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Abstract: Bacteria under the operational group Bacillus amyloliquefaciens (OGBa) are all Gram-positive,
endospore-forming, and rod-shaped. Taxonomically, the OGBa belongs to the Bacillus subtilis species
complex, family Bacillaceae, class Bacilli, and phylum Firmicutes. To date, the OGBa comprises
four bacterial species: Bacillus amyloliquefaciens, Bacillus siamensis, Bacillus velezensis and Bacillus
nakamurai. They are widely distributed in various niches including soil, plants, food, and water. A
resurgence in genome mining has caused an increased focus on the biotechnological applications
of bacterial species belonging to the OGBa. The members of OGBa are known as plant growth-
promoting bacteria (PGPB) due to their abilities to fix nitrogen, solubilize phosphate, and produce
siderophore and phytohormones, as well as antimicrobial compounds. Moreover, they are also
reported to produce various enzymes including α-amylase, protease, lipase, cellulase, xylanase,
pectinase, aminotransferase, barnase, peroxidase, and laccase. Antimicrobial compounds that able to
inhibit the growth of pathogens including non-ribosomal peptides and polyketides are also produced
by these bacteria. Within the OGBa, various B. velezensis strains are promising for use as probiotics
for animals and fishes. Genome mining has revealed the potential applications of members of OGBa
for removing organophosphorus (OPs) pesticides. Thus, this review focused on the applicability of
members of OGBa as plant growth promoters, biocontrol agents, probiotics, bioremediation agents, as
well as producers of commercial enzymes and antibiotics. Here, the bioformulations and commercial
products available based on these bacteria are also highlighted. This review will better facilitate
understandings of members of OGBa and their biotechnological applications.

Keywords: plant growth-promoting bacteria; biocontrol agent; enzymes; antimicrobial compounds;
probiotics; bioremediation; Bacillus amyloliquefaciens; Bacillus velezensis; Bacillus siamensis; Bacillus
nakamurai

1. Introduction

In 1943, a Japanese scientist, Juichiro Fukumoto, first isolated Bacillus amyloliquefaciens
from the soil. The species is named after its unique character because it produced (faciens) a
liquefying (lique) α-amylase (amylo) [1,2]. Later, B. amyloliquefaciens was combined with the
closely related Bacillus subtilis and Bacillus licheniformis into the B. subtilis species complex,
based on phylogenetic and phenetic evidence [3]. From the B. subtilis species complex,
it can be further sub-grouped into the operational group B. amyloliquefaciens (OGBa) that
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comprises four bacterial species; the soil-borne B. amyloliquefaciens, the plant-associated
Bacillus siamensis and Bacillus velezensis, and a black-pigment-producing strain Bacillus
nakamurai [4].

Previously, several bacterial species of the OGBa, namely B. amyloliquefaciens subsp.
plantarum, Bacillus methylotrophicus and Bacillus oryzicola, were reclassified as strains of
B. velezensis [5]. Genome-based and gene-derived phylogenetic analyses revealed that
B. velezensis belongs to a conspecific group consisting of B. velezensis, B. amyloliquefaciens
subsp. plantarum FZB42 (reclassified as B. velezensis FZB42) and B. methylotrophicus. How-
ever, B. velezensis is distinct from the closely related species of B. amyloliquefaciens and
B. siamensis [4]. To date, a plethora of bacterial whole-genome sequences (WGS) from
members of OGBa have been deposited into the National Center Biological Information
(NCBI) database (Table S1). As confirmed taxonomically in 2019, 223 genomes belonged to
B. velezensis, 19 belonged to B. amyloliquefaciens, 10 belonged to B. siamensis and 2 belonged
to B. nakamurai [6].

The members of OGBa are found in various niches including soil, plants, food, animal
faeces and aquatic environments [4]. Currently, genome mining has revealed their applica-
bility as plant growth-promoters, biocontrol agents, probiotics, bioremediation agents as
well as producers of commercial enzymes and antibiotics [7,8]. Therefore, knowledge of
the biology of the OGBa is imperative to understanding the special qualities of the group.
This review focused on the biotechnological applications of the bacterial strains belonging
to the OGBa.

2. An Overview of the OGBa
2.1. Identification and Characterization

Bacterial species from the OGBa are all Gram-positive bacteria and motile by peritric-
hous flagella. They are endospore-forming bacteria from the B. subtilis species complex.
For many years, the speciation of OGBa within the B. subtilis species complex has been
uncertain, often leading to erroneous and variable results. They are difficult to distinguish
using classical taxonomy parameters: morphological and physiological characteristics,
cell wall compositions, 16S ribosomal RNA sequence, guanine–cytosine (G+C) content,
fatty acid methyl esters (FAME) and DNA–DNA hybridization (DDH) [9]. Therefore,
the taxonomic status of the bacterial species belonging to the OGBa is constantly causing
confusion to researchers, especially for non-professional taxonomy researchers.

It is worth mentioning that some studies have used protein-coding genes in order
to further ascertain the degree of relatedness of the OGBa within the B. subtilis species
complex [10,11]. The highly conserved DNA gyrase subunit B (gyrB), signal transduction
histidine kinase CheA (cheA) and RNA polymerase β-subunit (rpoB) were used for the
study of speciation within the B. subtilis species complex before the advent of multilocus
sequence analysis (MLSA) [11–13]. The taxonomical status of the members of OGBa has
been solved by genome-based [4] and gene-derived [14] phylogeny analyses. The OGBa
comprised four species: (i) B. amyloliquefaciens; (ii) B. siamensis; (iii) B. velenzensis; and (iv) B.
nakamurai, as confirmed by cladistic analysis (Figure 1; Table 1).
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Figure 1. Neighbor-joining phylogenetic tree based on complete rpoB nucleotide sequences of
bacterial species under the B. subtilis species complex. Evolutionary analyses were conducted using
the MEGAX software [15]. The optimal tree with the sum of branch length = 0.66533958 is shown.
The evolutionary distances were computed using the p-distance method. Bootstrap values, based on
1000 repetitions, are indicated at the branch points. The analysis involved 19 nucleotide sequences.
There were 3534 positions in the final dataset. Bar, 0.02 substitutions per nucleotide position. Bacillus
cereus ATTC 14579T was used as the outgroup.

Table 1. Characterizations of bacterial species under the operational group Bacillus amyloliquefaciens.

Characterization B. amyloliquefaciens B. siamensis B. velezensis B. nakamurai

Type Strain DSM 7T / ATCC 23350T /
FT

KCTC 13613T / PD-A10T

/ BCC 22614T

NRRL B-23189T /
CR-502T / CECT 5686T /

LMG 22478T

NRRL B-41091T /
CCUG 68786T

Isolation Source Soil and industrial
α-amylase fermentations

Salted crab (poo-khem) in
Thailand

Brackish water sample
from the river Velez at

Torredelmar in Ma’laga,
southern Spain

Soil in Tierra del
Fuego, Argentina

Size 0.7–0.9 × 1.8–3.0 µm 0.3–0.6 × 1.5–3.5 µm 0.5 × 1.5–3.5 µm 0.74–0.93 × 1.39–2.04
µm

Endospore
Oval spores are central or
paracentral in unswollen

sporangia

Ellipsoidal spores are
central or sub-terminal

positions in swollen
sporangia

Ellipsoidal spores are
paracentral or

sub-terminal positions in
unswollen sporangia

Ellipsoidal spores are
central in unswollen

sporangia

G + C Content (mol %) 44.6 41.4 46.1–46.4 43.8

Growth Temperature

Optimal growth
temperature is 30–40 ◦C.
No growth occurs below

15 ◦C or above 50 ◦C.

Optimal growth
temperature is 37 ◦C.

Growth occurs at 4 ◦C
and 55 ◦C.

Grow within
the temperature range of

15–45 ◦C

Grow within
the temperature

range of 17–50 ◦C,
with an optimum of

37 ◦C

NaCl Resistance (w/v) Growth occurs with
0–10% NaCl

Growth occurs with
0–14% NaCl

Growth occurs with
0–12% NaCl

Growth occurs with
0–9% NaCl

Substrate
Utilization

Tyrosine - - - +

Citrate + - - +

Fermentation
(acid)

Lactose + + + -

Trehalose + - + +

Reference [1] [16] [17] [18]

Note: All the bacterial species are able to metabolize casein, gelatin, starch, fructose, cellobiose, glucose, glycerol, maltose, mannitol,
raffinose, salicin and sucrose. Symbol: +, positive result; -, negative result.
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2.2. Ecology, Isolation and Cultivation

The ability to produce endospores when facing harsh conditions allowed the members
of the operational group to survive in various niches including soil, animal faeces, plants,
food, bee products, drugs, air, and the aquatic environments (Table S1). Evidently, the
members of OGBa had been directly isolated from rare dormant volcanic soils [19], mango
orchards [20] and animal faeces [21,22]. They had also been isolated from plant parts
including fruits (such as lemons [23] and apples [24]), roots (such as Peruvian ground
cherry [25] and peanut roots [26]) and leaves (such as lucerne [27] and camphor leaves [28]).

Moreover, traditional fermented foods including bibimbap [29], douchi [30], and
doenjang [31] were reported as the sources of isolation of bacteria from this operational
group. They also were isolated from bee products [32–34], heroin [35], and air [36]. In
other related studies, bacteria of this operational group have been isolated from water [37],
seawater [38] and sea sediment [39]. Chicken [40] and fish intestines [41] were also reported
as the sources of origin for members of this operational group.

Generally, the members of OGBa are cultivated routinely in Luria–Bertani (LB) medium
at 30–37 ◦C aerobically [11,16,17]. Some members of OGBa such as B. nakamurai grew well
on nutrient agar (NA), trypticase soy agar (TSA), Reasoner’s 2A agar (R2A) and tryptone
glucose yeast extract agar (TGY) at 30 ◦C for two days [18]. Moreover, B. velezensis and B.
siamensis were also reported to grow well on TSA at 37 ◦C and 32 ◦C, respectively [16,17].

2.3. Genome and Its Arrangement

In 2019, 254 bacterial strain genomes which had been deposited in the NCBI database
were reported as belonging to the OGBa [6]. Some of the examined strains were found to
contain plasmids (Table S1). Most of the reported strains had only one plasmid, except
for B. velezensis 157, B. velezensis DKU_NT_04, and B. velezensis NJAU-Z9 (all contained
two plasmids), and B. velezensis LB002 (which contained three plasmids). Interestingly,
some studies have focused on the functionality of the genes carried by the plasmid. For
instance, the B. velezensis S499 plasmid, pS499, was reported as containing a rap-phr cassette.
This cassette encoded for the regulator aspartate phosphatase (rap) and the Rap regulatory
peptide (phr) with a role in governing protease secretion, growth and motility, biofilm
formation and production of surfactin [42]. Meanwhile, B. amyloliquefaciens LL3 plasmid,
pMC1, has a 6.8 kbp plasmid that includes a rap which is not homologous to the pS499 [42].
The hypothetical rap and the origin of replication of the pMC1 plasmid were cloned into the
pKSV7, vector which brought about the production of plasmid-cured strains. The plasmid-
cured strains have increases in glutamate-independent poly-γ-glutamic acid production by
6% as compared to the B. amyloliquefaciens LL3 [43].

Genome analysis allowed for further biological studies on the members of OGBa.
The genomic and metabolic features of the members of the group were similar; however,
species-specific features including secondary metabolite biosynthesis-related and energy
metabolism-related genes were also identified [4,44]. Secondary metabolite biosynthesis-
related genes are enriched in B. velezensis, whereas energy metabolism-related genes are
enriched in B. amyloliquefaciens. In the core-genome, B. velezensis harbors more genes
involved in the biosynthesis of antimicrobial compounds as well as genes involved in
D-galacturonate and D-fructuronate metabolisms compared to B. amyloliquefaciens and B.
siamensis. Moreover, a xanthine oxidase gene cluster that is involved in metabolizing
xanthine and uric acid to glycine and oxalureate was found in the core-genome of all the
members of the group. Pan-genome analysis revealed the abilities of members of OGBa to
metabolize diverse carbon sources aerobically or anaerobically. Their abilities to produce
various metabolites such as lactate, ethanol, xylitol, diacetyl, acetoin, and 2,3-butanediol
were also identified [44]. In addition, genome analysis suggested that the regions of
genomic plasticity controlled the function and structure of the genome and governed
the adaptations to different niches [45]. Genome analysis also enabled the prediction of
uncharacterized gene clusters and assessed the capabilities of members of OGBa to produce
antimicrobial compounds [6].
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3. The Importance and Applications of the OGBa
3.1. Plant Growth Promoters and Biocontrol Agents in Agriculture

In the agricultural sector, the biocontrol strategy has received great attention because
it provides safe, environmentally friendly, long-lasting, and inexpensive alternatives [46].
The characterizations of the bacterial strains from the OGBa as biocontrol agents were
determined based on their abilities to improve plant growth and health [47]. These abili-
ties involve multiple mechanisms including direct (improve plant growth) and indirect
(improve plant health) mechanisms (Figure 2). Direct mechanisms involve nitrogen fix-
ation, phosphate solubilization, siderophore production and phytohormone production
(e.g., indole-3-acetic acid (IAA) and enzymes such as 1-amyclocyclopropane-1-carboxylate
(ACC) deaminase). It has been reported that the co-inoculation of B. velezensis S141 with
Bradyrhizobium diazoefficiens USDA110 into soybean resulted in enhanced nodulation and
nitrogen fixation efficiency by producing larger nodules [48]. In another related study, the
members of OGBa were able to solubilize phosphate, and produce IAA, ACC deaminase
and siderophores [49–51].

Meanwhile, the indirect mechanism is mainly due to their biocontrol activities at-
tributed to the production of antimicrobial compounds in response to biotic stress [52].
The members of OGBa produced antimicrobial compounds such as hydrogen cyanide
(HCN) and cyclic lipopeptides such as surfactin used to inhibit the growth of pathogenic
microbes [53,54]. The interactions of biocontrol agents with plant roots enhance plant
resistance against some competing microbes including pathogenic bacteria, fungi and
viruses. This phenomenon is termed as induced systemic resistance (ISR) [6,55].

Figure 2. The biological control interactions. The illustration depicts the interactions between
biocontrol agents, plant pathogens, and plants. The biocontrol agent colonized the plant root surface
and produced antimicrobial compounds such as surfactin. In the plant rhizosphere, antibiosis and
nutrient competition interaction suppressed the growth of pathogens. Due to the production of
antimicrobial compounds and in the simultaneous presence of pathogens, the induced systemic
resistance (ISR) is enhanced. Thus, this mediated the defense response of the plant towards pathogens
and consequently improved plant growth and the defense mechanism against pathogens.

The members of OGBa were proven to provide advantages to the agricultural sector
by contributing to plant pathogen disease suppression. In plant disease management, the
members of OGBa acted as plant growth-promoting bacteria (PGPB) that aid in the devel-
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opment of plants and reduce the proliferation of plant pathogens (Table 2). The secretion
of antimicrobial compounds such as surfactin from PGPB was suggested to trigger the
pathways of ISR which contributed to the suppressive effect of plant immunity [56,57].
Surfactin was determined to act as elicitors of plant immunity and enhance resistance to-
wards further pathogenesis in plants [47]. In the lettuce rhizosphere, increased production
of surfactin by B. velezensis FZB42 in the axenic system was suggested to contribute to the
disease suppression towards Rhizoctonia solani infection [53]. Similarly, the treatment using
B. velezensis FZB42 in tobacco plants was suggested improve ISR and enhance plant height
and fresh weight, while lowering the disease severity rating of the tobacco mosaic virus
(TMV) [58].

Table 2. Plant pathogen suppression by members of the operational group Bacillus amyloliquefaciens in various plant species.

PGPB Strain Disease and Pathogen Plant Species Reference

B. siamensis KCTC 13613
R. solani

Botrytis cinerea
Micrococcus luteus

Arabidopsis thaliana [59]

B. velezensis 83 Anthracnose disease Zea mays
A. thaliana [20]

B. velezensis 1B-23 Clavibacter michiganensis subsp. michiganensis Solanum lycopersicum [60]

B. velezensis B25 Fusarium verticillioides Z. mays [61]

B. velezensis BTLK6A Magnaporthe oryzae Triticum Triticum aestivum [62]
B. velezensis BTS 4

B. velezensis CC09 Powdery mildew disease T. aestivum [28]

B. velezensis CGMCC 11640 Botryosphaeria dothidea Carya cathayensis [63]

B. velezensis Co1-6

Verticillium dahliae
R. solani

Fusarium culmorum
Ralstonia solanacearum

Matricaria chamomilla [64]

B. velezensis GB1 Valsa mali Malus domestica [65]

B. velezensis GH1-13
Fusarium fujikuroi

R. solani
Xanthmonas oryzae

Oryza sativa [49]

B. velezensis GQJK49 F. solani Lycium barbarum L. [66]

B. velezensis GYL4 Anthracnose disease Cucumis sativus L. cv. Chunsim [67]

B. velezensis J-5 B. cinerea S. lycopersicum [68]

B. velezensis JK M. oryzae O. sativa [69]

B. velezensis L-1 Botryosphaeria berengeriana Pyrus communis [70]

B. velezensis LM2303 Fusarium graminearum T. aestivum [71]

B. velezensis M27 Sclerotinia sclerotiorum Lactuca sativa L. [72]

B. velezensis NJAU-Z9 Fusarium oxysporum f. sp. niveum
Ralstonia solanacearum Capsicum annuum L. [73]

B. velezensis NJN-6 F. oxysporum f. sp. cubense Musa sp. [74]

B. velezensis OEE1 F. solani Olea europaea L. [75]

B. velezensis P42 Bacterial wilt and early blight diseases S. lycopersicum [76]

B. velezensis PG12 Apple ring rot disease Malus domestica [24]

B. velezensis TrigoCor1448 Fusarium head blight disease T. aestivum [77]

B. velezensis UCMB5113

Alternaria brassicae
B. cinerea

Leptosphaeria maculans
Verticillium longisporum

Brassica napus [78]

B. velezensis XK-4-1 Verticillium wilt disease Gossypium sp. [79]

B. velezensis ZF2 Corynespora leaf spot diseases C. sativus [80]
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Bacterial species from the OGBa are used in bioformulations. For instance, the bac-
terial strain B. velezensis FZB42 had been established as a model strain for plant growth
promotion and as a biocontrol agent [55]. In 2019, tomato seeds coated with gum arabic as
adhesive along with liquid bioformulations containing B. velezensis FZB42 showed great
inhibitory effects against Fusarium solani infections under in vitro conditions. Increments
in germination percentage and germination rate as compared with the control were also
reported [81].

To date, there are a few bioformulations containing bacterial species from the OGBa
available on the market (Table 3), such as SERENADE® (Bayer Crop Science, Germany)
which contains B. velezensis QST 713 (previously B. subtilis QST 713) and Double Nickel
55TM (Certis Columbia, MD USA) which contains B. velezensis D747 (previously B. amy-
loliquefaciens D747) [55]. The application of SERENADE® together with Fracture fungicide
(CEV, Portugal), which contains BLAD polypeptide, had shown notable success in control-
ling Botrytis blossom blight disease infection in blueberries [82]. Application of Double
Nickel 55TM was found to be effective in controlling white mold in snap beans caused
by Sclerotinia sclerotiorum. Double Nickel 55TM, a biofungicide, was approved for organic
vegetable production by the National Organic Program and Organic Materials Review
Institute [83].

Table 3. Some commercial products containing the members of the operational group Bacillus amyloliquefaciens available on
the market.

Bacterial Strain Commercial Product Company Description

B. velezensis QST 713
(previously B. subtilis QST 713)

SERENADE Max Bayer Crop Science, previously
AgraQuest

EPA-registered biofungicide. Controls and
suppresses fungal pathogens on foliage

and in the soil

SERENADE SOIL® Bayer Crop Science, previously
AgraQuest EPA-registered biofungicide for food crops

CEASE® BioWorks, Inc., Victor, New York,
U.S.A.

Aqueous suspension biofungicide for leafy
and fruiting vegetables, herbs and spices,

and ornamentals

B. velezensis FZB42
(previously B. amyloliquefaciens

FZB42)

RhizoVital® 42 ABiTEP GmbH, Berlin, Germany
Biofertilizer, plant-growth-promoting
activity, provides protection against

various soil-borne diseases

FZB24® TB ABiTEP GmbH, Berlin, Ger-many Plant growth-promoting agent for plant
strengthening

Taegro®
Syngenta, Basel, previously

Novozyme, Davis, California, and
Earth Biosciences

EPA-registered biofungicide for use in
North America

B. velezensis GB03
(previously B. subtilis GB03)

Kodiak™ Bayer Crop Science, North
Carolina, NC

EPA-registered biological seed treatment
fungicide with demonstrable PGR activity.
Efficient in cotton, beans, and vegetables

Companion Growth Products Ltd., White
Plains, NY

EPA-registered biofungicide that prevents
and controls plant diseases

B. velezensis D747
(previously B. amyloliquefaciens

D747)

Double Nickel 55™ Certis Columbia, MD, U.S.A. EPA-registered biofungicide for control or
suppression of fungal and bacterial plant

Amylo-X® Certis Columbia, MD
USA/Intrachem Bio Italia SpA

Biocontrol of Botrytis and other fungal
diseases of grapes, strawberries, and

vegetables, and bacterial diseases, such as
fire blight in pome fruit and PSA in

kiwi fruit

Apart from the aforementioned uses, the members of OGBa have also been applied as
biocontrol agents against parasitic nematodes and protist pathogens. In 2008, B. velezensis
FZB42 was reported to reduce nematode eggs in roots, juvenile worms in soil and plant
galls on tomato [84]. Genomic study revealed that the whole genome of B. velezensis FZB42
encoded a diverse spectrum of different antimicrobial compounds able to suppress harmful
nematodes living within the plant rhizosphere [85]. In controlling the protist pathogen,
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B. velezensis HB-26 (previously B. amyloliquefaciens HB-26) showed promising capability
for controlling Plasmodiophora brassicae, a root-infecting protist that causes clubroot disease
in brassica species. Many antimicrobial compounds showing specific activities against P.
brassicae were found in the genome of B. velezensis HB-26 [86]. Overall, much more focus is
still needed to fulfill the understanding of the molecular basis for the ability of members of
OGBa to inhibit nematodes and protists beyond in silico genomic studies. Understanding
such attributes will help to shed light on the functionalities as well as the biological roles of
antimicrobial compounds from OGBa not only for improved plant growth but as biocontrol
agents to minimize the proliferation of plant pathogens including viruses, bacteria, fungus,
nematodes, and protists.

3.2. Source of Commercial Enzymes

Microbial enzymes such as α-amylase, protease, and lipase have been used in various
biotechnological applications including textile applications, feed industry, food industry,
and organic synthesis [87–89]. The U.S. Food and Drug Administration (FDA) in 1999
reported that enzymes such as α-amylase and protease originating from B. subtilis are
Generally Recognized as Safe (GRAS) for use as direct food ingredients [90]. As members
of the B. subtilis species complex, OGBa bacteria are a potent bacterial group due to
their abilities to produce various types of enzymes including α-amylase, protease, lipase,
cellulase, xylanase, pectinase, aminotransferase, barnase, peroxidase, and laccase (Table 4).

Table 4. Various types of enzymes produced by members of the operational group Bacillus amyloliq-
uefaciens.

Bacterial Species Enzymes Reference

B. amyloliquefaciens KCP2 α-amylase and protease [91]
B. amyloliquefaciens NRRL 942 α-amylase [92]

B. siamensis JJC33M α-amylase [93]
B. velezensis 157 α-amylase, cellulase, xylanase and pectinase [94]
B. velezensis 275 Cellulase, xylanase, peroxidase, and laccase [95]

B. velezensis AP194 Pectinase [96]
B. velezensis AP214 Pectinase [96]
B. velezensis GZB Laccase [97]

B. velezensis JJ-D34 α-amylase, protease and cellulase [98]
B. velezensis Jxnuwx-1 Protease [99]

B. velezensis SB1216 Barnase [100]
B. velezensis SPZ1 Lipase [101]

B. velezensis SYBC H47 Aminotransferase [102]
B. velezensis ZL918 α-amylase [103]

3.3. Antimicrobial Compounds Producer

The increment in the global antibiotic-resistant pathogens has led to the exploration
of compounds with alternative therapeutic strategies [104]. The members of OGBa were
reported to produce antimicrobial compounds used in the suppression of pathogens [45].
The antimicrobial compounds produced by the member of OGBa have been reviewed
previously [8,105]. The members of OGBa produced some important antimicrobial com-
pounds (Figure 3), including non-ribosomal peptides (surfactin, fengycin, bacillomycin-D,
bacilysin and bacillibactin) and polyketides (bacillaene, macrolactin and difficidin) [6,105].
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Figure 3. Antimicrobial compounds produced by members of the operational group Bacillus amyloliq-
uefaciens.

Non-ribosomal peptides produced by bacteria and fungi contain two or more moieties
derived from amino acids [106]. The mode of action of non-ribosomal peptides involves the
disruption to the cell membrane and inhibition on the transfer of peptidoglycan precursors
to bactoprenol pyrophosphate [107]. In 2019, surfactins from B. velezensis 9D-6 were found
to inhibit the in vitro growth of bacteria (B. cereus, C. michiganensis, Pantoea agglomerans,
Ralstonia solanacearum, Xanthomonas campestris and Xanthomonas euvesicatoria) and fungi
(Alternaria solani, Cochliobolus carbonum, F. oxysporum, F. solani, Gibberella pulicaris, Gibberella
zeae, Monilinia fructicola, Pyrenochaeta terrestris and R. solani) pathogens [108]. In another
related study, in silico genomic study of B. siamensis JFL15 had gene clusters involved in the
biosynthesis of antimicrobial compounds. The LC–MS/MS analysis confirmed the presence
of iturin A and bacillomycin F. Both compounds showed strong antifungal activities against
Magnapothe grisea, R. solani and Colletotrichum gloeosporioides, as analyzed under in vitro
conditions [109]. Moreover, the presence of fengycin, bacilysin, and bacillibactin had also
been reported from B. velezensis OSY-S3 that showed inhibition activities against Listeria
innocua, Escherichia coli, Penicillium sp., Cladosporium sp., and Staphylococcus aureus [110].

Polyketides are biopolymers of acetate and other short carboxylates that are biosyn-
thesized by polyketide synthases, a natural metabolite produced by microorganisms and
plants which possess various antifungal and antibacterial activities [111,112]. Since the
discovery of polyketides (e.g., streptomycin in 1950), the exploration of new polyketides
has assisted pharmaceutical companies in isolating new antibiotic-producing strains as the
main sources of antibiotics [113]. Antibacterial polyketides including bacillaene, macro-
lactin and difficidin were reported from B. velezensis OSY-GA1 [109]. Moreover, B. velezensis
YJ11-1-4 isolated from doenjang exhibited good antimicrobial activities against bacterial
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(B. cereus, E. coli, Listeria monocytogenes and S. aureus) and fungal (Aspergillus flavus subsp.
flavus) foodborne pathogens. Genomic analysis reveals the presence of antibiotic biosynthe-
sis operons including bacillaene, macrolactin and difficidin in the genome of B. velezensis
OSY-GA1 [114]. Additionally, four new glycosylated macrolactin compounds, namely
macrolactins O, P, Q and R, had been isolated from the liquid cultures of B. velezensis
AH159-1. These compounds inhibited S. aureus peptide deformylase and also showed
antibacterial activities against E. coli and S. aureus [115].

3.4. Potential as Probiotics

Probiotics are live microbial feed supplements that benefit the host animal by improv-
ing the microbial balance. Probiotics have become increasingly popular due to continuously
expanding scientific evidence pointing to their beneficial effects on both humans and ani-
mals [116]. Within the OGBa, some B. velezensis strains are reported to display probiotic
potential and have been applied as probiotics for animals [117]. For instance, B. velezensis
H57 (previously B. amyloliquefaciens H57) isolated from lucerne was first investigated in the
research to prevent fungal spoilage of hay [118]. Because it is an endospore-forming bac-
terium able to produce antimicrobial compounds, B. velezensis H57 was commercialized as
a spoilage control agent under the product name HayRite™ (Biocare and BASF, Australia).
Interestingly, sheep and cattle fed on HayRite™ showed improvements in digestibility and
nitrogen retention leading to increased weight gain [118]. Genomically, the potential of B.
velezensis H57 to synthesize antimicrobial compounds including surfactin (srfABCD), iturin
(ituABCD), bacillomycin D (bmyABC), fengycin (fenABCDE), macrolactin (mlnABCDEFGHI),
difficidin (dfnABCDEFGHIJ) and bacillaene (baeEDLMNJRS) were suggested to facilitate
the probiotic effects of B. velezensis H57 [27]. In another related study, B. velezensis FTC01
manifested itself as a probiotic [119]. Genes coding for hydrolases (peptidases, phytases
and glycosidases) that can improve feed digestion and prevent intestinal disorders are
present in the genome of B. velezensis FTC01. Additionally, peptidylprolyl isomerase (prsA)
gene (a gene that is involved in bacterial adhesion and signaling of biofilm formation in the
host gut) was also found. Moreover, in silico genome analysis of B. velezensis FTC01 proved
the presence of gene clusters involved in the synthesis of antimicrobial peptides. Similarly,
gene clusters involved in the synthesis of antimicrobial peptides were also found in the
genome of B. velezensis JT3-1, a probiotic strain isolated from faeces of the domestic yak [21].
The antimicrobial activity of B. velezensis JT3-1 was confirmed using an antimicrobial assay.
Strain JT3-1 manifested strong antagonistic activities against various intestinal pathogenic
flora including L. monocytogenes, S. aureus, E. coli, Salmonella typhimurium, Mannheimia
haemolytica, Staphylococcus hominis, Clostridium perfringens and Mycoplasma bovis.

B. velezensis B-1895 (previously B. amyloliquefaciens B-1895) has been commercially
used as a probiotic in the fish industry, particularly for Alburnus leobergi [120,121]. Its
probiotic potential was proven thought the Ames test (reported as non-mutagenic) and
antimicrobial activities (against Streptococcus intermedius and Porphyromonas gingivalis).
Moreover, the endospores of B. velezensis B-1895 were found tolerant to 0.3% (w/v) bile salts
and survived incubation for 4 h in MRS broth at pH 2.0–3.0. Overall, the results suggested
the potential of B. velezensis B-1895 as a fish probiotic [122]. In another related study, B.
velezensis JW also manifested itself as a fish probiotic [123]. Strain JW showed antibacterial
activities against a broad range of bacterial fish pathogens (Aeromonas hydrophila, Aeromonas
salmonicida, Lactococcus garvieae, Streptococcus agalactiae and Vibrio parahemolyticus). Dietary
administration of B. velezensis JW induced an immune response in Carassius auratus. The
immune-related genes in C. auratus such as interferon gamma gene (IFN- γ), tumor necrosis
factor-α (TNF-α), interleukin-1 (IL-1), interleukin-4 (IL-4) and interleukin-10 (IL-10) were
found to be upregulated by B. velezensis JW-supplemented diets. It is noteworthy that C.
auratus fed with B. velezensis JW-supplemented diets showed improvements in survival
rate after A. hydrophila infection. This was supported genomically by the presence of
antimicrobial gene clusters in the genome of B. velezensis JW [122]. Moreover, a potential
probiotic effect of B. velezensis V4 on the growth performance of Oncorhynchus mykiss
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had also been investigated [124]. Cell-free supernatant of B. velezensis V4 with anti-A.
salmonicida was shown to contain antimicrobial compounds including iturin, macrolactin
and difficidin. The mortality rate of O. mykiss was reduced by 27% and the weight gain
ratio was increased by 71% through the 1% (v/w) addition of B. velezensis V4. Overall, the
findings demonstrated that B. velezensis V4 was an effective probiotic in O. mykiss.

The commercialization of B. amyloliquefaciens as a probiotic in aquaculture is not as
common compared to its agricultural applications (Table 3). Ecobiol® Soluble Plus, is
one of the commercial probiotic products reported as containing B. amyloliquefaciens at a
concentration of 109 CFU/g, specifically formulated for applications in poultry and swine,
as well as in aquaculture. There was research conducted on the commercial probiotic
Ecobiol® Soluble to observe its positive effects on the biofloc culture of Litopenaeus vannamei
and its benefits on water quality, growth performance and the immune system of shrimps.
Three doses of probiotic (9.48 × 104, 1.90 × 105 and 3.79 × 105 CFU/g) were applied to the
culture water for 42 days. At the end of the trial, there was no significant improvement
in the water quality. However, it showed notable changes in the immune system of the
shrimp. As compared to the control treatment, there was an increase in the total protein
concentration and granular hemocytes, and a decrease in the cell number with apoptosis
in the hemolymph in all treatments. Therefore, other than being mixed with feed, B.
amyloliquefaciens in the commercial probiotic Ecobiol® Soluble Plus could also be applied
directly to the culture system; this research proved it provided better resistance to shrimps
against the outbreak of pathogens in shrimp biofloc systems [125].

There is much ongoing research on the development and formulations of bacterial
strains belonging to the OGBa as potential probiotics for commercialization purposes in the
aquaculture industry. Most of the studies have emphasized probiotic feed formulations,
feeding trials on a small scale before moving to field trials. For instance, dietary inclusion
of B. amyloliquefaciens at 106 CFU/g fed to zebra fish improved the expression levels of
metabolism-related genes, enzyme activities and oxidative stress-related genes in the fish
liver as well as enhanced their immune resistance against pathogenic A. hydrophila and
S. agalactiae. In addition, the strain of B. amyloliquefaciens used in this study was able to
express recombinant xylanase, an important enzyme that aided in better feed digestibility
and efficiency [126]. In another related study, the administration of B. amyloliquefaciens
(1 × 109 CFU/g), together with Spirulina platensis in formulated diet for tilapia, improved
growth performance and feed utilization after a 60 day feeding trial. The mRNA level of
the TNF-α gene and the transcription of SOD were considerably higher in tilapia fed with
dietary B. amyloliquefaciens and S. platensis compared to the control group [127]. Moreover,
B. amyloliquefaciens at a concentration of 106 CFU/mL provided significant protection to
juvenile blue swimming crabs, Portunus pelagicus, when challenged with Vibrio harveyi
in in vivo trials [128]. Nevertheless, further studies are necessary, mainly on probiotic
formulation along with larger field trials, to strengthen the outcomes in order to be able to
commercialize bacterial strains belonging to the OGBa for aquaculture use.

In vivo and field trials are critical in probiotic development. Occasionally, there were
negative outcomes in in vivo studies which were carried out based upon the positive
results acquired from the preliminary in vitro assays, which indicated the possibility of
negative correlations between trials in vitro and in vivo. Hence, it is crucial to understand
and to optimize various conditions in in vivo studies or field trials including the probiotic
formulation which may affect the survival, colonization, proliferation, and interaction of
the probiotic with the host in a certain environment [129].

3.5. Potential as Bioremediation Agents

The use of microorganisms as bioremediation agents has become a burgeoning
trend [130]. To date, most research focused on the plant growth-promoting activity and
antimicrobial compounds of OGBa is as described above. Interestingly, in 2019, B. amy-
loliquefaciens YP6 was reported to exhibit both plant growth-promoting activity and broad-
spectrum organophosphorus pesticide (OP) removal [131]. In silico genome analysis of B.
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amyloliquefaciens YP6 found it to contain a variety of promising genes, including phospho-
rus solubilizing and OP-degrading related genes (phoD, phoA, phrC, phoE, ycsE, bcrC and
yvaK), indole-3-acetic acid synthesis related genes (amhX, cgeE and epsM), and siderophores
synthesis related genes (entB, menF, entC and entA). The results hinted at the potential appli-
cation of B. amyloliquefaciens YP6 in agricultural and environmental remediations. Overall,
much more focus is still needed to understand the OP-degrading related genes beyond in
silico genome analysis. Therefore, it is necessary to conduct further studies to determine
the in vitro functional genomics and the OP-degrading enzyme activities of the members
of OGBa. Understanding such attributes will help to shed light on the applicability of the
OGBa in OPs degradation and in the bioremediation processes as a whole.

4. Concluding Remark and Future Perspectives

In conclusion, the progress of the research on the biotechnological applications of
bacterial species that belong to OGBa is remarkable. The bacteria are important not only
industrially, but also environmentally. A plethora of studies have addressed the abilities
of the members of OGBa as plant growth-promoters, biocontrol agents, probiotics, biore-
mediation agents as well as producers of commercial enzymes and antibiotics. Moreover,
the use of the bacteria in optimized bioformulations as well as the demonstration of the
great success of the commercialized products give us hope towards more sustainable
agricultural and aquacultural industries. Owing to the listed biotechnological applications
and potentials, more research should be done focusing on the integration of system biology
data derived from genomics, phenomics, proteomics, metabolomics and fluxomic analyses
in order to expand our basic understanding on the versatility of the members of OGBa.
Enabling the prediction of cellular functions and metabolites produced by the members of
this operational group could provide fundamental knowledge towards the enhancement of
the applications of their potentials in biotechnology and bioprocessing for the benefit of all.
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