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Abstract

Imaging systems are often modeled as continuous-to-discrete mappings that map the object (i.e. a 

function of continuous variables such as space, time, energy, wavelength, etc) to a finite set of 

measurements. When it comes to reconstruction, some discretized version of the object is almost 

always assumed, leading to a discrete-to-discrete representation of the imaging system. In this 

paper, we discuss a method for single-photon emission computed tomography (SPECT) imaging 

that avoids discrete representations of the object or the imaging system, thus allowing 

reconstruction on an arbitrarily fine set of points.
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1. Introduction

Mathematical tomography centers around integral transforms in which both the object and 

the image are treated as functions of continuous variables; we refer to an integral transform 

as a continuous-to-continuous (CC) operator.

The ubiquitous practice of representing real-life objects (such as organs, bones, tissues, etc 

in the case of medical imaging) with a finite set of intensities over a 2D or 3D grid of pixels 

or voxels often leads to inaccuracies when the object itself presents many features that 

cannot be represented using a grid of pixels or voxels. Similarly, sets of discrete data (such 

as projection images in the case of emission tomography) are typically used as the starting 

point to perform reconstruction. These discretizations of the object and the data produced by 
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the imaging system are almost always assumed, leading to matrix representations or 

discrete-to-discrete (DD) operators.

In this paper, we discuss our approach to approximating CC operators for real single-photon 

emission computed tomography (SPECT) imaging systems in which we use measured 

calibration data from real detectors and real multi-pinhole imaging systems, thus potentially 

avoiding discrete representations of the object or the raw data. We use photon-processing 

detectors to collect data with no binning involved, and show how such data sets can be 

reconstructed using iterative maximum-likelihood (ML) estimation algorithms. Our 

approach does not introduce any error due to discretization of the measurement, and it 

allows reconstructions over an arbitrary sets of points, not necessarily arranged as a 3D 

uniform grid of voxels.

Prior art in list-mode reconstruction can be found in the work by Levkovitz et al (2001). In 

it, the authors derive an algorithm for direct reconstruction of list-mode data for positron 

emission tomography (PET) by starting from an expression of the maximum-likelihood 

expectation maximization algorithm for binned data, and then they consider the limit of no 

more than one count per bin. An alternative formulation, also for PET imaging, is provided 

in Parra and Barrett (1998). Similar to Barrett et al (1997) and Parra and Barrett (1998), our 

algorithm assumes that the list-mode data are positions of interaction as estimated (Moore et 
al 2007) from data collected with the gamma-ray cameras in the SPECT scanner. These 

estimates are allowed to vary over a continuous domain, and probability density functions 

are evaluated on-the-fly for each item of the list.

This paper is organized as follows. Section 2 presents the mathematical notation used in this 

paper; section 3 discusses photon-processing detectors and introduces a point process we use 

to mathematically represent list-mode data. In section 4 we discuss the CC imaging operator 

as a mapping from the object space to data space. This treatment allows us to derive an 

explicit expression for the kernel of this CC operator. In section 5 we present our 

reconstruction approach, which is based on the list-mode maximum-likelihood expectation-

maximization (MLEM) algorithm. In section 6 we discuss reconstruction results with real 

data. Future work and conclusions are provided in sections 7 and 8, respectively.

This paper is an extended version of the conference proceeding (Caucci et al 2015a) 

presented by the authors at the 13th International Meeting on Fully Three-Dimensional 
Image Reconstruction in Radiology and Nuclear Medicine (‘Fully 3D 2015’) held in 

Newport, Rhode Island, USA.

2. Mathematical formulation

In the absence of detector noise, imaging systems are often modeled as linear continuous-to-

discrete (CD) operators ℋ that map the object function f (r) to a set of numbers g. In abstract 

form, this mapping is written as (Barrett and Myers 2004):

g = ℋf, (1)
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in which f corresponds to the object function f (r) and belongs to the Hilbert space of square-

integrable functions of the variable r. In our treatment, we will consider object functions f 
(r) that depend only on the 3D continuous variable r; more general cases of object functions 

depending on other variables are possible. We will further restrict our attention to SPECT 

imaging, and will assume that f (r) Δr Δt is the mean number of gamma-ray photons emitted 

isotropically from a small volume Δr (centered around point r) and during time interval Δt. 
Hence, the units of f (r) are photons/(s · m3). Finally and unless otherwise stated, we will 

ignore changes in nuclear activity due to radioactive decay.

If we assume that g is a vector with M components denoted as g1, …, gM, then the expression 

in (1) can be written in component form as

gm = ∫
S

ℎm(r)f(r)d3r, (2)

in which ∫S … denotes integration over the support S of the object f (r), and the function 

hm(r) represents the system response at point r in the object and for the mth element of g.

In the development of reconstruction algorithms, it is customary to characterize the imaging 

system with a system matrix H, so that a discrete representation f of the object function f (r) 

can be related to the noise-free data g according to the following equation (Barrett and 

Myers 2004):

g = Hf . (3)

In the expression above, f is a vector with N components f1, …, fN and H is an M × N matrix 

with components hm,n. In component form, the expression in (3) becomes

gm = ∑
n = 1

N
ℎm, nfn . (4)

Because both f and g are vectors of finite size, this representation is often referred to as 

discrete-to-discrete (DD) representation (Barrett and Myers 2004).

One can relate the function f (r) to the discrete vector f, and the kernel hm(r) of ℋ to the 

elements hm,n of the matrix H by first assuming that there exist functions ϕ1(r), …, ϕN(r) so 

that

f(r) = ∑
n = 1

N
fnϕn(r), (5)

in which f1, …, fN are real numbers. Upon substitution, we obtain:

gm = ∫
S

ℎm(r)f(r)d3r (6)
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= ∑
n = 1

N ∫
S

ℎm(r)ϕn(r)d3r fn, (7)

which shows

ℎm, n = ∫
S

ℎm(r)ϕn(r)d3r . (8)

If functions ϕ1(r), …, ϕN(r) are orthonormal, the numbers f1, …, fN are calculated from f (r) 

according to

fn = ∫
S

f(r)ϕn(r)d3r . (9)

It is worth noting that the condition in (5) is very restrictive. Real-world objects are often 

complicated and cannot, in general, be described as a finite sum as in (5). Hence, the 

formalism of (3) is fundamentally flawed and the usual way to circumvent this fallacy is to 

consider approximated versions of many of the expressions above.

In this work, we use a more accurate representation of the imaging system, which avoids 

introducing approximations. Mathematically, we consider a mapping ℒ between the object f 

and a new function u(A):

u = ℒf, (10)

in which u belongs to a Hilbert space and corresponds to the function u(A) of the continuous 

variable A (to be discussed below). Because variable A is allowed to take on continuous 

values, the mapping above, characterized by the operator ℒ, is a continuous-to-continuous 

(CC) mapping.

3. Photon-processing detectors

The CC systems discussed here do not collect data as sets of pixel counts. Instead, they 

make use of photon-processing detectors (Caucci et al 2013, Jha et al 2015, Ding et al 
2017a, Caucci et al 2018) to collect data. We define a photon-processing detector as any 

detector that (Caucci et al 2015b):

• uses a gain mechanism and multiple sensors to obtain multiple measurements for 

a single absorbed photon;

• collects data from all sensors that respond to each event at full precision;

• uses the sensor data and maximum-likelihood estimation to estimate a vector of 

parameters (or ‘attributes’);

• stores all ML estimates of attributes in a list, at full precision.

For example, in the case of SPECT imaging with Anger cameras (Anger 1958, Peterson and 

Furenlid 2011), a photon-processing detector utilizes all available photomultiplier tube 
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(PMT) signals that have been properly sampled and converted to digital numbers to estimate 

attributes (such as 2D or 3D position within the camera’s crystal, photon energy, and so on) 

of gamma-ray photons interacting with the camera. These maximum-likelihood estimates 

are not restricted to belong to finite sets of values (as in the case of DD systems), but they 

can take on any—potentially continuous—value.

The vector of attributes for the jth detected photon is denoted as Aj, for j = 1, …, J, where J 

is the total number of photon detected during some time interval of length T. Vector Aj is a 

vector with K components, and it can consist of any attribute we can estimate from the 

detector outputs, such as the 2D or 3D position of interaction of the photon with the crystal, 

the energy deposited by the photon in the crystal, the time of arrival of the photon and the 

direction of propagation. We use the ‘hat’ symbol to mean that Aj is calculated by means of 

an estimation algorithm (such as an ML estimation algorithm (Dempster et al 1977)) from 

noisy detector outputs. The noise in the detector outputs is random, which makes Aj a 

random quantity as well.

The list of attributes A = A1, …, AJ  can mathematically be represented as a random point 

process (Lehovich 2005, Caucci and Barrett 2012, Caucci 2012, Jha 2013) u:

u(A) = ∑
j = 1

J
δ A − Aj , (11)

where δ(…) is a K-dimensional Dirac delta function. Any imaging system that stores the list 

of attribute vectors A = A1, …, AJ  (as opposed to pixel counts g1, …, gM) is said to be 

storing the data in list-mode format. A schematic representation of a SPECT photon-

processing imaging system is shown in figure 1.

The formalism we defined here is not restricted to SPECT imaging with Anger cameras. In 

fact, applications of photon-processing detectors to imaging with charged particles (such as 

electrons or alpha and beta particles) as well as imaging in the visible range have recently 

appeared in the literature (Ding et al 2014a, 2014b, Barrett et al 2017, 2017a, 2017b, Ding et 
al 2017a, 2017b).

4. The imaging operator ℒ

Though both ℋ and ℒ operators are linear and operate on the same object, the CC operator 

ℒ is fundamentally different from the CD operator ℋ. A CD operator necessarily has an 

infinite-dimensional null space (Barrett and Myers 2004); the system maps a vector in an 

infinite-dimensional Hilbert space to a finite set of numbers, so there is an infinite set of 

vectors f null that yield no data at all: ℋfnull = 0. Because real objects almost always have 

null components for any CD system, the object itself cannot be recovered from the discrete 

data, and even simple linear functionals such as integrals of the object over voxels cannot be 

estimated.
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On the other hand, a CC operator such as ℒ may have a null space, but for the setup of 

section 3 and if K ⩾ 3, the null space is not demanded by dimensionality considerations. 

Thus, it is possible that some—conceivably all—of the estimability problems inherent in the 

world of conventional digital imaging may disappear (Ding et al 2017b). Notice that 

replacing the operator ℋ with ℒ does not, in general, ensure that an inverse problem that 

was ill-posed (Natterer 1986, Bertero and Boccacci 1998) in the CD case becomes well-

posed when a CC operator is used. As an example, although the Radon transform maps a 

continuous function to another continuous function, the problem its inverse solves is ill-

posed.

To derive an explicit expression for the kernel of the CC operator ℒ, we begin by 

considering the probability density function for attribute vector A for a given object f; we 

will denote such a quantity as pr(A |f), in which the vertical line ‘\vert’ denotes conditioning 

with respect to a known quantity. In principle, one could use the Boltzmann transport 

equation to relate the source distribution f to the spectral photon radiance (Barrett and Myers 

2004) at the detector’s face, and then express pr(A |f) as a blurred version of the properly 

scaled and marginalized spectral photon radiance (Caucci et al 2015b), with the blurring 

accounting for the inaccuracies in estimating A from the sensor data. In our treatment, 

however, we follow a derivation that explicitly takes into account the construction of the 

random point process u in (11) from list-mode data A. By the properties of conditional 

probability, we have (Caucci and Barrett 2012):

pr(A |f) = ∫
S

pr(A |r) pr(r |f)d3r, (12)

in which pr(A |r, c) is the probability density function for measuring A under the assumption 

that a gamma-ray photon was emitted from point r ∈ S. The probability density function pr(r 
| f) is given by

pr(r |f) = s(r)f(r)
∫Ss r′ f r′ d3r′

, (13)

in which s(r) is the system’s sensitivity function, which is defined here as the probability for 

a photon emitted at point r to produce any signal. In other words:

s(r) = ∫
∞

pr(A|r)dKA . (14)

Notice that pr(r | f) as defined above does not describe the probability density function for 

the emission point for an object f. In fact, pr(r | f) is the probability density function for an 

emission from point r and an object f to produce a signal in the detector. A photon emitted 

from point r can just be blocked by the pinhole or, if it does not, it can go through the 

scintillator in the camera and produce no signal. The probability density function pr(r | f) as 

defined in (13) not only takes into account the distribution of the emission points (defined by 

f) but also the probability of the emitted gamma-ray photon to produce a signal (defined by 

the system’s geometry).
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In principle, s(r) can be calculated (either analytically or using numerical methods, such as 

Monte Carlo estimation (Fishman 1996)), at any point from knowledge of the system 

geometry, or it can be estimated by moving a point-like source across the system’s field of 

view and then by taking s(r) = αJr in which Jr is the number of attribute vectors collected 

during a sufficiently long time interval and when the point-like source was located at point r, 

and α is a constant that makes s(r) the probability for a photon emitted at point r to produce 

any signal.

The probability density function pr(A |r) can be further rewritten to explicitly take into 

account estimation of A from noisy signals (e.g. discretized PMT outputs produced by the 

camera in the case of SPECT) and propagation of light from point r ∈ S to the camera’s 

entrance face:

pr(A |r) = ∫
∞

pr(A |A) pr(A|r)dKA . (15)

In the expression above, A denotes a noise-free event (i.e. what we would obtain in the case 

of an ideal, noise-free detector) and pr(A |A) characterizes the properties of the detector. It 

can be shown (Abbey et al 1998, Caucci et al 2010) that if A is a maximum-likelihood 

estimate of A (as it was assumed in figure 1), then, under fairly general conditions, A
asymptotically (i.e. as the number of photo-electrons in the PMTs gets larger and larger) 

follows Gaussian statistics with mean A and covariance matrix given by the inverse of the 

Fisher information matrix (Van Trees 1968, Mardia et al 1979) at A.

For any given object f, the average u of u defined in (11) is

u(A) = ∑
J = 0

∞
Pr(J |f, T )∫

∞
⋯∫

∞
J integrals

∑
j = 1

J
δ A − Aj

× ∏
j = 1

J
pr Aj |f dKA1…dKAJ

= ∑
J = 0

∞
J Pr(J |f, T )∫

∞
δ A − A′ pr A′ |f dKA′

= J(f, T ) pr(A|f),

(16)

in which Pr(J | f, T) is the probability of measuring exactly J attribute vectors while imaging 

the object f for time T, and J(f, T ) is the average of J under the same circumstances. It turns 

out (Lehovich 2005, Caucci and Barrett 2012):

J(f, T ) = T∫
S

s r′ f r′ d3r′ . (17)

Upon substitution in the last expression in (16), we obtain

u(A) = T∫
S

pr(A |r)s(r)f(r)d3r, (18)

Caucci et al. Page 7

Phys Med Biol. Author manuscript; available in PMC 2020 February 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



which shows that the kernel of ℒ is:

[ℒ](A, r) = T pr(A |r)s(r) . (19)

5. Reconstruction with FastSPECT II

5.1. System description

The imaging system we used for our study, called FastSPECT II, was developed at the 

Center for Gamma-Ray Imaging, University of Arizona. FastSPECT II is a small-animal 

SPECT imager built with modular scintillation cameras (Milster 1987, Milster et al 1990) 

and list-mode data-acquisition electronics. The modular gamma-ray scintillation camera 

designed for FastSPECT II comprises a 5 mm thick NaI(Tl) scintillation crystal, a 15 mm 

thick quartz light guide, and a 3 × 3 array of 1.5 inch diameter end-on photomultiplier tubes. 

Each camera has an input face measuring about 120 × 120 mm2 (Furenlid et al 2004, Chen 

2006).

Each entry in the data list collected by a gamma-ray camera corresponds to a detected 

scintillation event and consists of a camera identifier, the nine signal values present in the 3 

× 3 array of photomultipliers, and a time stamp. The cameras are stationary and arranged as 

two rings of eight on opposite sides of a pair of central plates (Furenlid et al 2004, Chen 

2006). As shown in figure 2, FastSPECT II attains good sensitivity over a large volume—

about 57 cm3—well suited for small-animal imaging. As reported in Chen (2006), the 

sensitivity of FastSPECT II at the center of the FOV is about 267 counts per second (cps) 

per each million gamma rays emitted per second. Hence, s(rcenter) ≈ 2.67 · 10−4.

5.2. Estimation of photon attributes

We used PMT signals p1, …, pI (I = 9 for FastSPECT II) from each camera to perform ML 

estimation of photon attributes. The estimated attributes consisted of the 2D position of 

interaction between a gamma-ray photon and the camera’s entrance face. Hence, A = (X, Y ). 
This ML estimate is defined as

A = arg max
A

Pr p1, …, pI |A , (20)

in which Pr(p1, …, pI | A) is the probability of measuring PMT signals p1, …, pI when a 

gamma-ray interaction occurs at point A = (X, Y) and the ‘arg maxA’ notation in (20) 

denotes the value of A that maximizes Pr(p1, …, pI | A). The quantity L(A; p1, …, pI) = 

Pr(p1, …, pI | A), in which p1, …, pI are assumed fixed is called ‘likelihood’ (Barrett and 

Myers 2004). Its logarithm, l A; p1, …, pI = log L A; p1, …, pI , is often referred to as ‘log-

likelihood’.

Calculating the probability Pr(p1, …, pI | A) for a given A requires knowledge of the forward 

model and its statistical properties. A calibration procedure is often used to obtain 

information about the statistics of p1, …, pI for points A on a regular grid (Peterson and 

Furenlid 2011, Chen 2006). Other approaches, including Monte Carlo estimation, have been 
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considered (Hunter et al 2013). We will assume that p1, …, pI conditioned on A are 

independent and follow Poisson statistics (Hunter 2007, Barrett et al 2009, Hunter et al 
2009); under such hypotheses, we have:

Pr p1, …, pI |A = ∏
i = 1

I
Pr pi |A (21)

= ∏
i = 1

I pi(A) pi

pi!
e−pi(A), (22)

in which pi(A) is often called mean detector response function (MDRF). For any i = 1, …, I, 

the MDRF pi(A) is the mean of pi under the assumption that a gamma-ray interaction has 

occurred at point A. Although pi(A) is usually estimated or measured for a finite set of points 

(typically arranged in a uniform pattern), in practice it is a smooth function of A and it is 

therefore possible to interpolate these samples so that pi(A) can be evaluated for any A.

After an ML estimate A is calculated as in (20), the likelihood L A; p1, …, pI  is compared to 

a threshold L0(A). If L A; p1, …, pI < L0(A), then estimate A is discarded. This technique, 

originally introduced in Milster et al (1990), is called ‘likelihood thresholding’ and it is used 

to ignore estimates A that poorly match the statistical model of (21). This is often due to 

scattering of gamma-ray photons and subsequent loss of photon energy (Chen 1997). 

Calculation of the position-dependent likelihood threshold L0(A) has been detailed in Chen 

(2006). Briefly, for any fixed A0, raw PMT data p1, …, pI collected in the calibration step 

are reprocessed to create histograms of log-likelihood l A0; p1, …, pI . Sample mean and 

variance of the log-likelihood values are calculated. The algorithm iteratively discards values 

of log-likelihood that are outside two standard deviations around the sample mean, and 

recomputes the sample mean and variance until the mean converges to a fixed value with an 

error less than one decimal place (Chen 2006). A value l0 A0  is set at four standard 

deviations below the sample mean. Finally, the likelihood threshold L0(A0) is set as 

L0 A0 = exp l0 A0 .

Reduced spatial resolution has been observed near the edges and corners of the crystal 

(Barrett et al 2009, Moore 2011) with a larger-than-expected number of position estimates 

clustering near the edges of the crystal; an example is shown in figure 4. This is likely due to 

a combination of effects, including non-monotonic signal variation as a function of position 

in these areas. Methods to cope with this problem have been proposed; they generally rely 

on the estimation of the total energy the gamma-ray photon has deposited in the crystal. In 

this work, we simply decided to ignore all estimates that are less than 4 mm away from any 

of the crystal edges.

Graphics processing unit (GPU) code was developed (Caucci and Furenlid 2015) to process 

PMT data and perform the 2D ML estimation of position of interaction in (20) for each 

detected gamma-ray photon. Our algorithm for ML estimation of position of interaction used 
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an iterative contracting-grid approach (Furenlid et al 2005). We took full advantage of the 

texture mapping unit of the GPU devices to interpolate the PMT mean detector response 

function (MDRF) of each camera. The CUDA cubic B-spline interpolation library (Ruijters 

et al 2008) was used to perform on-the-fly interpolation of MDRF samples with low-degree 

spline functions (Cox 1972, Schumaker 1981). The main advantage of this contracting-grid 

approach is that 2D estimates can be performed with arbitrary precision by simply running 

more iterations of the contracting-grid search algorithm. Other customizations, such as 

contracting factor after each iterations and the size of the grid, are possible (Caucci and 

Furenlid 2015, Caucci et al 2018). Moreover, the same algorithm is well suited for the 

estimation of other photon attributes provided that the proper statistical model Pr(p1, …, pI | 

A) is available.

5.3. The list-mode MLEM reconstruction algorithm

A list-mode variant (Parra and Barrett 1998, Caucci 2012) of the maximum-likelihood 

expectation-maximization (MLEM) (Shepp and Vardi 1982) algorithm has been 

implemented on GPUs to perform reconstruction from list-mode data A(c) = A1
(c), …, AJc

(c) ,, 

in which c = 1, …, C denotes the camera and Jc is the number of recorded events for camera 

c. In the formalism discussed in this paper, the list-mode MLEM algorithm is written as

fn
(l + 1) = fn

(l)

T ∑
c = 1

C
∑
j = 1

Jc pr Aj
(c) | rn, c

∑n′ = 1
N pr Aj

(c) | rn′, c sn′fn′
(l) , (23)

in which T is the exposure time, fn
(l) is the estimate of fn after l iterations and pr A(c) | r, c  is 

the quantity calculated in (15) in which we have extended our notation to make it clear that 

attribute vector A(c)
 corresponds to a recorded event in camera c. The iterative expression 

above requires an initial guess fn
(0) for n = 1, …, N, which we will assume to be a non-

negative constant; in other words, fn
(0) = f0 > 0 for all n. Derivations of the list-mode MLEM 

algorithm are available in Levkovitz et al (2001) and Caucci (2012). Some stopping criteria 

can be found in Gaitanis et al (2010).

Critical to our treatment is the evaluation of pr(A |r, c). We followed an approach similar to 

the one delineated in Furenlid et al (2004) and Chen (2006), in which calibration data was 

collected and a Gaussian-shaped function was fit to the calibration events. Details can be 

found in appendix. With our approach, evaluation of pr(A |r, c) for fixed camera c and r only 

requires six coefficients.

System calibration for FastSPECT II entails moving a point-like radioactive source across 

the field of view to collect list-mode data from which estimate fitting coefficients (Chen 

2006). As this process is often time-consuming, source decay must usually be taken into 

account. Moreover, one can only consider a finite set of positions at which collect calibration 

data. The alternative is to derive a complete analytical model for pr(A |r, c), but this would 

require precise knowledge of camera responses and their positions, as well as knowledge of 
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position of all pinholes and their shapes. For this reason, we opted for estimating fitting 

coefficients for points r belonging to a 3D grid of points Γ, and whenever fitting coefficients 

at r not in Γ are needed, they are interpolated (as discussed in appendix), so that pr(A |r, c)
can be evaluated quickly for any attribute vector A and point r and for any cam era c.

To summarize, we use photomultiplier tube signals to estimate the components of attribute 

vectors A with arbitrary precision. Our ML algorithm implemented on GPUs produces 

estimates A in real-time during the acquisition scan. Event attributes are collected into lists 

A(c) = A1
(c), …, AJc

(c)
 (one list for each camera c = 1, …, C), which are then used in the 

iterative expression in (23) to obtain estimates f (l)
. By properly fitting measured calibration 

data, it is possible to evaluate pr(A |r, c) for any A and r and for all the cameras c = 1, …, C. 

By (19), this amounts to directly evaluate the kernel of the continuous-to-continuous 

operator ℒ, which we use to obtain an estimate f  to f that satisfies the forward model of 

(18).

6. Reconstruction results

6.1. Phantom studies

In a first set of reconstructions, we imaged a Jaszczak-like phantom (shown in figure 3) 

whose bores were filled up with an aqueous solution of 99mTc-based sodium pertechnetate. 

The metastable nuclear isomer 99mTc decays to 99Tc with the emission of a gamma ray with 

a photon energy of 140 keV.

A total of about 13.55 · 106 photons were collected while imaging the phantom with 

FastSPECT II. Of these, around 32.41% were discarded during likelihood thresholding (see 

section 5.2) or because estimated positions were less than 4 mm away from any of the 

crystal edges (see figure 4 for examples). This overall process left around 9.16 · 106 counts 

available for reconstruction.

List-mode data were reconstructed with the algorithm in (23) and at points rn arranged on a 

non-constant spacing grid. More specifically, we considered a coarse grid with a specific 

region of 2× finer spacing. Post-reconstruction nearest-neighbor resampling of the coarse 

regions was used to ease visualization without altering the process of image reconstruction. 

Figure 5(a) shows a cross-section of the reconstructed data in which the region of finer 

spacing was emphasized with a dashed box. (Notice that during preparation of the phantom, 

some of the bores were not properly filled with the radiotracer.) Some line profiles through 

the post-processed reconstructed data are shown as figure 5(b).

6.2. Reconstructions of KPC mouse

Imaging studies of FastSPECT II were performed in a genetically-modified K-rasLSL.G12D/+; 

p53R172H/+; PdxCre mouse model (Hingorani et al 2005, Westphalen and Olive 2012, Lee et 
al 2016) (often referred to as KPC mouse model) carrying spontaneous pancreatic ductal 

adenocarcinoma (PDAC). KPC mice develop a spectrum of premalignant lesions that 
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ultimately progress over months to overt carcinoma with extensive stromal desmoplasia, 

similar to the most common morphology of PDAC observed in humans.

99mTc-labeled 3P4-RGD2 dimer (99mTc-3P4-RGD2), which binds to αvβ3 integrin and 

indicates angiogenic activity in tumor stroma, was selected to image PDAC angiogenesis 

(Wang et al 2009). Integrin αvβ3 is a cell-surface receptor with an exposed arginine-glycine-

aspartate (RGD) binding site for a variety of extracellular matrix (ECM) proteins (Davis 

1992).

Three hours after intravenous tracer injection (1.0 mCi of 99mTc-3P4-RGD2) into the mouse, 

FastSPECT II imaging was performed. A total of 1.71 × 106 events across the 16 cameras 

were collected, 34.21% of which were classified as scattered by likelihood thresholding and, 

therefore, rejected. This left about 1.13 × 106 events available for reconstruction. High-

resolution reconstructions (figure 6) showed two lesions with high radioactive uptake 

(arrows) in the upper right abdomen (left panel), which were consistent with the tumors 

observed in the mouse pancreas by postmortem examination (right panel).

All the reconstructions were obtained after 50 iterations of the method in (23). In other 

words, we assumed that the final reconstruction was f (50)
. Renderings of f (50)

 were 

obtained with AMIDE5.

To test the main point of this paper—that reconstruction methods based on continuous-to-

continuous operators provide an advantage over algorithms that assume a discrete-to-discrete 

model for the imaging system—we considered and compared different sets of 

reconstructions in which:

i. the number of iterations of the contracting-grid algorithm for the estimation of 

attribute vectors A was increased, thus allowing estimates A to take on values 

approximating a continuous domain; or,

ii. finer and finer system interpolation (see appendix A.2) was performed, thus 

allowing reconstructions on arbitrary sets of points (which are taken as 

approximations of continuous functions).

Reconstruction results are summarized in figure 7. In this figure, the number of contracting-

grid iterations was varied from 4 (leftmost column) to 16 (rightmost column), and the 

reconstructions were obtained for voxel grids of four different sizes going from 53 × 41 × 41 

(top row) to 417 × 321 × 321 (bottom row). Because of the nature of the contracting-grid 

algorithm itself (Caucci et al 2018), a linear increase in the number of iterations gives 

exponentially finer estimates of A.

Visual assessment of figure 7 shows that as the size of the voxel array used in the 

reconstruction increases, resolution improves and tumors are well resolved. Similarly, as the 

event estimates A = X, Y  are allowed to take value on a continuous domain, image 

resolution improves and the tumors (see left panel in figure 6) are better resolved. To better 

5http://amide.sourceforge.net/index.html
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appreciate this fact, we report in the top row of figure 8 the reconstructions we obtained for a 

voxel grid of size 417 × 321 × 321 and different number of contracting-grid iterations. In the 

bottom row, we reported the absolute value of the difference between pairs of 

reconstructions, which were displayed as images. Notice the different color scales used in 

the images at the bottom of each figure.

We ran our codes on a server equipped with four Intel® Xeon® CPU E5–2698 processors, 

256 GB of RAM and eight NVIDIA® Tesla® P100-SXM2 GPU accelerator cards. The 

software configuration included Linux openSUSE Leap 15.0, NVIDIA® CUDA SDK 

release 10.0, and GNU C compiler 7.3.1. Our codes heavily relied on GPU processing for 

the estimation of photon attributes (see section 5.2) and the calculation in (23). We designed 

our implementations to fully utilize all the GPU accelerators available. Estimation of photon 

attributes for all the 1.71 × 106 events took less than half of a second, no matter how many 

iterations of the contracting-grid algorithm were performed. In fact, the algorithm just needs 

a few iterations to ‘localize’ an event to a small region of the search space. Subsequent 

iterations are much faster, as they rely on cached data for the evaluation of the MDRF fitting 

splines. On the other hand, reconstruction time is highly affected by the image-space 

granularity and the number of iterations during reconstruction. Table 1 reports running time 

for 50 iterations and different sizes of the voxel array. These results show that running time 

is proportional to the number of reconstruction points.

7. Future work

One possible follow-up research in this field might consider objective assessment of image 

quality (Barrett et al 1998) for continuous-to-continuous imaging systems. For example, a 

task-based figure-of-merit can be used to compare a continuous-to-continuous imaging 

system with an imaging system that use the traditional discrete-to-discrete model. In the case 

of a detection problem, such as detection of tumor necrosis, a meaningful figure-of-merit is 

the area under the receiver operating characteristic curve (Van Trees 1968). For an 

estimation problem, one could derive an expression for the list-mode Fisher information 

matrix (Fisher 1925), which also provides a lower bound on the variance any unbiased 

estimator (Van Trees 1968). Some preliminary work has been done in the context of 

estimating activity within a certain region of interest, and it was shown that continuous-to-

continuous systems provided more accurate tracer uptake estimates compared to continuous-

to-discrete systems (Jha and Frey 2015).

Although this paper has been limited to imaging with gamma-ray photons, the same 

methodology can be applied to imaging with charged particles, such as alpha and beta 

particles. Some work (Ding et al 2017b) has already been done in this direction, and it was 

shown that estimating additional parameters (such as direction and/or particle’s residual 

energy) besides positions, does provide enormous benefits in terms of reduced null space.

Other methods for reconstruction of a continuous functions have been introduced in the past 

decade. Among them, is the Backus–Gilbert method (Backus and Gilbert 1968, Kirsch et al 
1988), originally introduced for the estimation of geological models from a finite set of 

noisy measurements. A more recent method (Jha et al 2015) for reconstruction of continuous 
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functions uses the singular value decomposition of the imaging operator. A task-based 

comparison between these methods and the reconstruction approach developed in this paper 

will further shed some light on the advantages of image reconstruction algorithms based on 

continuous-to-continuous model.

8. Conclusions

We presented a new approach to image reconstruction for single-photon emission computed 

tomography (SPECT) that does not use a discrete-to-discrete representation of the imaging 

system. In fact, our approach models the imaging system via a continuous-to-continuous 

operator that maps the object (i.e. a function of continuous variables) to a function that takes 

as input an event attribute, which is assumed to take values on a continuous set. The 

reconstruction algorithm we propose is based on maximum-likelihood. It uses measured 

calibration data, and we showed how these calibration data can be interpolated to arbitrary 

precision.

We tested our approach on real data, which we collected with FastSPECT II. We used 99mTc 

3P4-RGD2 peptide to image a genetically-modified KPC mouse that developed pancreatic 

ductal adenocarcinoma in two different locations. By varying key estimation/interpolation 

parameters in our code, we were able to attain reconstructions on finer and finer grids, thus 

approximating reconstructions on a continuous domain. We did not perform a formal 

assessment of image quality. Instead, we relied on visual comparison of reconstructed 

volume renderings, which showed increased details as the limit of a continuous-to-

continuous system was approached.

Our algorithms were implemented for a GPU architecture, which offers enormous parallel-

computing capabilities as well as large amounts of fast memory. In particular, we took 

advantage of texture interpolation to rapidly retrieve calibration data. The algorithm we 

proposed to interpolate the system response avoids conditional branching, which are very 

time consuming on a GPU architecture. Moreover, our interpolation and reconstruction 

algorithm provides greater flexibility as they allow reconstructions on an arbitrary domain, 

not necessarily restricted to a uniform grid of points. Although GPUs were shown to be well 

suited for implementation of our parallel codes for maximum-likelihood estimation, other 

parallel architecture (e. g., field-programmable gate arrays, or FPGAs) might be considered 

as well.
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Appendix.: Estimation of system response

In our implementation, probabilities pr(A |r, c) for A = X, Y  were approximated by a 2D 

Gaussian function of the form:
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p(X, Y ; r, c) = a(r, c) (A.1)

× exp
ρ(r, c)uXuY − uX

2 + uY
2 /2

1 − [ρ(r, c)]2 , (A.2)

in which we defined

uX = X − μX(r, c)
σX, X

2 (r, c)
, uY = Y − μY (r, c)

σY , Y
2 (r, c)

, (A.3)

and a(r, c), μX(r, c), μY (r, c), σX, X
2 (r, c), σY , Y

2 (r, c) and ρ(r, c) are fitting coefficients. 

Calculation of these fitting coefficients at any point r and for any camera c requires two 

separate steps:

i. system calibration to estimate fitting coefficients for r belonging to a uniform 

grid;

ii. interpolation of the fitting coefficients obtained in the previous step.

The Gaussian model of (A.1) was chosen for its simplicity. Depending on the system 

geometry, other choices are possible. This includes sums of Gaussian functions (for the case 

of a multi-pinhole imaging system), or a more general model for p(X, Y ; r, c) in (A.1) based 

on, fore example, the 2D Pearson type VII distribution (Kotz 1975).

A.1. System calibration

In a typical system calibration procedure, a point source is moved across the field of view by 

means of computer-controlled motorized stages. The position of the point source will be 

denoted as rn, in which we defined n = (nx, ny, nz) for nx = 1, …,Nx, ny = 1, …, Ny and nz = 

1, …, Nz. Points rn are arranged on a uniform grid, which we will denote as Γ, and adjacent 

points are separated by a known distance δ.

During calibration, list-mode data An
(c)

 are collected at each of the NxNyNz points positions 

rn ∈ Γ and for each of the C cameras. We will assume that An
(c)

 contains Jn
(c) attribute vectors 

Aj = Xj, Y j , in which j = 1, …, Jn
(c). Notice that Aj (and, consequently, Xj and Y j) do 

depend on n and c, but we have discarded these dependencies for notational convenience. 

We used our GPU-based maximum-likelihood code to estimate attribute vectors Aj

according to (20). From A1, …, AJn
(c), Gaussian fitting coefficients for p X, Y ; rn, c  as in (A.1) 

are calculated as:

μX rn, c = 1
Jn

(c) ∑
j = 1

Jn
(c)

Xj, (A.4)
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μY rn, c = 1
Jn

(c) ∑
j = 1

Jn
(c)

Y j, (A.5)

σX, X
2 rn, c = 1

Jn
(c) − 1

∑
j = 1

Jn
(c)

Xj − μX rn, c 2, (A.6)

σY , Y
2 rn, c = 1

Jn
(c) − 1

∑
j = 1

Jn
(c)

Y j − μY rn, c 2, (A.7)

σX, Y
2 rn, c = σY , X

2 rn, c = 1
Jn

(c) − 1 (A.8)

× ∑
j = 1

Jn
(c)

Xj − μX rn, c Y j − μY rn, c , (A.9)

ρ rn, c = σX, Y
2 rn, c

σX, X
2 rn, c σY , Y

2 rn, c
, (A.10)

a rn, c = Jn
(c)

2π σX, X
2 rn, c σY , Y

2 rn, c 1 − ρ rn, c 2 . (A.11)

The expression for μX rn, c , μY rn, c , σX, X
2 rn, c , σY , Y

2 rn, c  and σX, Y
2 rn, c  above are 

unbiased estimator for the corresponding unknown quantities.
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Figure A1. 

Plots of a rn, c , μX rn, c , μY rn, c , σX, X
2 rn, c , σY , Y

2 rn, c  and ρ rn, c  for one of the cameras 

and calculated according to (A.4)–(A.11). These plots show that estimated coefficients vary 

smoothly as the point rn is moved over the field of view (position along the axes are in units 

of millimeters).
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A.2. Interpolation

The system calibration process outlined above is often performed on a coarse grid Γ of 

points rn. Time constraints (due to radioactive decay in the point source used for calibration) 

along with the necessity of collecting a few thousand events at each point rn limit the 

separation δ between two adjacent points to around 2 mm (Chen 2006). With a typical short-

lived isotope used in medical imaging (e.g. 99mTc), collecting enough calibration data at 

each point of a finer grid while covering the entire field of view (see figure 2) is infeasible. 

For this reason, we have developed a method for fast calculation of the fitting coefficients 

μX r, c , μY r, c , σX, X
2 r, c , σY , Y

2 r, c  and σX, Y
2 r, c  any point r and for any camera c from 

quantities estimated in (A.4)–(A.11). Figure A1 reports sample plots of a rn, c , μX rn, c , 

μY rn, c , σX, X
2 rn, c , σY , Y

2 rn, c  and ρ rn, c  as estimated according to (A.4)–(A.11) and 

along perpendicular planes intersection at the center of the field of view.
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Figure A2. 
Interpolation of vnx, ny, nz.

The first step in our method is to diagonalize the following matrix:

K rn, c =
σX, X

2 rn, c σX, Y
2 rn, c

σX, Y
2 rn, c σY , Y

2 rn, c
(A.12)

so that:

K rn, c = Rϕ rn, c ΛRϕ rn, c
−1 , (A.13)

where
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Rϕ rn, c =
cos ϕ rn, c −sin ϕ rn, c
sin ϕ rn, c cos ϕ rn, c (A.14)

and

Λ =
λX rn, c 0

0 λY rn, c . (A.15)

Quantities ϕ(rn, c), λX(rn, c) and λY (rn, c) are calculated as follows:

ϕ rn, c = 1
2arctan 2σX, Y

2 rn, c
σX, X

2 rn, c − σY , Y
2 rn, c

, (A.16)

λX rn, c = 1
2 σX, X

2 rn, c + σY , Y
2 rn, c + Δ , (A.17)

λY rn, c = 1
2 σX, X

2 rn, c + σY , Y
2 rn, c − Δ , (A.18)

in which,

Δ = σX, X
2 rn, c − σY , Y

2 rn, c 2 + 4 ρ rn, c σX, X rn, c σY , Y rn, c 2 1/2
. (A.19)

Interpolation was performed according to the diagram show in figure A2, in which we used 

the placeholder ‘v’ to denote one among a, μX, μY , ϕ, λX or λY.

For simplicity, we assumed that any interpolated value was indexed by a subscript vector 

(nx, ny, nz) in which at least one in nx, ny or nz is non-integer. In figure A2 we used the 

‘floor’ (⌊…⌋) and ‘ceiling’ (⌈…⌉) notation to calculate subscripts for the non-interpolated 

values of v that ‘surrounds’ vnx, ny, nz and are used in the interpolation. These non-

interpolated values, which by construction corresponds to points in Γ, are marked in figure 

A2 with squares. Weighted two-value average was used to interpolate two values at a time as 

follows:

vnx, ny , nz = W v nx , ny , nz , v nx , ny , nz , nx − nx ,
vnx, ny , nz = W v nx , ny , nz , v nx , ny , nz , nx − nx ,
vnx, ny , nz = W v nx , ny , nz , v nx , ny , nz , nx − nx ,
vnx, ny , nz = W v nx , ny , nz , v nx , ny , nz , nx − nx ,
vnx, ny, nz = W vnx, ny , nz , vnx, ny , nz , ny − ny ,
vnx, ny, nz = W vnx, ny , nz , vnx, ny , nz , ny − ny ,
vnx, ny, nz = W vnx, ny, nz , vnx, ny, nz , nz − nz ,

(A.20)
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in which W(v1, v2, γ) is the weighting two-value average function defined as:

W v1, v2, γ = (1 − γ)v1
−1 + γv2

−1 −1 if v = λX or v = λY ,
(1 − γ)v1 + γv2 otherwise.

(A.21)

In other words, W(v1, v2, γ) is the two-value weighted arithmetic mean between v1 and v2 

(with weights 1 – γ and γ, respectively) if v = a, v = μX, v = μY  or v = ϕ; while W(v1, v2, γ) 

is the two-value weighted harmonic v = λX or v = γY.

Notice that the scheme in (A.20) operates on one dimension at a time; this is emphasized in 

figure A2 by solid lines connecting the pairs of points used in (A.20). Furthermore, for any 

integer number n, we have ⌊n⌋ = ⌈n⌉ = n, so that the scheme in (A.20) along with the 

definition of W(v1, v2, γ) in (A.21) effectively performs no interpolation along the 

dimension(s) for which the corresponding index(es) in (nx, ny, nz) are integer. Although this 

does perform unnecessary computation when one of more indeces in (nx, ny, nz) are integer, 

in practice, it is well suited for parallel implementation due to the absence of conditional 

branching.
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Figure 1. 
Example of a photon-processing imaging system (adapted from Caucci et al (2013)).
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Figure 2. 
Plot of the sensitivity across three planes, showing almost uniform sensitivity over a large 

portion of the system’s field of view. The volume for which the sensitivity exceeds 5% its 

maximum value is about 57 cm3.
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Figure 3. 
Optical image of the phantom used in the phantom studies.
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Figure 4. 
Scatter plots of raw estimated positions (after likelihood thresholding but before discarding 

estimates less than 4 mm away from any of the crystal edges) on the camera’s face obtained 

while imaging the phantom. Notice how some of the estimates cluster near the edges and 

corners of the crystal.
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Figure 5. 
Phantom reconstruction results: (a) cross-section through the reconstructed object; (b) line 

profiles along selected lines.
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Figure 6. 
High-resolution FastSPECT II reconstructions compared with postmortem examination of a 

KPC mouse showing two lesions with high radioactive uptake in the pancreas.
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Figure 7. 
Reconstruction results in which the number of contracting-grid iterations was 4, 8, 12 and 16 

(left to right) and the size of voxel arrays over which the data were reconstructed was 53 × 

41 × 41, 105 × 81 × 81, 209 × 161 × 161 and 417 × 321 × 321 (top to bottom).
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Figure 8. 
Reconstructions for a 417 × 321 × 321 voxel array and as the number of iterations in the 

contracting-grid search algorithm was varied over {4, 8, 12, 16}. Top row: reconstructed 

data; bottom row: differences between pairs of reconstructions.
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Table 1.

Reconstruction time for different sizes of the voxel array.

Array size Recon. time

53 × 41 × 41 39.52 s

105 × 81 × 81 289.40 s

209 × 161 × 161 37.66 min

417 × 321 × 321 298.25 min
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