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Purpose:	 Photo	 screeners	 and	 autorefractors	 have	 been	 used	 to	 screen	 children	 for	 amblyopia	 risk	
factors	 (ARF)	but	are	 limited	by	cost	and	efficacy.	We	 looked	 for	a	deep	 learning	and	 image	processing	
analysis‑based	system	to	screen	for	ARF.	Methods:	An	android	smartphone	was	used	to	capture	images	
using	 a	 specially	 coded	 application	 that	 modified	 the	 camera	 setting.	An	 algorithm	was	 developed	 to	
process	images	taken	in	different	light	conditions	in	an	automated	manner	to	predict	the	presence	of	ARF.	
Deep	learning	and	image	processing	models	were	used	to	segment	images	of	the	face.	Light	settings	and	
distances	were	 tested	 to	 obtain	 the	 necessary	 features.	 Deep	 learning	was	 thereafter	 used	 to	 formulate	
normalized	risks	using	sigmoidal	models	for	each	ARF	creating	a	risk	dashboard.	The	model	was	tested	on	
54	young	adults	and	results	statistically	analyzed.	Results:	A	combination	of	low‑light	and	ambient‑light	
images	was	needed	for	screening	for	exclusive	ARF.	The	algorithm	had	an	F‑Score	of	73.2%	with	an	accuracy	
of	79.6%,	a	sensitivity	of	88.2%,	and	a	specificity	of	75.6%	in	detecting	the	ARF.	Conclusion:	Deep‑learning	
and	image‑processing	analysis	of	photographs	acquired	from	a	smartphone	are	useful	in	screening	for	ARF	
in	children	and	young	adults	for	a	referral	to	doctors	for	further	diagnosis	and	treatment.
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Amblyopia	is	a	frequently	observed	visual	disorder	in	children	
that	 can	 lead	 to	permanent	visual	 impairment.	 Significant	
refractive	errors	and	strabismus	are	important	amblyogenic	risk	
factors	(ARF).[1,2]	Amblyopia	is	present	in	1.1–5%	of	the	general	
population,	making	 it	 important	 to	 screen	 for	 amblyogenic	
factors.[3‑5]	However,	there	is	limited	availability	of	qualified	or	
trained	personnel	for	primary	screening.	Hence,	photo	screening	
has	proven	to	be	an	effective	method	to	objectively	screen	for	
both	refractive	errors	and	amblyogenic	factors	as	defined	by	
2003	 the	American	Association	 for	Pediatric	Ophthalmology	
and	Strabismus	(AAPOS)	Referral	Criteria	given	below:[6‑8]
1.	 Anisometropia	(spherical	or	cylindrical)	>1.5D
2.	 Significant	refractive	error
a.	 Hyperopia	>3.5D	in	any	meridian
b.	 Myopia	>3.0D	in	any	meridian
c.	 Astigmatism	 >1.5D	 at	 90°	 or	 180°;	 >1.0D	 in	 oblique	
axis	(more	than	10°	from	90°	or	180°).

3.	 Any	manifest	strabismus
4.	 Any	media	opacity	>1	mm	in	size
5.	 Ptosis	≤1	mm	margin	reflex	distance.

Non‑invasive	 digital	 imaging	 can	 provide	millions	 of	
morphological	features	that	can	be	analyzed	in	a	comprehensive	
manner	using	artificial	intelligence	(AI).[9]	Methods	based	on	
machine	 learning	 (ML)	and	particularly	deep	 learning	 (DL)	
have	been	used	in	the	screening	of	various	ocular	conditions.	
They	are	effective	to	identify,	localize,	and	quantify	pathological	
features	 in	 a	 variety	 of	 retinal	 diseases	 such	 as	 diabetic	
retinopathy.[10‑12]

Combining	principles	of	photo	screening	and	DL,	we	looked	
to	develop	a	simple	photography‑based	solution,	called	Kanna,	
which	would	help	detect	 amblyogenicity	based	on	 the	 risk	
factors	as	defined	by	the	2003	AAPOS	referral	criteria.

A	preliminary	analysis	of	 images	 showed	 that	 refractive	
error	and	media	opacities	could	be	studied	using	a	red	reflex	
image	which	required	low	lighting	conditions	and	an	increased	
distance	between	the	patient	and	the	image	capture	device	for	
effective	measurements.	However,	a	decrease	in	light	intensity	
and	an	increase	in	the	distance	caused	the	generation	of	a	lower	
resolution	image	which	could	not	be	used	for	accurate	ptosis	
and	strabismus	measurements.	Therefore,	two	separate	images	
in	ambient	and	dark	surroundings	were	obtained	to	focus	on	
the	detection	of	separate	ARF.

Methods
The	study	was	conducted	at	Sankara	Eye	Hospital	and	College	
of	Optometry	Bangalore.	Fifty‑four	optometry	students	were	
recruited	 for	 data	 acquisition.	Optometry	 students	were	
considered	instead	of	children	or	a	general	population	as	the	
goal	of	 the	study	was	 to	check	 if	a	deep‑learning	algorithm	
coupled	with	an	android	smartphone	was	an	effective	screening	
modality	for	ARF.	A	comprehensive	eye	exam	was	performed	
by	 an	ophthalmologist	 and,	 subsequently,	 images	 of	 their	
face	were	taken	using	a	smartphone.	As	part	of	the	eye	exam,	
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refractive	 error	measurement	 of	 both	 eyes,	 the	Hirschberg	
and	cover‑uncover	tests,	the	assessment	of	squint	and	ptosis	
evaluation	was	performed	(Margin	Reflex	Distance	1	and	2).	
As	part	of	the	smartphone	imaging	procedure,	facial	images	
were	 captured	with	 flash	 in	 dark	 (3–10	 lm)	 and	 ambient	
(60–800	lm)	light	conditions	separately	at	the	distances	of	0.5	m,	
1	m,	and	1.5	m	each	(based	on	the	retinoscopy	principle).	As	
both	low‑light	and	ambient‑light	images	were	to	be	acquired	
with	flash‑enabled,	low‑light	images	are	to	be	acquired	before	
the	 ambient‑light	 images	 to	 prevent	 unwanted	 pupillary	
contraction	in	the	red	reflex	image	and	decrease	the	time	for	
pupillary	dilation	in	low‑light	surroundings.

The	 light	 intensity	of	 the	ambient	 room	was	determined	
on	the	basis	of	the	best	image	quality	and	resolution	as	well	
as	the	absence	of	the	red	reflex.	Conversely,	the	dim‑lit	room	
luminosity	was	 predetermined	 based	 on	 the	 presence	 of	
red	 reflex.	An	 android	 application	was	written	 to	modify	
the	 smartphone	 camera	flash	 settings	 to	 remove	 the	 inbuilt	
pre‑flash	that	removes	red‑eye	images	in	low‑light	conditions.

The Kanna algorithm was developed using DL and 
image‑processing	models	 to	 conduct	measurements	 and	
predictions	for	the	presence	of	ARF	in	an	automated	fashion	
in	the	following	manner.

All	 images	were	preprocessed	using	 the	Gaussian	Blur	
algorithm	and	converted	to	grayscale	for	the	application	of	DL	
cascade	models.[12]	The	eye	was	localized	using	facial	landmarks	
predicted	by	DL	models	[Fig.	1].[13,14]	A	Convolutional	Neural	
Network	(CNN)	was	trained	to	detect	six	iris	landmarks	along	
the	iris	boundary	using	the	UnityEyes	dataset.

Parameters	like	red	reflex	localization,	undilated	pupil	radius,	
the	hue	of	 the	 iris	 region	and	red	reflex,	and	crescent	width	
were	measured	using	the	dark‑lit	image.[15] These parameters 
were	used	 to	 develop	 the	 algorithm	 for	 the	 prediction	 of	
refractive	error	as	well	as	media	opacities.	The	eyelid	contour,	
corneal	light	reflex	(CLR),	and	iris	center	were	determined	from	

Figure 1: Position of 68 facial landmarks detected (image at bit.
ly/2Jgdar0)

the	ambient‑light	 image.	The	angle	of	 squint	was	calculated	
mathematically	 using	 the	CLR	 position,	 iris	 center,	 and	
the	biometric	 ratio	of	 the	eyeball	 radius	 to	 the	 iris	diameter	
[described	in	depth	in	Appendix	1].	Ptosis	(MRD	1	and	2)	was	
measured	using	the	eyelid	contour	and	CLR	[Fig.	2].

Based	on	the	2003	AAPOS	referral	criteria,	we	devised	a	
risk	prediction	system.	If	any	of	the	five	ARF	(Anisometropia,	
Isoametropia,	Strabismus,	Ptosis,	or	Media	Opacities)	exceeded	
the	 prescribed	 thresholds,	 the	 image	was	flagged	 as	ARF	
positive	(predicted	with	an	ARF	risk	of	1),	else	it	was	predicted	
with	ARF	risk	of	0.

Statistical	analysis	was	done	with	Microsoft	Excel	and	the	
NumPy	Library	 in	 the	 Python	programming	 language.[16] 
A	confusion	matrix	was	 created	 and	phi	 coefficients	were	
calculated	to	analyze	the	correlation	between	the	clinical	and	
Kanna	predictions.	Based	on	the	degree	of	freedom	(D.F.)	and	
sample	size	(N	=	54) P value	at	a	0.05	significance	threshold	
was	considered.

Results
The	54	optometry	 students	were	aged	18–23.	The	 low‑light	
image	was	able	 to	detect	media	opacities,	 isometropia,	 and	
anisometropia.	External	 facial	 characteristics	 such	as	ptosis	
and	strabismus	could	not	be	determined	with	a	high	degree	
of	accuracy	from	the	low‑light	photography	and	were	studied	
in	the	ambient‑light	photograph.	The	distribution	of	patients	
with	various	ARF	detected	clinically	and	by	Kanna	algorithm	
is	described	in	Table	1.

The	sharpness	and	quality	of	the	ambient‑light	image	were	
best	obtained	when	captured	at	0.5	m	and	that	for	the	low‑light	
image	at	1	m.

The	 confusion	matrix	 of	 the	Kanna	 algorithm	has	 been	
illustrated in Table	2.	The P value	was	calculated	to	be	0.00011	
which	was	less	than	0.05	(statistically	significant)	was	calculated	
using	McNemar’s	Test.

Table 1: Dataset and prediction composition

Clinical Kanna

Normal 37 30

Anisometropia 7 13

Isoametropia 9 11

Strabismus 1 1

Ptosis 0 0

Media opacities 0 0
Total 54 54

Figure 2: Stages of processing: (a) red reflex image (b) ambient 
image (c) ptosis measurement (d) strabismus measurement (e) red 
reflex measurement
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refractive	error	and	media	opacities.	In	cases	of	extremely	
small	undilated	pupil	size	in	a	dark‑lit	room,	the	red	reflex	
was	not	visible	and	the	determination	of	refractive	errors	
and	media	opacities	was	not	possible.	This	resulted	in	two	
cases	being	missed	by	the	algorithm

3.	 Four	cases	(isoametropia	and	anisometropia)	were	falsely	
predicted	as	positive	due	to	the	blurred	margins	of	the	CLR	
overlapping	into	the	crescent	zone	causing	the	algorithm	
to	predict	 a	 larger	 refractive	 error	 than	 the	 actual.	 The	
development	of	more	sophisticated	DL	models	on	a	larger	
dataset	could	potentially	resolve	this	issue

4.	 Astigmatism	affects	refractive	error	measurements	due	to	
eccentric	photorefraction.	The	possible	differences	in	axes	
of	cylindrical	refractive	errors	cause	varying	effects	on	the	
red	reflex	which	are	difficult	to	quantify	through	a	single	
approach	(as	the	camera	is	held	in	one	particular	axis).	It	
is	possible	that	capturing	multiple	images	with	a	camera	
placed	 horizontally	 and	 vertically	may	 enable	 precise	
astigmatism	measurements	 through	 the	 application	 of	
convolutional	neural	networks.

Spherical	 equivalent	 values	have	 a	 stronger	 correlation	
than	spherical	or	cylindrical	refractive	errors	as	they	combine	
the	effect	of	both	spherical	and	cylindrical	refractive	errors	in	
the	red	reflex	image.	Low	positive	predictive	value	(PPV)	is	
within	expectations	as	it	is	a	screening	device	and	was	strongly	
affected	 by	 astigmatism.	High	 sensitivity	 and	 specificity	
strongly	indicate	the	potential	of	this	approach	for	screening	
amblyopia	at	a	larger	scale.	Further,	it	is	affordable	and	scalable	
as	it	involves	just	a	mobile	phone	for	screening	and	uploading	
photographs	for	processing	with	the	algorithm.

To	the	best	of	our	knowledge,	 this	 is	 the	first	 time;	a	DL	
model	has	been	developed	to	identify	amblyogenic	risk	factors.

Conclusion
DL	and	 image	processing	of	 facial	photographs	 is	 capable	
of	 screening	 young	 children	with	 amblyopia	 risk	 factors	
for a referral to ophthalmologists for further diagnosis and 
treatment.	It	is	advantageous	over	using	traditional	screeners,	
as	it	is	easily	accessible,	low‑cost,	and	requires	minimal	training.
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Appendix 1
Manifest	strabismus	was	measured	using	the	ambient‑light	photograph	through	the	Hirschberg	test	using	the	CLR.	The	deviation	
of	the	CLR	was	quantified	by	considering	its	distance	from	the	center	of	the	iris.	However,	the	deviation	of	the	iris	results	in	the	
apparent	center	of	the	iris	not	lying	on	the	optical	center.	In	order	to	account	for	this,	we	make	use	of	the	corneal	radius	and	eyeball	
radius	(calculated	by	scaling	the	iris	diameter	using	the	ratios	of	their	mean	values)	to	calculate	the	exact	angle.	The	expression	
used	to	calculate	the	final	strabismic	deviation	is	derived	from	Fig.	3	and	is	provided	below.	Pseudo‑strabismus	was	accounted	
for	by	considering	the	difference	in	the	side	of	the	deviation	of	the	CLR	with	respect	to	the	center	of	the	iris.

R sin θ	=	d	+	c sin θ

θ⇒
d

sin
R c

‑1
=

‑

Figure 3: Geometric description of the strabismic deviation


