial for anti-dsDNA development in SLE by a mechanism likely to be 

driven by a TLR2/MyD88 dependent pathway [111]. It is proposed that self-DNA/self-RNA from dying 

cells can be internalized and transported into TLR7 or TLR9 containing endosomes in DCs leading  

to IFN-α production and initiating the autoreactive immune response [113–116]. Self-DNA may form 

macromolecular aggregates reaching TLR9 expressing endosomes and break immune tolerance to  

self-DNA leading to the onset of autoimmune disorders such as psoriasis, arthritis and SLE [117,118]. 

Hydroxychloroquine (HCQ), a drug currently used in lupus treatment, increases cytoplasmic pH 

preventing acidification and maturation of endosomes while decreases pro-inflammatory cytokines 

production upon TLR7 and TLR9 ligation in DCs [119,120]. Probably, HCQ inhibits IFN-α production 

by limiting endosome maturation and the binding of TLRs to ICs containing self-DNA/RNA [121].  

An unbalanced activating/inhibitory FcγR signaling in SLE patients may significantly influence DC 

immunogenicity due to the presence of ICs containing apoptotic cells and the deficiency in the 

clearance apoptotic bodies [8]. It has been shown that TLRs expressed by pDCs recognize RNA and 

DNA when added along with serum IgGs from lupus patients while serum from healthy controls do 

not induced DCs activation suggesting that ICs, FcγRs and TLRs play a crucial role during lupus 

pathogenesis [121–123]. Recently, it has been reported that different molecules could bind to self 

antigens present in circulating ICs, such as C-reactive protein (CRP) and the antimicrobial peptide  

LL-37, a cathelicidin polypeptide being capable of inhibiting or promoting the IFN-α response, and 

mediate endosomal TLR recognition of ICs [115,116,124]. DCs maturation by TLR agonists can have a 

negative impact in peripheral tolerance especially in regulatory T cell (Treg) function. It has been 

reported that Treg function could be abolished by pDCs activated by CpG and simultaneously driving 

to Th17 cells expansion thereby promoting a pro-inflammatory response [125–128]. 

6. Designing New Therapies Based on Tolerogenic DCs 

Although a great deal of progress has been made in experimental approaches using tolerogenic DCs  

to ameliorate tissue specific autoimmune diseases, the efficacy of tolDCs at suppressing systemic 
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autoimmunity still remains to be assessed. Different strategies have been used promote immunosuppression 

by DCs-based therapy such as T helper bias, Treg differentiation and T cell anergy [129–131].  

One of the most interesting features of tolDCs based therapy is the potential of loading DCs with 

immunodominant self-antigens responsible for autoimmune mediated damage avoiding systemic 

immunosuppression, such as observed under corticoids treatment [132]. 

Co-stimulatory molecule expression and cytokine production are crucial for T cell immunosuppression 

by tolDCs and currently it is known that tolDCs phenotype will be characterized by a low expression 

of MHC-II, CD40, CD80, CD86; a concomitant reduced production of pro-inflammatory cytokines  

IL-6 and IL-12; and increased secretion of the anti-inflammatory cytokine IL-10 [129,132,133]. 

Murine DCs are most frequently generated in in vitro cultures from bone marrow precursors  

with GM-CSF [134]. In human, DCs are generated in vitro from blood CD14+ monocytes cultures with 

recombinant GM-CSF and IL-4 [135,136]. After DCs differentiation it is possible to generate tolDCs 

in vitro by several methods, such as metabolic control, pharmacologic intervention, biological agents, 

and gene therapy [137,138]. Interestingly, new approaches are being conducted to design microparticulate 

systems for specific delivery of tolerogenic agents to DCs. A delivery of multiple tolerogenic factors can be 

performed by polylactic-co-glycolic acid microparticles of different phagocytosable and unphagocytosable 

microparticles [139]. 

6.1. Metabolic Control 

It is known that changes in cellular activation may initiate different intracellular processes leading 

to changes in global metabolism and targeting these mechanism of cellular metabolism can be exploited 

to shape a desired immune responses or immunosuppression [138]. Thus, in theory the inhibition of early 

metabolic process during DCs maturation will reset DCs activation, migration, and T cell priming. After 

TLR ligand stimulation, DCs undergo a metabolic switch with an increase in glycolysis and a concomitant 

progressive loss of mitochondrial oxidative phosphorylation [140]. Interestingly, the administration of 

dexamethasone and vitamin-D3 to DCs induces the expression of genes associated with mitochondrial 

metabolism and oxidative phosphorylation [141] (Figure 3A). Although not much evidence exists 

about the efficiency of generating tolDCs through interfering with metabolic pathways the most studied 

molecular targets are mTOR, HIF-1a, AMPK and PGC1 [138,142–145] (Table 1). Additionally, 

rosiglitazone, a PPARγ agonist, which is known to display a tolerogenic capacity on DCs such as the 

amelioration of EAE, may regulate their function by altering lipid metabolism [146–149] (Figure 3A). 

Targeting metabolic pathways in DCs could be also implemented in the design of tolDCs-based 

immunotherapies (Table 1). 
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Figure 3. Current strategies to generate tolDCs. (A) Metabolic control of different  

cellular processes such as inhibition of mitochondiral phosphorylation (Dexamethasone- Dex), 

glycolysis, lipid metabolism (PPARγ agonists such as rosiglitazone) and cell cycling 

(rapamycin); (B) Drug intervention to promote the induction of tolDCs is mainly achieved 

by drugs, which interfere with NF-κB signaling pathway (Dex-dexamethasone, VD3-vitamin 

D3, aspirin, BAY11-7082). NF-κB signaling pathway is a crucial event during DC activation 

and maturation process; (C) Biological compounds such as the anti-inflammatory cytokines 

IL-10 and TGF-β are powerful tolerogenic agents which induce tolDCs with the capacity 

of secrete high levels of anti-inflammatory cytokines; (D) The modification of DCs with 

RNAi and lentivirus (or adenovirus) vectors offers new approaches to generate tolDCs.  

By the transduction of RNAi specific for pro-inflammatory cytokines (IL12, IL23) or  

co-stimulatory molecules (CD40 and CD86), the immunogenicity of DCs is severely affected. 

In contrast, the transduction of lentiviral (or adenoviral) vectors containing anti-inflammatory 

genes, such as heme oxygenase-1(HO-1) or IL-10, could also induce the generation of 

tolDCs which keep the capacity of produce anti-inflammatory cytokines with a low 

expression of co-stimulatory molecules. Generally, independent of the protocol used to 

induce the tolerogenic phenotype, tolDCs are resistant to pro-inflammatory stimuli. 

Remarkably, when tolDCs interact with T cells, they prevent cellular activation, proliferation 

and the production of pro-inflammatory cytokines such as IL-4, IL-17 and IFNγ while 

inducing (or no effect on) the production of IL-10. In addition, tolDCs could also interact 

with B cells reducing activation, plasma cell differentiation and the production of 

immunoglobulins. All these data promote tolDCs as a potential approach for the treatment 

of systemic autoimmune diseases in which both T and B cells responses are deregulated. 

Black arrows indicate inflammatory pathways. Grey arrows indicate anti-inflammatory 

pathways. Blunted lines indicate inhibition. 
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Table 1. Experimental strategies for the induction of tolDCs in autoimmune diseases. CIA: collagen-induced arthritis; EAE: experimental 

autoimmune encephalomyelitis; IL: interleukin. 

Agent 
Protocol 

Type of Tolerogenic Response Targeted Disease Reference 
Species Differentiation Relevant Antigen Type of Study 

Dexamethasone and 

Vitamin D3 

human 

Blood monocytes, 

GM-CSF and  

IL-4, 5–6 days 

alloantigen 
in vitro;  

pre-clinical 

Maturation-resistant phenotype, IL10/IL12; 

Impact in metabolism (lipids, glucose and 

oxidative phosphorylation); Migratory 

phenotype alterations; Reduce T cell 

priming and allospecific T cell response 

Immune-mediated 

diseases; Prevention 

of graft rejection; 

Rheumatoid arthitis; 

Sjogren syndrome 

Ferreira et al., 2011 [141]; 

Volchenkov et al., 2013 [148]; 

Volchenkov et al., 2013 [150]; 

Xing et al., 2002 [151];  

Unger et al., 2009 [152];  

García-González et al.,  

2013 [153] 

mouse 
Bone marrow, 

GM-CSF, 5 days 
- in vivo 

T cell priming; Maturation-resistant 

phenotype, IL10/IL12; Reduction of 

proinflammatory chemokines and cytokines 

Immune-mediated 

diseases 
Xing et al., 2002 [151] 

mouse 
Bone marrow, 

GM-CSF, 5 days 
- in vitro 

T cell priming; Maturation-resistant 

phenotype, IL10/IL12 

Immune-mediated 

diseases 
Moser et al., 1995 [154] 

Dexamethasone plus 

monophosphoryl lipid A 
human 

Blood monocytes, 

GM-CSF and  

IL-4, 5–6 days 

alloantigen 
in vitro;  

pre-clinical 

Stable phenotype and migratory capacity to 

lymphoid chemokines; T cell priming; 

Maturation-resistant phenotype, IL10/IL12 

Rheumatoid arthitis; 

Immune-mediated 

diseases; Prevention 

of graft rejection 

García-González et al.,  

2013 [153] 

Dexamethasone human 

Blood monocytes, 

GM-CSF and  

IL-4, 5–6 days 

- in vitro 
Maturation-resistant phenotype, IL10/IL12; 

T cell priming 

Immune-mediated 

diseases 
Rea et al., 2000 [155] 

Vitamin D3 

mouse 
Bone marrow, 

GM-CSF, 5 days 
- in vivo 

Reduce EAE severity; Maturation-resistant 

phenotype, IL10/IL12;  

Regulatory T cell induction 

EAE; 

Autoimmunity 

Farías et al., 2013 [156];  

Unger et al., 2009 [152] 

human 

Blood monocytes, 

GM-CSF and  

IL-4, 5–6 days 

myelin peptides in vitro 
Maturation-resistant phenotype, IL10/IL12; 

Reduce autoreactive T cell induction 
MS; Autoimmunity Raïch-Regué et al., 2012 [157] 
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Table 1. Cont. 

Agent 
Protocol 

Type of Tolerogenic Response Targeted Disease Reference 
Species Differentiation Relevant Antigen Type of Study 

Rapamycin 

mouse 
Bone marrow,  

GM-CSF, 5 days 
alloantigen in vitro 

Maturation-resistant phenotype; Reduce T cell 

priming and allospecific T cell response 

prevention of graft 

rejection 

Turnquist et al.,  

2007 [143];  

Taner et al., 2005 [144];  

Hackstein et al.,  

2003 [158] 

mouse 
Bone marrow,  

GM-CSF, 5 days 
alloantigen in vivo 

Reduce survival of alloantigen-specific CD8+ T cells 

in vivo 

Prevention of graft 

rejection 
Fischer et al., 2011 [145] 

human 

Blood monocytes,  

GM-CSF and  

IL-4, 5–6 days 

alloantigen in vitro 
Maturation-resistant phenotype; Reduce T cell 

priming and allospecific T cell response 

Immune-mediated 

diseases 
Fedoric et al., 2008 [159] 

Andrographolide 

mouse 
Bone marrow,  

GM-CSF, 5 days 
MOG peptide in vitro 

Reduce T cell priming and antigen processing;  

NF-κB inhibition 

Autoimmunity; 

EAE 

Iruretagoyena et al.,  

2005 [146] 

mouse 
Bone marrow,  

GM-CSF, 5 days 
MOG peptide in vivo Reduce EAE severity; NF-κB inhibition 

Autoimmunity; 

EAE 

Iruretagoyena et al.,  

2006 [149] 

Aspirin mouse 
Bone marrow,  

GM-CSF, 5 days 
alloantigen in vitro 

Maturation-resistant phenotype; IL10/IL12; 

Phagocytosis inhibition; Reduce T cell primi 

Immune-mediated 

diseases 

Hackstein et al.,  

2001 [160];  

Buckland et al.,  

2006 [161];  

Cai et al., 2011 [162] 

Rosiglitazone 

mouse 
Bone marrow,  

GM-CSF, 5 days 
MOG peptide in vivo 

Reduce T cell priming; Reduce EAE severity,  

NF-κB inhibition 

Autoimmunity; 

EAE 

Iruretagoyena et al.,  

2006 [149] 

human 

Blood monocytes, 

GM-CSF and  

IL-4, 5–6 days 

- in vitro 
Reduce proinflammatory cytokine expression; Lipid 

accumulation appears to be diminished in these cells 

Immune-mediated 

diseases 
Szatmari et al., 2007 [147] 

Troglitazone human 

Blood monocytes, 

GM-CSF and  

IL-4, 5–6 days 

- in vitro Maturation-resistant phenotype, IL10/IL12 
Immune-mediated 

diseases 

Volchenkov et al.,  

2013 [148] 
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Table 1. Cont. 

Agent 
Protocol 

Type of Tolerogenic Response Targeted Disease Reference 
Species  Differentiation Relevant Antigen Type of Study 

Cobalt Protoporphyrin human 

Blood monocytes, 

GM-CSF and  

IL-4, 5–6 days 

alloantigen in vitro  

Reduce T cell priming; Maturation-resistant 

phenotype, IL10/IL12; Reduce allospecific  

T cell response 

Immune-mediated 

diseases; Prevention 

of graft rejection 

Chauveau et al., 2005 [163] 

Bay 11-7082 

mouse 

Bone marrow, 

GM-CSF and  

IL-4, 5 days 

methylated serum 

albumin 
in vivo 

Reduce disease severity; Reduce T cell 

response; NF-κB inhibition 

CIA  

(Rheumatoid arthitis) 
Martin et al., 2007 [164] 

mouse 
Bone marrow, 

GM-CSF, 5 days 
- in vitro  Maturation-resistant phenotype, IL10/IL12 

Immune-mediated 

diseases 
Ade et al., 2007 [165] 

Tacrolimus 

mouse 
Bone marrow, 

GM-CSF, 5 days 
- in vivo - 

CIA  

(Rheumatoid arthitis) 
Ren et al., 2014 [166] 

human 

Blood monocytes, 

GM-CSF and  

IL-4, 5–6 days 

- in vitro 
Maturation-resistant phenotype, IL10/IL12; 

Anti-inflammatory cytokine gene expression 
Rheumatoid arthitis Ren et al., 2014 [166] 

IL-10 

human 

Blood monocytes, 

GM-CSF and  

IL-4, 5–6 days 

alloantigen; 

allergen 

in vitro;  

pre-clinical 

Maturation-resistant phenotype, IL10/IL12; 

Reduce T cell priming and allospecific  

T cell response 

Systemic Lupus 

Erythematosus;  

Type 1 Diabetes;  

Immune-mediated 

diseases; Asthma  

and allergy 

Sato et al., 1999 [167];  

Knodler et al., 2008 [168];  

Velten et al., 2004 [169];  

Kubsch et al., 2003 [170]; 

Steinbrink et al., 2002 [171];  

Li et al., 2010 [172];  

Lopez et al., 2011 [173];  

Crispin et al., 2012 [28] 

mouse 
Bone marrow, 

GM-CSF, 5 days 
- in vitro Maturation-resistant phenotype 

Immune-mediated 

diseases 
Ruffner et al., 2009 [174] 

rat 
Bone marrow, 

GM-CSF, 5 days 
- in vivo 

Maturation-resistant phenotype; Reduce T 

cell priming and allospecific T cell response 

Prevention of graft 

rejection 
Jiang et al., 2004 [175] 
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Table 1. Cont. 

Agent 
Protocol 

Type of Tolerogenic Response Targeted Disease Reference 
Species Differentiation Relevant Antigen Type of Study 

TGF-β mouse 
Bone marrow, 

GM-CSF, 5 days 
insulin; allopeptides in vivo 

Long-term survival of the graft; Immune 

tolerance restoration 

Prevention of graft 

rejection 

Thomas et al., 2013 [176];  

Yan et al, 2014 [177] 

IL-10 and TGF-β human 

Blood monocytes,  

GM-CSF and  

IL-4, 5–6 days 

insulin and GAD65; 

β2-glycoprotein I  

in vitro;  

pre-clinical 

Maturation-resistant phenotype, IL10/IL12; 

Reduced antigen specific T cell response 

Antiphospholipid 

syndrome;  

Type 1 Diabetes 

Segovia-Gamboa et al.,  

2014 [178];  

Torres-Aguilar et al.,  

2012 [179] 

Cholera toxin B human 

Blood monocytes, 

GM-CSF and  

IL-4, 5–6 days 

- in vitro 
Maturation-resistant phenotype; Reduce  

T cell priming; regulatory T cell induction 

Immune-mediated 

diseases 

D’ambrosio et al.,  

2008 [180] 

Gene therapy,  

IL-10 plus TGF-β 
rat 

Bone marrow, 

GM-CSF, 5 days 
- in vivo 

Long-term survival of the graft;  

Maturation-resistant phenotype 

Prevention of graft 

rejection 
Chen et al., 2014 [181] 

Gene therapy; 

silencing;  

IL-12/IL23/CD40/

CD80/CD86/RelB 

mouse 

Bone marrow, 

GM-CSF or  

GM-CSF and  

IL-4, 5 days 

collagen II; MOG 

petide; islet lysate 
in vivo 

Reduce disease severity and joint erosion; 

Reduce T cell priming; Reduced islet-specific 

T cell response; Reduce severity of  

Type 1 Diabetes 

CIA (Rheumatoid 

arthitis); EAE;  

Type 1 Diabetes 

Li et al., 2012 [182];  

Zheng et al., 2010 [183];  

Kalantari et al., 2014 [184];  

Ma et al., 2003 [185];  

Machen et al., 2004 [186] 
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6.2. Pharmacologic Intervention 

One of the most popular protocols to generate tolDCs is through pharmacologic blockage of  

the maturation process leading to a decreased susceptibility to be activated by PAMPs, DAMPS or  

pro-inflammatory cytokines [146,151,154,155,158,160,187]. Most used tolerogenic inducers are 

dexamethasone (Dex) and 1α,25-dihydroxyvitamin D3. Both drugs induce a semi-mature phenotype on 

DCs with intermediate expression of co-stimulatory molecules, such as MHC-II and CD86, being 

resistant to maturation stimuli and suppressing T cell activation [151,152]. Dex could also modulate the 

Nuclear Factor Kappa B (NF-κB) pathway, inflammatory cytokines, chemokines, and Ag-presenting 

molecules [148,150,188,189] (Figure 3B). In addition, it has been reported that Dex plus 

monophosphoryl lipid A stimulation on DCs induces a classical tolerogenic phenotype together with  

a high expression of CCR7 and CXCR4 chemokine receptors involved in leukocyte migration to 

lymphoid organs exhibiting a recruitment/migration response to CCL19 and CXCL12 [153] (Table 1). 

Remarkably, a Phase I clinical trial (AutoDECRA) based on the administration of autologous tolDCs 

generated by Dex and VD3 is being conducted in RA patients (currently recruiting patients) 

[ClinicalTrials.gov Identifier: NCT01352858] (Table 2). It is important to note that tolDCs will be 

administered arthroscopically into the involved joints. Results are not available yet. Although it  

has been reported that tolDCs generated by VD3 from MS patients induce hyporesponsiveness of 

myelin-specific T cells, clinical trials based on the therapeutic use of tolDCs MS are still  

ongoing [156,157,190,191]. 

Aspirin (Acetylsalicylic acid) inhibits CD40, CD80, CD86, and MHC class II expression on DCs, 

decreases NF-κB signaling and induces expression of immunoglobulin-like transcript 3 (ILT3), a T 

cell inhibitor, suggesting it to be an important factor in tolDC function [160,161]. Aspirin treated DCs 

showed an immature morphology and failed to stimulate T cells in mixed lymphocyte reaction [160]. 

In addition, in DCs, aspirin inhibits phagocytosis and modulates the expression of endosomal SNAREs 

(Soluble NSF attachment protein receptors), affecting the uptake of Ags for processing and presentation 

to T cells, thus preventing the immune response [162]. Niflumic acid is a non-steroidal anti-inflammatory 

agent which shows a potential tolerogenic effect on DCs decreasing the expression of CD80 while 

increasing the expressions of the co-inhibitory molecules ILT3 and ILT4 [192]. 

Rapamycin has been extensively reported to exhibit tolerogenic potential. mTOR inhibition by 

rapamycin (RAPA) promotes tolDCs that induce Treg expansion in vivo and in vitro, as well as 

inhibition of effector T cell proliferation [158,159]. RAPA binds to FKBP12 thus inhibiting mTOR, 

which exerts different cellular functions, including modulation of activation, proliferation and regulating 

cellular metabolism [158] (Figure 3B). Interestingly, when DCs were exposed to RAPA during 

differentiation they showed a global reduction in the expression of co-stimulatory molecules CD40, 

CD80 and CD86, as well as in inhibitory receptors, such as ILT2, ILT3 and ILT4, which is not consistent 

with a tolerogenic phenotype [159]. In contrast, another study has shown that DCs from transplanted 

patients treated with RAPA showed an increase in ILT3 and ILT4 expression [193]. RAPA suppresses 

IL-4-dependent maturation of DCs by down-regulation of IL-4 receptor complex (CD124, CD132). 

Moreover, RAPA prevents DCs expansion in vivo induced by Flt3-L, and impairs LPS-induced 

expression of the co-stimulatory molecules CD80 and CD86 while suppresses the production of TNF-α 

and IL-18 [158,187,194] (Table 1). 
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Table 2. Clinical studies that are in progress based on the experimental use of tolDCs for autoimmune diseases treatment. AutoDECRA: 

autologous tolerogenic dendritic cells for rheumatoid arthritis; IL: interleukin; GM-CSF: granulocyte monocyte colony stimulating factor. 

Protocol for DC 

Name Targeted Disease Results/Status 
ClinicalTrials.gov 

Identifier Agent Origin Differentiation 
Type of 

Study 
Route 

Dexamethasone and 

Vitamin D3 

Blood 

monocytes 

GM-CSF and 

IL-4, 5–6 days 

Phase I; Proof 

of safety 
Arthroscopically AutoDECRA Rheumatoid arthitis 

No study 

results posted; 

Ongoing study 

NCT01352858 

BAY11-7082 
Blood 

monocytes 

GM-CSF and 

IL-4, 5–6 days 

Phase I; Proof 

of safety 
Intradermally - 

Rheumatoid arthitis 

(citrunillated 

peptides) 

Safe and well 

tolerated; 

Ongoing study 

- 

Gene therapy; siRNA; 

CD40/CD80/CDD86 

Blood 

monocytes 

GM-CSF and 

IL-4, 5–6 days 

Phase I; Proof 

of safety 
Intradermally - Type 1 Diabetes 

Safe and well 

tolerated; 

Ongoing study 

NCT00445913 

Low GM-CSF  
Blood 

monocytes 

low GM-CSF, 

6 days 

Phase I; 

feasibility 

study 

Intravenous The One Study Kidney transplant 

No study 

results posted; 

Ongoing study 

- 
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Pharmacologic or genetic modulation of heme oxygenase-1 (HO-1) has been shown to exert 

different immunoregulatory properties, thus HO-1 is currently a therapeutic target for tolDCs generation. 

This enzyme catabolyzes heme degradation into Fe2+, biliverdin and carbon monoxide (CO).  

In addition, the administration of its metabolic product, carbon monoxide (CO) would also display 

different immunoregulatory properties. HO-1 expression can be induced by Cobalt Protoporphyrin 

(CoPP, a heme group analog), both in vitro and in vivo, preventing DCs maturation by LPS without 

affecting IL-10 production [163]. In addition, DCs exposed to CO by the administration of CO-releasing 

molecules show alterations in antigen presentation and a reduced capacity of T cell priming [195]. 

Interestingly, CO-treated autologous DCs reduce autoimmunity in a diabetic transgenic model by 

blocking β1-integrin expression in autoreactive CD8+ T cells, reducing their capacity to infiltrate the 

pancreas [196]. One of the most important cellular events on DCs after sensing a maturation stimulus 

is the nuclear translocation of NF-κB [197]. Pharmacologic interference with NF-κB signaling pathway 

has been successfully employed to generate tolDCs. DCs treatment with BAY11-7085 or andrographolide, 

two NF-κB inhibitors, induces Treg expansion and modulates experimental autoimmune arthritis and  

EAE respectively [133,149,164] (Figure 3B). In addition, NF-κB inhibition by BAY11-7085 on DCs 

prevents CD40 and HLA-DR expression, as well as cytokine production after NiSO stimulation 

without major changes in the expression of CD86 and CD83 [165]. Interestingly, a small study in RA 

patients based on the administration of BAY11-7082-generated tolDCs in RA has revealed promising 

results (Table 2). TolDCs were loaded with citrullinated autoantigen peptides (cit-vimentin 447–455, 

cit-fibrinogen beta chain 433–441, cit-fibrinogenalphachain 717–725, cit-collagen type II 1237–1249) 

in order to drive an Ag-specific tolerogenic response and given to patients intradermally. Two initial 

doses were assayed with increasing subsequential administrations, detecting only minor effects in 

patients. A significant improvement was achieved in the group of patients with most active disease 

while those with a low activity score mostly remained with a stable condition [198]. 

Tacrolimus could also promote the generation of tolDCs displaying an immature phenotype 

characterized by the induction of IL-10 and TGF-β mRNA while reducing the production of  

TNF-α and limiting the proliferation of effector T cells [166]. Remarkably, the administration of 

tacrolimus-generated tolDCs to arthritic mice ameliorated disease and progression mainly by altering 

Th1/Th17 profiles in the spleen [166]. 

In addition, other anti-inflammatory mediators, such as deoxyspergualin, mycophenolate mofetil, 

and spironolactone, also have been shown to induce a tolerogenic phenotype on DCs [133,199,200]. 

6.3. Biological Compounds 

IL-10 is the most common biological agent that induce tolDCs via IL-10R/Jak/STAT signaling  

that regulating several anti-inflammatory genes [201]. In DCs, IL-10 signaling interferes with  

pro-inflammatory pathways, such as PI3K/Akt, NF-κB, TLR/IRAK/TRAF6/MyD88, MAPK and 

Ras/Raf conferring a tolerogenic phenotype [167,168,202]. IL-10 stimulation of DCs decreased the 

expression of both co-stimulatory molecules, CD80 and CD86, as well as the inhibitory molecule PD-L1 

and the absence of CD80 or CD86 leads to a reduced capacity of suppress a delayed-type hypersensitivity 

response [174] (Figure 3C). IL-10 prevents DC maturation and increases mRNA expression of several 

inhibitory receptors such as ILT2, ILT3, ILT4, ILT5, DCIR, PILRA, FcγRIIb and SLAM which may 
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improve the global tolerogenic function [169]. It has been reported that the administration of tolDCs 

generated by IL-10 prolongs allograft survival by blocking the expression of the co-stimulatory molecule 

CD86, leading to apoptosis of allospecific T cells [175]. IL-10-treated DCs induce antigen-specific  

T cell anergy, blocks proliferation and IL-2 and IFN-γ production [170–172,178,179]. Interestingly, an 

analog peptide to IL-10 was capable of inducing TGF-β production by human DCs [173]. 

Although it has been reported that DCs from lupus patients show an altered phenotype, IL-10 

treatment successfully induced tolDCs with a decreased capacity of T cells priming [28]. Unfortunately, 

the use of tolDCs in clinical trials of lupus patients still remains to be performed [6,28,200,203,204]. 

TGF-β has also been used as a tolerogenic agent. Similarly as observed with IL-10 treatment,  

TGF-β reduced the expression of CD80 and CD86 by DCs, together with a decreased secretion of the  

pro-inflammatory cytokine IL-12 and a reduced capacity to prime T cells [176] (Figure 3C). In in vivo 

assays, tolDCs generated with TGF-β delayed corneal allograft rejection and increased the number of 

Treg expressing Foxp3 and CTLA-4 [177]. Also, the administration of TGF-β-induced tolDCs to grafted 

β-cells islets prolongs graft survival suggesting an acquired tolerogenic phenotype which may ameliorate 

the immune mediated disease [176]. Similarly, Growth differentiation factor-15 (GDF-15) which is a 

member of the TGF-β superfamily also induces a tolerogenic phenotype in human DCs suppressing 

maturation, decreasing the expression of co-stimulatory molecules CD83 and CD86, reducing IL-12 

production and inhibiting T cell priming [205]. 

Interestingly, cholera toxin B subunit could also induce tolDCs, which produce high amounts of  

IL-10 and reduce the ability to stimulate T cells in a mixed lymphocyte reaction [180]. Also, it has 

been reported that cholera toxin B could suppresses TNF-α secretion by DCs and induced IL-10 

production [206]. 

6.4. Gene Therapy 

Alternative protocols to induce tolDCs such as gene therapy have been growing during the last years. 

The interference RNA (RNAi) technology and the new gene transfer systems offer multiple options to 

generate tolDCs by the transfection of short hairpin RNAs, microRNAs, small interfering RNAs and 

the use of viral or synthetic vectors containing tolerogenic genes [207–209] (Figure 3D). In the liver 

model of transplant rejection, tolDCs generated by the co-transfection of IL-10 and TGF-β improve 

liver graft survival and decrease serum IL-12 levels [181] (Figure 3D). IL-12 gene silencing by siRNA 

induced tolDCs and the transfer of these cells to collagen induced arthritis (CIA) mice ameliorates 

disease mainly by suppressing of T and B cells responses [182]. Similarly, gene silencing by siRNA 

transfection of the classical co-stimulatory molecules CD40, CD80, and CD86 also ameliorated disease 

in the CIA mice model of RA [183,210]. A gene therapy approach based in the transduction of monocytes 

with an adenovirus vector overexpressing HO-1 gene results in a reduction of nitric oxide and TNF-α 

release, augmenting IL-10 production after LPS stimulation [211]. Also, the administration of tolDCs 

generated by lentiviral vector transduction expressing shRNA specific for CD40 and IL-23 ameliorate 

clinical score in the EAE model and decreases IL-17 while increases IL-10 production [184]. Similarly 

as observed with pharmacological induction of tolDCs, interfering with NF-κB signaling has also been 

successfully performed by gene therapy with the lentiviral transduction expressing specific shRNA for 

RelB (NF-κB subunit) on DCs which in turn reduced maturation, decreased pro-inflammatory cytokines 
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and co-stimulatory molecules expression [212]. Furthermore, it has been shown that the administration 

of oligodeoxynucleotides specific for NF-κB binding sites to DNA can inhibit NF-κB activity leading 

to a phenotype resistant to maturation in DCs [185]. In addition, the transfer of NF-κB-specific ODN 

tolDCs or CD40/CD80/CD86-antisense ODN tolDCs to NOD mice ameliorates clinical symptoms  

of Type 1 diabetes, induces islet-specific T cell hyporesponsiveness and increases the prevalence of 

regulatory T cells in the spleen [185,186] (Table 1). The administration of antisense (Figure 3D). These 

new experimental approaches promote the implementation of lentiviral technology targeting DC-T cell 

or DC-B cell interactions crucial for autoimmune diseases pathogenesis. 

Remarkably, a Phase I Clinical trial in patients with type 1 diabetes was carried out to evaluate  

the safety of the injection of autologous tolDCs generated by the transfection of siRNA targeting  

co-stimulatory molecules CD40, CD80, and CD86 [213,214]. The procedure was well-tolerated and no 

severe adverse reactions were reported (ClinicalTrials.gov identifier NCT00445913) (Table 2) [213]. 

In the setting of inflammation DCs are crucial in maintaining immune surveillance of peripheral 

tissues and initiating the immune responses inside the draining lymph nodes [215]. Similarly, peripheral 

tolerance to tissue specific antigens could be achieved by the homeostatic presentation of autoantigens 

by immature DCs in the draining lymph node [216]. Different immune cell interactions could take 

place in lymph nodes to promote tolerance [217,218]. It has been demonstrated that in lymph nodes 

from NOD mice, Tregs prevent the interaction and cell arrest of effector T cells with DCs, reducing 

autoimmune responses [217]. Furthermore, disruption of PD-1–PD-L1 interactions in the lymph node 

can enhance the interactions of self-antigen loaded DCs with “tolerized” T cells leading to T cell priming 

and autoimmunity in NOD mice [219]. Alternatively, local injury could led to tissue destruction by 

infiltrating immune cells increasing the recruitment of DCs that migrate to the draining lymph node 

leading to disease amplification, epitope spreading, autoimmunity and organ failure [220]. In contrast, 

during systemic autoimmune diseases, such as lupus, target autoantigens, including histone, Ro/La and 

DNA, are widely expressed leading to systemic lymphoproliferation and massive lymphadenopathy [221]. 

Thus, while in organ-restricted autoimmunity most self-specific T cells stay in draining lymph nodes, 

during systemic autoimmunity pathogenic T and B cells are located at widespread lymph nodes resulting 

in a greater number of autoreactive cells than organ-restricted autoimmune diseases [220]. This feature 

of pathogenic cells during systemic autoimmunity has hindered the development of new therapies based 

on tolDCs mainly due to that the full effect could be achieved after suppressive cells migrate to distant 

lymph nodes as well as compromised tissues [200,222]. Based on this notion, tolDC based therapy in 

organ-restricted autoimmune diseases should be more easily achieved by directly administering tolDCs 

near to draining lymph nodes or compromised tissue [223] (Clinical Trials.gov Identifier: NCT01352858). 

It has been shown that after DCs are injected intravenously, they migrate to different organs including 

spleen, liver, lungs and lymph nodes [224,225]. The migratory capacity of tolDCs to lymph nodes is 

essential for immunesuppression and is thought to be dependent on CCR7 expression [153,226]. These 

data highlight the importance of choosing tolerogenic agents that induce the expression of chemokines 

receptors that allow the entry of tolDCs into lymph nodes. 

Although several self-Ags have been described in SLE, such as nucleosomes, Ro, La and Sm, the 

identification of the most immunodominant T cell self-antigens in lupus or systemic autoimmunity are 

still lacking [200,227]. Understanding the pathogenesis of self-antigens is crucial for developing a 

novel therapy based on specific immunesuppression by tolDCs. Meanwhile, the use of self-antigen loaded 
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tolDCs with nucleoproteins would be a potential therapy for lupus treatment which may restore immune 

tolerance to specific antigens [200]. Achieving this goal would avoid systemic immunesuppression 

without impairing the immune system and preventing the increased susceptibility to opportunistic 

infections secondary to pharmacologic therapy [3]. 

To transfer the DCs-based technology to clinical practice, standardization of generation and 

assessment protocols is mandatory to ensure validity of the clinical trials and quality of the therapeutic 

approach. Researchers must first define the precursors from which DCs will be generated. Since monocytes 

can be easily obtained these are the most common source for DC generation, but others cell types such 

as CD34+ progenitors from human cord blood may be used as well [228]. The isolation method must 

provide high purity of DC-precursors and be appropriate for clinical applications, such as immunomagnetic 

separation or elutriation. In addition, cell culture variables including duration of the differentiation 

step, medium composition and density of cultured DCs-precursors must be adjusted to improve yield 

and viability. Tolerogenic phenotype must be evaluated by the measurement of co-stimulatory 

molecules expression, chemokine receptors, secretion of pro- or anti-inflammatory cytokines. Assays 

to evaluate tolerogenic function of tolDCs must be adapted to the current knowledge of the disease to 

be targeted by the therapy. For example, tolDCs designed for RA are commonly pulsed with synovial 

fluid or a mixture of citrullinated peptides to evaluate antigen-specific T cell suppression. However, 

mixed lymphocyte reaction assays may be a suitable approach to evaluate the tolerogenic capacity of 

tolDCs for most autoimmune diseases [198,200]. Cryopreservation is a crucial procedure to preserve 

viability and function of tolDCs when transferred from the manufacturating facility to the clinic [229,230]. 

Since thawing cells may result in cell death, viability assays should be performed after defrosting [231]. 

Additionally, cryopreservation itself could affect cell function without striking viability detriment and 

functional assays should be carried with thawed cells to evaluate if therapeutic potential is preserved [232]. 

Controlled freezing rate and slow thawing may be needed to optimize cryopreservation and to obtain 

fully functional tolDCs. Once tolDCs are fully characterized and optimal preservation conditions are 

defined, manufacture process should be translated to an adequate facility and acquire cell culture 

procedures to achieve GMP compliance to assure the quality and success of the cellular therapy. This 

implies adopting strategies to control collection, processing, storage and delivery of the product with 

high standard of quality [233]. 

7. Conclusions 

Although tolDCs have been successfully generated by different methods, such as pharmacological 

or biological agent intervention and gene therapy, the precise role of DC-T cell and DC-B cell 

interactions in the global tolerance capacity still remains to be elucidated. Dex, VD3 and NF-κB 

inhibitors are the most used compounds to generate tolDCs. Understanding immunodominant self-Ags 

driving autoimmune responses are crucial in designing specific tolerogenic responses in order to make 

more efficient the tolDCs approaches and thus avoiding systemic immunosuppression. Due to the 

complexity of systemic autoimmunity, performing therapies on SLE patients, based on tolDCs, may be 

more difficult than approaches in tissue specific autoimmune diseases. Remarkably, clinical trials 

based on the generation of autologous tolDCs and subsequent transfers to autoimmune disease patients 
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are already being conducted. Although much research needs to be performed, the success of the tolDCs 

approach may have a major clinical impact being a worthy challenge. 
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IC: Immune complex; ILT: Immunoglobulin-like Transcript; MS: Multiple sclerosis; mTOR: 

Mammalian target of rapamycin; NF-κB: Nuclear factor kappa B; PAMPs: Pathogen-associated 

molecular patterns; PD-1: Programmed death 1; pDCs: Plasmacytoid dendritic cells;  

PPAR: Peroxysome proliferator-activated receptor; RA: Rheumatoid Arthritis; RAPA: Rapamycin;  

RNAi: interference RNA; SLE: Systemic Lupus Erythematosus; SS: Sjögren’s syndrome;  

T1D: Type 1 Diabetes; Th: T helper; TLRs: Toll Like Receptors; Treg: Regulatory T cells;  

VD3: 1α,25-dihydroxyvitamin D3 
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