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Towards omics-based predictions of planktonic
functional composition from environmental data
Emile Faure 1,2✉, Sakina-Dorothée Ayata1,2,4 & Lucie Bittner 2,3,4

Marine microbes play a crucial role in climate regulation, biogeochemical cycles, and trophic

networks. Unprecedented amounts of data on planktonic communities were recently col-

lected, sparking a need for innovative data-driven methodologies to quantify and predict their

ecosystemic functions. We reanalyze 885 marine metagenome-assembled genomes through

a network-based approach and detect 233,756 protein functional clusters, from which 15%

are functionally unannotated. We investigate all clusters’ distributions across the global

ocean through machine learning, identifying biogeographical provinces as the best predictors

of protein functional clusters’ abundance. The abundances of 14,585 clusters are predictable

from the environmental context, including 1347 functionally unannotated clusters. We ana-

lyze the biogeography of these 14,585 clusters, identifying the Mediterranean Sea as an

outlier in terms of protein functional clusters composition. Applicable to any set of

sequences, our approach constitutes a step towards quantitative predictions of functional

composition from the environmental context.

https://doi.org/10.1038/s41467-021-24547-1 OPEN

1 Sorbonne Université, CNRS, Laboratoire d’Océanographie de Villefranche, LOV, Villefranche-sur-Mer, France. 2 Institut de Systématique, Evolution,
Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France. 3 Institut Universitaire de
France, Paris, France. 4These authors contributed equally: Ayata Sakina-Dorothée, Bittner Lucie. ✉email: emile.faure@univ-brest.fr

NATURE COMMUNICATIONS |         (2021) 12:4361 | https://doi.org/10.1038/s41467-021-24547-1 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-24547-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-24547-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-24547-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-24547-1&domain=pdf
http://orcid.org/0000-0002-9049-2269
http://orcid.org/0000-0002-9049-2269
http://orcid.org/0000-0002-9049-2269
http://orcid.org/0000-0002-9049-2269
http://orcid.org/0000-0002-9049-2269
http://orcid.org/0000-0001-8291-7063
http://orcid.org/0000-0001-8291-7063
http://orcid.org/0000-0001-8291-7063
http://orcid.org/0000-0001-8291-7063
http://orcid.org/0000-0001-8291-7063
mailto:emile.faure@univ-brest.fr
www.nature.com/naturecommunications
www.nature.com/naturecommunications


P lanktonic organisms play an essential role in biogeochem-
ical cycles through the capture and export of carbon into
the deep ocean, nitrogen fixation, remineralization of

organic matter, or the production of dimethyl-sulfur, hence
impacting global climate1–5. The understanding and modeling of
such biogeochemical functions is key for predicting the global
functioning of oceanic ecosystems, and especially their response
to climate change6–8. These biogeochemical functions are usually
modeled by simulating the dynamics of plankton functional types
(PFT) that are theoretical entities grouping planktonic organisms
according to shared functional capacities (e.g., calcifiers, nitrogen
fixers, or silicifiers)6. This approach allows to incorporate the
functional diversity of marine plankton into biogeochemical
models8–11 but often relies on a priori and restricted choices of
the considered types of planktonic organisms and of their phy-
siological rates or parameters12. For example, bacteria are often
lacking an explicit representation in global PFT models9,11, even
though more than 1030 bacterial cells inhabit the ocean’s
subsurface3. To tackle this issue, recent works proposed to switch
towards data-driven modeling of planktonic communities and
their impact on the environment, notably through the use of
high-throughput sequencing data10,13–16.

Next-generation sequencing technologies have led to sig-
nificant advances in the knowledge of the taxonomic and func-
tional diversity of planktonic organisms5,17,18. Bioinformatics
workflows allow the assembly of metagenome-assembled gen-
omes (MAGs), which are near-complete genomes retrieved from
DNA fragments coming from environmentally sequenced indi-
viduals of one or a few closely related populations19–22. MAGs
can be taxonomically annotated using multi-marker gene
approaches, and organism-level functional profiles can be drawn
from their genomic content19–21. Reads from environmental
meta-omics datasets can also be mapped to their reconstructed
sequences to obtain abundance measurements both at MAG and
single protein level21–23. MAGs can be considered as repre-
sentative of the genetic potential of natural populations, hence
allowing to retrieval of genomes of cultivable, uncultivable, or
even unknown species present in the environment. They con-
stitute a promising tool for investigating as a whole the functional
potential of known and unknown planktonic life forms.

Recently, a genomics-based model revealed that the gene
content of planktonic communities is more relatable to biogeo-
chemical gradients than taxonomic content10. In another study,
omics data were used to quantitatively estimate global nitrogen
fixers abundance through machine learning algorithms24. It
illustrates how quantitative, data-driven biogeochemical models
can be built from global omics datasets. However, these studies
focused only on a relatively small number of well-described genes
(e.g., nif or amtB genes, involved in dinitrogen and ammonium
fixation, respectively)10,24, far from exploiting the rich functional
diversity observed in omic samples. In this way, the large pro-
portion of unknown sequences detected in environmental meta-
omics datasets, that is to say, the open reading frames (ORFs)
which can not be linked to any biological functions (usually
around 40% for bacteria and archaea, and about 50% for eukar-
yotes), is as yet untapped4,5,23,25–27. Besides, many meta-omics
studies have either focused on semi-quantitative diversity and
interactions surveys at global scales25,28, on specific taxonomic
groups (e.g., Collodaria29), or on particular biological functions
(such as nitrogen fixation or mixotrophy21,24,30). A recent study
has grouped protein sequences of marine planktonic bacteria and
archaea according to their annotated metabolic pathways to
investigate their differential abundance and expression, mainly
focusing on pre-selected biogeochemical functions such as pho-
tosynthesis or nitrogen fixation23. By investigating the response of
biogeochemistry-related protein groups to environmental

conditions, significant differences in terms of presence and
expression were identified between polar and non-polar areas,
and between mesopelagic and surface depths23. These results
highlight the potential of function-clustering-based approaches
for deciphering global ocean biogeochemistry but could be fur-
ther extended by skipping any sequence pre-selection step
requiring database-dependent metabolic pathways annotations.

In this study, we followed a similar approach while avoiding
any a priori choices of particular genes or metabolic pathways.
We used 51 quantitative and qualitative environmental variables
to detect both known and unknown protein clusters that are
sensitive to environmental gradients. We re-analyzed 885 high-
quality MAGs from marine planktonic Bacteria (n= 820) and
Archaea (n= 65), assembled by Delmont et al.21. using 93 Tara
Oceans picoplanktonic metagenomes from the surface of the
global ocean. With these almost 2 million sequences, we built
functional clusters of proteins using a sequence similarity net-
work (SSN), i.e., a graph in which nodes are protein sequences,
and edges represent the similarity and coverage between each pair
of sequences31–35. Such approaches allow for the construction of
sequence clusters putatively homogenous in function31 and were
recently used to investigate the genomic basis of functional
diversity in bacteria and archaea36, in a lineage of eukaryotes33, or
in natural microbial communities35. Particularly, we are here
interested in knowing if the abundance of some protein clusters
could be predicted from environmental data in the oceanic eco-
system. For example, is the distribution of biogeochemistry-
related protein clusters more sensitive to environmental gradients
than one of the other clusters? We thus explored the biogeo-
graphy of environment-related protein clusters in light of their
potential functional and/or taxonomic annotation, in order to
identify the ones being specific to certain environmental condi-
tions, such as oligotrophic or particularly cold waters.

We introduce here a data-driven, large-scale, fast, and auto-
matable approach, potentially applicable to any set of environ-
mental sequences, which involves (1) the network-based
construction of sequence clusters, putatively homogeneous in
function, (2) the functional annotation of these clusters, (3) the
calculation of environmental abundance values for each of these
protein clusters through environmental reads re-mapping, and
(4) the description of statistical relationships between cluster
abundances and environmental gradients through machine
learning and constrained ordination methods. We then present a
biogeographical analysis of known and unknown bacterial and
archaeal protein functional clusters (PFCs) identified as sensitive
to environmental gradients in the global ocean, with no a priori
choice of specific functions or taxa. Particularly, we investigate
the biogeography of 14,585 PFCs from which the abundance is
predictable from the environmental context. We identify bio-
geographical provinces as the best predictors of PFCs distribu-
tion, and the Mediterranean Sea as an outlier in terms of PFCs
composition. Our results demonstrate the potential of omics-
based predictions of planktonic communities functional compo-
sition based on environmental data.

Results
From SSN to PFCs. We analyzed the 1,914,171 proteins from 885
MAGs from marine plankton, recovered from 12 geographically
bound assemblies of metagenomic sets corresponding to a total of
93 Tara Oceans samples from the 0.2 to 3 µm and 0.2 to 1.6 µm
size fractions21. A flowchart of our bioinformatic pipeline is
available in Supplementary Fig. 1. 39.6% of the MAGs’ proteins
(757,457) were involved in our SSN, i.e., they had at least one
similarity relationship with another protein that satisfied the cho-
sen threshold of 80% similarity and 80% coverage (see “Methods”).
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In total, 51.1% of the network proteins could be annotated to 4922
unique molecular function IDs in the KEGG database37, associated
with 327 distinct metabolic pathways (a full list of these pathways
is available in Supplementary Data 1). In total, 85.2% of the net-
work proteins were annotated to 17,009 eggNOG functional
descriptions38,39.

The SSN involved 233,756 connected components (CCs), i.e.,
groups of nodes (here proteins) connected together by at least one
path and disconnected from the rest of the network. According to
KEGG and eggNOG databases, 15.3% and 48.5% of the CCs
remained without any functional annotation (i.e., all sequences
from the CC were unmatched in the databases, or had a match
but were not yet linked to any biological function, Table 1), and
14.8% were functionally unannotated for both databases. We
ranked the functional homogeneity of CCs involving at least one
functional annotation from 0 (all annotations in the CC are
different) to 1 (all annotations in the CC are the same) and found
mean homogeneity scores of 0.99 over 1 for KEGG annotations
and 0.94 over 1 for eggNOG ones (see “Methods” for score
calculation details). Only 88 (0.04%) CCs had a homogeneity
score below 0.5 in both annotation databases, all with sizes below
five proteins. 177 CCs (0.07%) had a score below 0.8 in both
databases, all under 12 proteins in size. These CCs were kept in
the analysis while tagged as poorly homogenous. We thereafter
considered each CC as a PFC, numbered from #1 to #233,756.

To check for the influence of taxonomic relationships between
the MAGs on our PFCs, we computed different metrics based on
MAGs taxonomic annotations provided by Delmont et al.21.
(Table 1). This taxonomic annotation based on 43 single-copy
core genes allowed to annotate 100% of the MAGs at the domain
level, and 95% of the MAGs at the phylum level, the remaining
5% corresponding to Bacteria MAGs of unidentified phyla21.
Only 1330 PFCs (0.6%) mixed proteins from the Archaea and
Bacteria domains. PFCs were very homogeneous at the phylum
level, then the homogeneity decreased at lower taxonomic rank,
meaning that PFCs studied here were generally not specific from
a single class, order, family, genus, or MAG (Table 1). In total,
7834 PFCs (3.4%) were only composed of proteins with no
functional annotation in KEGG and eggNOG databases, and no
taxonomic annotation under the phylum level. Their sizes ranged
from 2 to 30 proteins (mean of 2.62). Their 20,552 proteins came
from Euryarchaeota MAGs (12,458; 60.6%), Bacteria MAGs of
unidentified phylum (2742; 13.3%), Candidatus Marinimicrobia
MAGs (2451; 11.9%), Proteobacteria MAGs (1528; 7.4%),
Acidobacteria MAGs (1031; 5%), Verrucomicrobia MAGs (103;
0.5%), Planctomycetes MAGs (89; 0.4%), Bacteroidetes MAGs
(79; 0.4%), Chloroflexi MAGs (59; 0.3%) and Candidate Phyla
Radiation MAGs (12; 0.05%). We hereafter considered these
functionally and taxonomically unknown PFCs as “dark”
PFCs40,41. Their nucleotidic sequences are available in separate
supplementary files (see “Data availability”). The abundance of
dark PFCs was significantly different from the abundance of other
PFCs in 85 samples over 93 (two-sided Wilcoxon rank-sum test,
p-value < 0.05). The median abundance of dark PFCs was higher
than the one of other PFCs in 36 of these 85 samples, and lower
in the 49 others. Further details on dark PFCs’ abundances are
available in section I of Supplementary notes.

Identification of PFCs highly related to environmental gra-
dients. To identify the PFCs that responded the most to envir-
onmental gradients, we first selected the 228,914 clusters with
non-zero variance abundance profiles (i.e., at least 10% of distinct
abundance values across all samples, and less than a 95 to 5 ratio
between the most and the second most observed abundance
value, please see “Methods” for more details), to avoid the

creation of constant or near-constant training and/or test sets. We
then built random forest regression models for each of these
228,914 clusters. We used the sequence abundances as response
variables or labels, and 52 environmental variables as explanatory
variables (see “Methods” for details of model training and tun-
ing). More than half of the random forest regression models
showed a clear statistical signal: 130,651 models (55.9%) had R2

values over 0.25, corresponding to PFCs linked to environmental
conditions, and 14,585 (6.4%) had R2 values over 0.5 (Fig. 1A),
corresponding to PFCs highly linked to environmental gradients
(hlePFCs), from which the abundances were potentially pre-
dictable from the environmental context (Fig. 1B). The mean R2

value over all models was 0.29, with a maximum of 0.88 (Fig. 1A).
Longhurst biogeographical provinces42 were detected as the most
important predictor in 98,450 models (43.0%) and were in the top
three most important predictors in 167,039 models (73.0%)
(Fig. 1C). Among models with biogeographical provinces as the
best predictor, the mean R2 reached 0.30. The temperature was in
the top three most important predictors in 12,673 models (5.5%).
Models with temperature as the best predictor had a mean R2 of
0.43, which was the fourth-highest value of all quantitative vari-
ables, behind sunshine duration (0.49), ammonium at 5 m depth
(0.46), and annual density (0.43).

We focused on the 14,585 PFCs associated with models
showing R2 values over 0.5, hereafter called “hlePFCs” for
hlePFCs PFCs. 246 KEGG pathways were associated with the
14,585 hlePFCs, i.e., 75% of the pathways identified on the full
network were detected in hlePFCs. Supplementary Data 1 gives a
detailed list of all pathways detected in our network, along with
their total number of occurrences in PFCs, and their number of
occurrences in hlePFCs.

The functional homogeneity of the 14,585 hlePFCs was similar
to the one of the total 233,756 PFCs (Tables 1, 2). In parallel, 9.2%
of the hlePFCs were functionally unannotated (e.g., only
composed of unannotated proteins in the KEGG and the
eggNOG functional databases), while 14.8% of the PFCs were
functionally unannotated.

Proportions of taxonomically homogeneous PFCs were similar
between hlePFCs (Table 2) and total PFCs (Table 1), all above
90% at the phylum, class, order, and family level when
considering only PFCs including at least one protein taxonomi-
cally annotated. At the genus level, the proportion of taxonomi-
cally homogeneous PFCs decreased from 91.9% in total PFCs to
66.6% in hlePFCs (Tables 1 and 2). Hence, hlePFCs tended to be
shared by more genera compared to all PFCs, while retaining a
high functional homogeneity. The proportion of taxonomically
unannotated hlePFCs was lower than the one of total PFCs at the
phylum and class levels but was higher at the order, family, and
genus levels (Tables 1 and 2).

The mean R2 values of models associated with the 7834 dark
PFCs (i.e., PFCs without any functional annotation and without
taxonomic annotation below the phylum level) was of 0.27, and
166 (i.e., 2.1%) of them were selected among the 14,585 hlePFCs.
These 166 dark hlePFCs corresponded to 357 proteins belonging
to 51 unique MAGs, annotated as Proteobacteria (8 MAGs, 186
proteins), Euryarchaeota (19 MAGs, 40 proteins), Candidatus
Marinimicrobia (13 MAGs, 97 proteins), Bacteroidetes (2 MAGs,
2 proteins), Chloroflexi (1 MAG, 5 proteins), Verrucomicrobia (1
MAG, 2 proteins) and Bacteria unannotated at Phylum level (7
MAGs, 25 proteins). Forty-six of these 51 MAGs were estimated
to be over 70% complete, and the remaining five showed
completion estimates between 50 and 70%21.

Global biogeography of the PFCs hlePFCs. The canonical cor-
respondence analysis (CCA) achieved on the 14,585 hlePFCs to
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Fig. 1 Predicting protein functional clusters abundances from environmental data. A Density distribution of R2 values of all the 228,914 random forest
models. The green curve corresponds to R2 values obtained using out-of-bag samples of the fivefold cross-validation process applied during model training,
while the red curve corresponds to R2 values obtained from predictions made on test sets using the selected trained models (See “Methods” for details on
the statistical approach). The mean R2 value over all models was of 0.29 using out-of-bag samples, and 0.28 based on predictions over test sets.
B Relationship between abundances observations from test sets and the corresponding model predictions, for all the 14,585 models showing R2 values
above 0.5, i.e., a total of 3,174,580 predictions/observations couples. Both observations and predictions were log-transformed for graphical purposes, as
the range of abundance values varied across three orders of magnitudes across different PFCs. The space of the plot was divided into hexagonal bins
colored according to the number of points located in each of them, in log scale. The black line represents exact predictions, while the red line corresponds
to the linear model fit between the two plotted variables (R2 of 0.70). C The rank of importance of each environmental variable in models. Ranks were
attributed from 1 for the most important to 52 for the least important variable in each model (a lower rank then indicates higher importance in models).
Each boxplot summarizes the ranks of the importance of its focal variable in all the 228,914 models. Boxplots minima and maxima correspond to −1.5 and
1.5 times the interquartile range, while the limits of boxes correspond to the first and third quartiles. The centerline indicates the median. All points outside
of the minima-maxima range are plotted.
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investigate their biogeographical repartition had an R2 value of
68.2% and was significant (p-value < 0.001). The first axis (15.38%
of explained variance) opposed warm samples from the Indian
Ocean (CCA1 > 0) to saline samples from the Mediterranean
(CCA1 < 0) (Fig. 2). The second axis (13.17%) opposed cold and
nutrient-rich samples from the Southern Ocean (CCA2 > 0) to
warmer and more oligotrophic samples. Samples from geo-
graphically close biogeographical provinces appeared close to
each other in the CCA space, with samples from the Southern
Ocean and the Atlantic zones on the bottom, the Pacific Ocean in
the middle, and the Indian Ocean on the right of the CCA1-
CCA2 space (Fig. 2). The closest sample from the Mediterranean
ones in the CCA space was from the surface of the closest Atlantic

station to the strait of Gibraltar (station TARA_004) at the
entrance of the Mediterranean Sea (sample highlighted by a black
arrow in Fig. 2).

Combining the CCA results with the functional annotation of
hlePFCs, we observed that the vast majority of metabolic pathways
were not enriched in particular environmental conditions (Fig. 3).
Among the few exceptions, Atrazine degradation was lightly
enriched in the Mediterranean Sea (CCA10), while RNA polymerase
and AMPK signaling pathways were lightly enriched in nutrient-
rich, cold waters (Fig. 3). Pathways related to biogeochemical
functions (e.g., carbon fixation pathways in bacteria/archaea,
Nitrogen metabolism, ormethane metabolism) or linked to ecological
interactions between organisms (e.g., biosynthesis of antibiotics,

Fig. 2 Canonical correspondence analysis (CCA) on abundances of the 14,585 protein functional clusters highly linked to environmental variables
(hlePFCs). hlePFCs are represented as gray dots, quantitative environmental variables as arrows, and samples as points colored and shaped according to
their biogeographical province (correspondence between four letters codes used here and full biogeographical provinces names, as well as descriptions of
all other environmental variables are available in Supplementary Data 2). A map of Longhurst biogeographical provinces42 colored using the same color
scale is shown in the upper right panel. For simplification issues, other qualitative variables (season moment, depth, and ocean region) were not
represented. The closest sample from the Mediterranean ones in the CCA space, which comes from the closest Atlantic station to the strait of Gibraltar,
was highlighted by a plain black arrow. On the right and upper left panels, density plots are represented along each axis, illustrating the density of
functionally annotated and unannotated hlePFCs based on KEGG annotations (functionally annotated hlePFCs contain at least one functionally annotated
protein; functionally unannotated hlePFCs contain only functionally unannotated proteins). The mean hlePFC density was of 0.25 along CCA1 (standard
deviation= 0.2, maximum= 0.71), and 0.2 along CCA2 (standard deviation= 0.42, maximum= 2.46). The mean difference in density between
functionally annotated and unannotated hlePFCs along CCA1 was of 0.02 (standard deviation= 0.07, maximum= 0.23). The mean density difference
between annotated and unannotated hlePFCs along CCA2 was 0.01 (standard deviation= 0.24, maximum= 1.33). Similar observations were done using
eggNOG annotations densities (Supplementary Fig. 2).
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quorum sensing, or ABC transporters) were present homogeneously
in the CCA space (Supplementary Fig. 3). Functionally unannotated
hlePFCs were more abundant around −1 and above 1 along CCA1
(Fig. 2), corresponding to hlePFCs associated with Mediterranean
samples and Indian Ocean samples, respectively. The 166 dark
hlePFCs were associated with Mediterranean samples, and almost
absent from polar samples (Fig. 5B, Supplementary Fig. 3).

We then examined the position of hlePFCs associated with
different levels of taxonomic annotations in the CCA space.
hlePFCs containing sequences from the phylum Candidatus
Marinimicrobia were found mostly in Mediterranean samples
and were almost absent from polar waters (Fig. 4A). Overall, the
various phyla did not show any strong associations to a particular
niche in the CCA space (cf. the central positions and large
standard deviation bars for the various phyla on Fig. 4A).
Similarly, most of the classes’ barycenters on Fig. 4B showed
important standard deviation bars, with the exception of the
cyanobacterial class of Prochlorales which seemed restrained to
warm and oligotrophic waters (Fig. 4B). No particular order,
family, or genus was found to be strongly associated with
Mediterranean samples, and the genus Polaribacter was the only
taxa strongly associated with polar samples (barycenter position
on CCA2=−1.46).

In total, 3345 hlePFCs were highly overabundant in the
Mediterranean Sea (CCA1), corresponding to 8736 proteins from
193 different MAGs of 10 classes. 85 of these MAGs originated
from the same assembly performed by Delmont et al.21. on
Mediterranean samples, and accounted for 5537 proteins (63.4%
of the 8736 present in the zone, Supplementary Fig. 4). A similar
yet less marked pattern was observed along CCA2, with 189 of the

697 (26%) proteins of hlePFCs correlated to cold and rich waters
(CCA2 <−2) coming from MAGs of the Southern Ocean
assembly (Supplementary Fig. 4).

Our analysis allowed us to identify environmental variables
driving the abundance of functionally unannotated hlePFCs. For
example, PFC #90,382 was composed of eight unannotated
proteins coming from four different MAGs (3 Flavobacteriales, 1
Gammaproteobacteria), and had a strong response to high
temperature (Fig. 5A), as well as other environmental variables
(R2 value of 0.501 for the associated random forest model).
Conversely, PFCs #102,286 (two proteins coming from the same
Saprospiraceae, R2 value of 0.68), #210,456 (two proteins from
two distinct Flavobacteriaceae, R2 value of 0.83), and #233,673
(two proteins from two distinct Flavobacteriales, R2 value of 0.63)
were highly linked to cold temperature (Fig. 5A). PFCs #172,397,
#172,465 and #26,732 were dark hlePFCs overabundant in
Mediterranean samples (Fig. 5B).

Positions of all functionally and/or taxonomically unannotated
hlePFCs in the CCA space, the most important drivers of their
abundance according to random forest models, the nucleotidic
sequences of their proteins, and their MAGs of origins are all
publicly accessible (link in “Data availability”).

Robustness of the observed biogeographical patterns. In total,
6.2% of the 233,756 PFCs that were created in this study were
used in our biogeographical analysis. In section II of Supple-
mentary notes, we provide a similar biogeographical analysis, this
time including the 130,651 PFCs showing R2 values above 0.25,
i.e., 55.9% of the total 233,756 PFCs. A CCA based on these

Fig. 3 Barycenters of metabolic pathways detected at least 10 times in the canonical correspondence analysis (CCA) space. Gray dots represent
hlePFCs in the same way as in Fig. 2, while colored points indicate the barycenters of KEGG metabolic pathways that occurred at least ten times among
hlePFCs, the barycenter of a pathway corresponding to the barycenter of the positions of its associated hlePFCs. The color of each barycenter codes for the
number of PFCs annotated to the focal pathway, in log scale. A red triangle indicates the barycenter of all hlePFCs in the CCA space. The barycenter of dark
hlePFCs (i.e., hlePFCs without functional annotation and the taxonomical assignment below the phylum level) was represented in black Colored arrows
indicate the environmental conditions associated with the different zones of the CCA space (see Fig. 2).
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Fig. 4 Distribution in the canonical correspondence analysis (CCA) space of the barycenters of protein functional clusters highly linked to the
environment (hlePFCs) associated with particular taxa. A Six selected phylum and (B) seven selected classes. These taxa were selected because they
had the most peripheral barycenters’ positions in the CCA space. Error bars correspond to the standard deviations of hlePFCs positions around their
barycenters on CCA1 and CCA2 axes for each taxon. The size of barycenters represents the number of associated hlePFCs for each taxon, with the exact
corresponding values written in white in each barycenter and in the legend. Colored arrows indicate the environmental conditions associated with the
different zones of the CCA space (cf. Fig. 2).
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130,651 PFCs allowed to identify two samples from the surface
and deep chlorophyll maximum of station 93 as strong outliers
due to their singular position along CCA1 (Supplementary
Fig. 5A). The outlying nature of these two samples was explained
by the strong overabundance of PFCs composed of proteins from
5 MAGs of the genus Pseudoalteromonas (Supplementary Figs. 6
and 7). The general patterns observed using the 14,585 hlePFCs
(Fig. 2) were confirmed by the third and fourth dimensions of the
CCA on 130,651 PFCs (Supplementary Figure 5B).

Discussion
The functional composition of bacterial/archaeal planktonic
communities is driven by interactions between multiple envir-
onmental factors rather than by single variables

Building statistical models including 52 environmental vari-
ables to test for their effect on PFCs abundance, we were able to
quantify the impact of each variable both globally and in each
individual random forest model. Our results hence give access to
the most influential predictors of 228,914 PFC’s abundances (see

“Data availability”), while pushing towards a consideration of
other variables in addition to temperature and oxygen when
studying bacterial/archaeal communities functional composition.
Indeed, water temperature is commonly presented as the most
influential determinant of the taxonomic and functional com-
position of bacterial/archaeal communities5,23,43. Here, we found
temperature to be one of the best quantitative predictors of PFC
abundance. Still, it was determined as less important than other
quantitative variables like iron, carbonate, or oxygen concentra-
tions, but also salinity or bathymetry. However, when the tem-
perature was the most important variable in a model, it increased
the accuracy of abundance predictions, and it had a strong
influence on the biogeography of hlePFCs, showing how key this
variable is on at least some ecosystemic functions. Among all
environmental predictors, Longhurst biogeographical provinces42

were by far the most important variable in our random forest
models and were well distinguished on the CCA triplot (Fig. 2).
Longhurst provinces represent homogeneous areas both in terms
of physico-chemical and ecological conditions42, and the fact that
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Fig. 5 Detecting functionally unannotated protein functional clusters highly linked to environmental conditions. A Relationships between normalized
sequence abundance and temperature for six selected protein functional clusters highly linked to the environment (hlePFCs) that were only composed of
functionally unannotated sequences. The three graphs on the left, in purple, correspond to the three hlePFCs functionally unannotated in both KEGG and
eggNOG databases that had the lowest positions along the second axis of the canonical correspondence analysis (CCA2) (cold and nutrient-rich waters).
The three graphs in the middle, in green, correspond to the three hlePFCs functionally unannotated in both KEGG and eggNOG databases that had the
highest positions along CCA1 (oligotrophic and warm waters). B Relationships between normalized sequence abundance and location of sampling, whether
in the Mediterranean Sea or not, for 3 dark hlePFCs (only functionally unannotated sequences and no taxonomic annotations under the phylum level).
These 3 hlePFCs had the lowest positions among dark PFCs on the first axis of the canonical correspondence analysis (CCA2) (correlated to
Mediterranean samples). Each boxplot summarizes the abundance values of its focal PFC in Mediterranean samples (n= 6) and non-Mediterranean
samples (n= 87). Boxplots minima and maxima correspond to −1.5 and 1.5 times the interquartile range, while the limits of boxes correspond to the first
and third quartiles. The centerline indicates the median. All points outside of the minima-maxima range are plotted.
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temperature is one of the main variables used to define such
provinces could explain why it was not among the most impor-
tant variables in many statistical models, as the two variables
could bring redundant information in regression trees. Here we
thus suggest that functional composition is more impacted by
interactions between multiple variables, than by one or a few
variables like it has been previously suggested5,23. This result adds
to a similar observation made by a recent global biogeographical
analysis of planktonic communities, finding Longhurst biogeo-
graphical provinces to match the distribution of viruses, bacteria,
and eukaryotes smaller than 20 μm44. Sampling depth had among
the lowest impacts on our regression models, confirming the
weak differences in functional composition between surface and
deep chlorophyll maximum samples of picoplankton23.

Identifying PFCs and metabolic pathways associated with
particular environmental conditions. The identification of bio-
geographical provinces as best predictors of PFC’s abundance can be
interpreted as a consequence of the Baas Becking hypothesis
“everything is everywhere, but the environment selects”45,46, which
implies that all microbes are potentially ubiquitous, but dominant
taxa depend on the environmental niche. A precedent study observed
this pattern at the protein level, by comparing protein families
sampled in different ecosystems such as seawater, sludge water, or
soils, and showing that the ecosystem type had more impact on
protein families composition than geographical distance46. Another
study based on meta-omics data found the environmentally-
mediated selection to have a strong impact on the biogeography of
the cosmopolitan SAR11 order Pelagibacterales43. Here, by identify-
ing Longhurst biogeographical provinces to be the best predictors of
PFCs abundance, we verify that environmental niches are the most
determinant drivers of marine bacterial/archaeal communities func-
tional composition. However, the fact that 44.1% of our PFCs showed
poor responses to environmental conditions challenges the extent of
applicability of the Baas Becking hypothesis at the protein level, at
least within a single ecosystem. It could be explained by the high
decoupling observed between functional diversity and taxonomic
diversity among marine bacterial/archaeal communities17. Indeed,
functional redundancy among bacteria/archaea can lead to stable
functional diversity even with high taxonomic variability47. In our
analysis, we chose to focus on changes in communities functions
because it could lead to more stable abundance measures than when
relying on taxonomic entities, and provide thus more valuable
information on the ecosystem functioning and associated biogeo-
chemical functions17,23,47.

Still, 55.9% (130,651 over 233,756) of the PFCs were linked to
environmental gradients, and 6.2% (14,585 over 233,756) showed
strong responses to particular environmental conditions. Among
these 14,585 PFCs identified as hlePFCs, we observed a clear
distinction between the ones associated with polar nutrient-rich
waters and those abundant in tropical nutrient-poor ones, which
is coherent with classical observations in marine ecology30,48.
Metabolic pathways like RNA polymerase or Ribosome could be
associated with eutrophic conditions and colder waters (Fig. 3),
potentially reflecting the higher growth potential and metabolic
activity of micro-organisms in the eutrophic conditions of the
polar summer49. No particular metabolic pathway could be
associated with warm and oligotrophic waters, but proteins from
a class of Cyanobacteria were overrepresented in hlePFCs
abundant in these waters, which may reflect that cyanobacteria
are particularly abundant in subtropical waters50.
Biogeochemistry-related pathways such as methane metabolism,
carbon fixation in photosynthetic organisms, carbon fixation
pathways in bacteria/archaea, or nitrogen metabolism were
correlated to a wide range of physico-chemical conditions

(Supplementary Fig. 3). Hence, such key biogeochemical func-
tions seem ubiquitously present in the global ocean but can be
achieved by different actors and protein families depending on
the environmental conditions.

More surprisingly, we identified Mediterranean samples as
clear outliers, with an important part of hlePFCs showing higher
abundances in Mediterranean samples than elsewhere. These
samples could not be characterized by the relative over-
abundance of particular metabolic functions, and only displayed
a light over-abundance of proteins from MAGs of the Candidatus
Marinimicrobia phylum, which is composed of poorly known and
yet uncultivable bacteria of potentially high biogeochemical
impact51. Our strongest hypothesis to explain this pattern lies
in the fact that the Mediterranean Sea is a semi-enclosed sea that
experienced multiple isolations and colonization events52. For
some pelagic species, the strait of Gibraltar constitutes a
phylogeographic barrier causing genetic contrasts between
Atlantic and Mediterranean populations52,53. Here, we identified
most Atlantic samples (especially the South Atlantic ones) to be
closer to Pacific samples than to Mediterranean ones in terms of
hlePFCs composition, with the exception of one which came from
the mouth of the strait of Gibraltar. The Mediterranean Sea was
the biogeographical zone exhibiting the strongest over-abundance
of locally assembled proteins, while even hlePFCs associated with
Southern Ocean samples contained many proteins from Atlantic-
assembled MAGs. This way, hlePFCs overabundant in Mediter-
ranean samples shared only very few links with proteins from
MAGs of other assemblies in our SSN, highlighting their
functional and taxonomical originality. We then propose that
the strait of Gibraltar and the Suez canal could shape the genetic
and functional structure of some planktonic bacterial/archaeal
populations, as it is observed in some eukaryotic species52,53.

Finally, our analysis of PFCs showing R2 values above 0.25
(Section II of supplementary notes) highlighted station 93 as a
strong outlier in PFC composition. This station is the closest to
the Chilean coast in our dataset and corresponds to an upwelling
zone, which makes it an original station in terms of environ-
mental conditions. It was characterized by the over-abundance of
PFCs associated with the Pseudoalteromonas genus. Pseudoalter-
omonas is a cosmopolitan genus of Gammaproteobacteria that is
known for producing biologically active molecules notably
including toxins, anti-bacterial and anti-fungal agents, sometimes
used as weapons against other organisms and which can be
pharmaceutically relevant54,55. Pseudoalteromonas bacteria are
known for being able to survive in extreme environments56 and
are not commonly associated with upwelling areas, although they
are known to interact with macroalgae in such nutrient-rich
coastal environments57. Here, we give the public access to a set of
1928 PFCs associated with the Pseudoalteromonas genus that was
particularly abundant in a strong upwelling area, among which
127 were unannotated in both KEGG and eggNOG databases (see
“Data availability”). These clusters could be related to ecological
interactions between Pseudoalteromonas bacteria and algae, but
the originality of station 93 in our dataset as a coastal and
upwelling area prevents us from drawing any strong conclusions
on their ecological role here. In section II of the Supplementary
notes, we discuss why these PFCs were not found among
hlePFCs, and highlight how the inclusion of more samples from
similar coastal and/or upwelling areas would help to strengthen
our results concerning these Pseudoalteromonas related PFCs.

Mining the unknown to identify potential key organisms and
proteins. The main originality of our approach is its ability to
take into account both annotated and unannotated sequences. It
enables the identification of PFCs composed of functionally
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unannotated sequences, of taxonomically unannotated sequences,
and of both, leading here to the inclusion of at least 15% more
proteins than methods excluding functionally unannotated
sequences. By including 7834 PFCs corresponding to 20,552
protein sequences that could not be annotated under the phylum
level nor to a biological function, we propose an original way to
highlight the response of dark omics abundance to environmental
gradients. While a previous study estimated that the inclusion of
dark omics sequences could increase by up to 58% the amount of
analyzed sequences40, we provide here a pragmatic bioinformatic
pipeline that helps to extend our knowledge in environmental
microbiology.

It is often proposed that most of the unidentified microbial
diversity could come from rare organisms, described as part of the
“rare biosphere”, and which are considered as diversity reservoirs
able to respond rapidly to environmental changes58,59. Our
results partly corroborate this theory (see section I of Supplemen-
tary notes), but we also found the 7834 microbial dark PFCs to be
relatively overabundant in 41% of our samples. This can be
explained by the fact that 72.5% of the proteins from our dark
PFCs came from Candidatus Marinimicrobia and Euryarchaeota
MAGs, two yet poorly studied and uncultivable phyla identified
as highly abundant in the global ocean, and potentially impacting
biogeochemistry51,60,61.

Our analysis allowed us to describe the biogeography of 1347
functionally unannotated hlePFCs, which might participate in
metabolic pathways involved in functional responses to peculiar
environmental conditions. They included 166 dark hlePFCs,
mainly related to Proteobacteria and Candidatus Marinimicrobia
MAGs, the latter being associated with Mediterranean samples. In
addition, more than half (52.9%) of the models associated with
dark PFCs showed R2 values above 0.25, and the mean R2 values
over the 7834 models associated with dark PFCs were similar to
the one over all models. We then show that the response of dark
PFCs to environmental gradients is comparable to the one of
taxonomically and functionally annotated PFCs.

Our method being applicable to any set of sequences, we
predict that an accumulation of similar results on multiple
datasets will help identify recurrent unannotated protein clusters
linked to specific environmental niches62. It could further help to
target wet-lab studies towards the description of unknown
proteins particularly adapted to specific conditions, like sub-
tropical nutrient-poor waters or oxygen minimum zones51.
However, functionally unannotated hlePFCs sometimes con-
tained proteins from only one MAG, and in this case their
response to environmental gradients could be a reflection of the
global abundance of this MAG instead of a real functional level
response. We then advise future wet-lab investigations to mainly
select PFCs involving proteins from different MAGs. To pave the
way for such further analyzes, we have provided all nucleotide
sequences for each microbial dark matter PFC, as well as the
statistics associated with their response to environmental
gradients (see “Data availability”).

Towards more global quantitative studies of meta-omics at the
function level. Statistical models in this study were based on the
abundances of each PFC in 93 metagenomic samples. For each
random forest model, 75% of the samples (i.e., 70 samples) were
used as a training set. Even though each model was run 10 times
on 10 distinct training sets, it remains a relatively low amount of
samples to do abundance predictions and extrapolations at the
global ocean scale (as a way of comparison, 181 samples allowed
to predict diatoms abundance from environmental data in a
Chinese river63). Hence, machine learning models were not used
to provide extrapolated predictions in this study, but to detect

PFCs hlePFCs and the main drivers of their biogeography.
However, as more and more omics datasets are collected in the
global ocean23,26,64,65, we assume that similar approaches could
be conducted with much more samples in the near future, which
should increase models’ performances. By using less than
100 samples, we were nonetheless able to obtain 14,585 models
with R2 values over 0.5. It highlights the potential of such
quantitative approaches for predicting the abundance of key
protein families in the global ocean. Moreover, our dataset was
only composed of metagenomics samples, when it is hypothesized
that a big part of bacterial/archaeal communities response to
environmental change comes from variations in gene
expression66. This assumption was recently disputed23, but
applying our method to metatranscriptomes in the future would
allow using the environmental context to predict protein
expressions instead of metagenome sequence abundances, which
could help to improve the accuracy of models predictions.

In the future, biogeochemical modeling should benefit from
our ability to quantify and predict biological functions using
environmental and omics data10,13,14,24,67. Through our quanti-
tative and data-driven analysis, we have shown one illustration of
how metagenomics data can be used without a priori choices of a
taxon or metabolic function. We (1) identified qualitative
variables such as ocean regions and Longhurst provinces to be
more informative than single quantitative variables to predict the
functional composition of marine bacterial and archaeal com-
munities, (2) identified temperature not to be a better predictor of
PFC abundance in comparison to other correlated quantitative
variables such as oxygen or salinity, (3) identified Mediterranean
samples as outliers in terms of PFC composition, which to our
knowledge had not been observed before using meta-omics data,
(4) investigated dark PFCs response to environmental fluctua-
tions, whereas the majority of studies ignore them41. Finally, we
provide public access to PFCs along with their taxonomic and
functional annotations, but also information on their relation-
ships with particular environmental contexts, the predictability of
their abundances, and their most important environmental
drivers. We have then paved the way for more quantitative
analysis taking advantage of the richness of global omics datasets,
both at the functional and taxonomic level, which should in the
long term increase our ability to better predict future global
climate.

Methods
Samples collection and MAGs. We focused our study on the 885 non-eukaryotic
MAGs made publicly available21. The whole bioinformatic workflow designed to
build these MAGs, as well as all the links leading to the fasta files and Anvi’o68

profiles for each MAG can be found at http://merenlab.org/data/tara-oceans-mags/.
These MAGs were built from 93 Tara Oceans metagenomes retrieved from
61 surface samples and 32 deep chlorophyll maximum samples collected worldwide
in the global ocean, using a size filter targeting free-living microorganisms (0.2–3
μm). Original metagenomes are available under the European Bioinformatics
Institute (EBI) repository with project ID ERP001736. To date, the work achieved by
Delmont et al.21. constitutes the only database of manually refined MAGs con-
structed using the Tara Oceans project data. Automated binning efforts provided
larger numbers of MAGs and focused on multiple sizes fractions20, but are subject
to higher binning errors, causing sometimes obvious contigs misplacement (as
discussed here: https://bjtully.github.io/posts/2018/10/re-visiting-tmed-mags/).
Further information on the MAGs’ genomic features, such as their completion or
GC content, can be found in Supplementary Table 5 of Delmont et al.21.

Gene detection and quantification. Prodigal v2.6.369 was run to retrieve the
nucleotide and protein sequences of each detected gene for each of the 885 MAGs.
By concatenation, one nucleotide and one protein fasta files were created, con-
taining each in total 1,914,171 sequences. The nucleotide sequences were then used
for the mapping and quantification step (hereafter developed) whereas the protein
sequences were used for building the SSN (cf. next paragraph).

The nucleotide file was used as an index to quantify the MAGs’ genes abundance
in the 93 metagenomes used by Delmont et al. for the MAGs binning process21. For
this, we mapped metagenome reads to the MAGs gene catalog using the quant
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function from Salmon v.0.11.370 in quasi-mapping mode, with the following
parameters “–libType A–meta–incompatPrior 0.0–seqBias–gcBias–biasSpeedSamp”.
To normalize the obtained read counts, we divided them by the gene length, and by
the total of sequenced reads per sample, then multiplied them by 10e9. The obtained
value is analogous to RNA-seq transcripts per million value (TPM), except that
TPM calculation is based on the total amount of reads that mapped to the
transcripts index, while we used here the total amount of reads that have been
sequenced in each sample (e.g., mapped+ unmapped). In fact, the underlying
assumption behind TPM and other RNA-seq orientated normalizations is that all
compared samples should come from similar tissues, hence displaying a comparable
number of mapped reads, which is incompatible with environmental metagenomics.
Indeed, Tara Oceans samples contain variable quantities of biological matter coming
from different sampling in the global ocean, leading them to have very variable
amounts of total sequenced and mapped reads. Typically, if a sample has a high
total number of sequenced reads but a low number of mapped reads, it will still
display high abundance values for the few mapping reads when using the classic
TPM normalization, while it would not be the case with our method.

Building an SSN from 885 bacterial/archaeal MAGs. An SSN is a graph object
in which vertices correspond to sequences and edges represent the similarity and
coverage between pairs of sequences31–35. Diamond v0.8.2271 was used in blastp
mode to compute the percentage of similarity between every pair of proteins
detected in the MAGs, using options “−e 1e−3 −p 30–sensitive”. An SSN was built
with the diamond output using 80% identity and 80% coverage threshold. This
coverage threshold is commonly used in SSN studies33,35,72 and we also tested 4
other similarity thresholds: 70%, 75%, 85%, and 90%. We selected the intermediary
80% identity threshold to minimize the amount of singletons while maximizing the
functional homogeneity between linked proteins.

Extracting, annotating, and quantifying PFCs in the SSN. An SSN is made of
singletons (vertice or sequence without any homology with other sequences) and
CCs (subgraphs composed of at least two vertices disconnected from the rest of the
network). In our case, a CC corresponds to a group of at least two protein
sequences that are linked together (directly or via neighbors), and that have no link
with other groups of sequences in the SSN. We assume that the proteins contained
in a CC potentially share a similar molecular function31–33,72. The term “protein
family” is often used to describe such clusters of homologous proteins, but as this
term is usually used to deal with evolutionary relationships, we here prefer the use
of PFC.

Our SSN was composed of 233,756 PFCs, including 757,457 proteins (i.e.,
1,156,714 singletons were excluded from the analysis). These proteins were
functionally annotated using eggNOG mapper v4.5.138,39 and KofamScan v1.2.037.
EggNOG emapper was run using the diamond mode and the–no_annot flag. It
produced a table containing seed orthologous sequences for 677,684 of our proteins
(89.5%), the rest of them not being similar enough from any sequence in the
eggNOG database. The annotation phase was then launched on these 677,684
proteins, using the seed orthologous sequences table as input to the emapper
function, and the–annotate_hits_table flag. We obtain an annotation table with GO
IDs, KEGG IDs, and eggNOG descriptions. KoFamScan was launched with default
options and -mapper flag. The KEGG API was then used to retrieve KEGG
pathways ID and descriptions for each KEGG ID identified by KoFamScan in our
protein catalog. To assess for the functional homogeneity in our PFCs, we
computed a homogeneity score Fhom:

Nannot > 1 ) Fhom ¼ 1� Nannot

Nprot
ð1Þ

Nannot ¼ 1 ) Fhom ¼ 1 ð2Þ

With Nannot the number of unique annotation terms found in the PFC (either
KEGG IDs or eggNOG terms), and Nprot the number of proteins in the PFC.

As multiple eggNOG terms can exist for similar functions (e.g., “UBA-ThiF-
type NAD FAD-binding protein” and “UBA-THIF-type NAD FAD-binding”), they
can lead to artifactually low homogeneity scores. For this reason, PFCs with low
homogeneity scores obtained with the EggNOG database were tagged as poorly
homogeneous but were kept in the analysis.

Statistics on functionally unannotated PFCs presented in Tables 1 and 2 include
both (1) query sequences that did not match to any reference in public databases,
and (2) query sequences that match to one or multiple references in public
databases but could not yet be associated to any biological function.

To assess taxonomic diversity in our PFCs, we used the taxonomic annotation
of the 885 MAGs provided by Delmont et al.21. This taxonomic annotation was
inferred from 43 single-copy core genes through the combined use of CheckM73,
RAST74, and manual BLAST searches (see21 for further details).

We computed a mean abundance for each PFC in each of the 93 metagenomes,
using relative protein abundances (see Gene detection and quantification). We
obtained an abundance table composed of 233,756 rows, corresponding to PFCs,
and 93 columns, corresponding to the 93 Tara Oceans metagenomes used in
the study.

Environmental dataset. For each of the 93 Tara Oceans metagenomes, we
retrieved the environmental context from Faure et al. (https://figshare.com/articles/
Data_MixoBioGeo_Faure_et_al_2018/6715754)30. To complete this environmental
dataset, we added 10 climatology variables retrieved from the World Ocean Atlas:75

temperature, salinity, density, conductivity, dissolved oxygen, percent oxygen
saturation, apparent oxygen utilization, silicate, phosphate, and nitrate. Finally, we
added the upper limit of the size fraction as an environmental variable, as it varied
across samples. For temperature, salinity, and conductivity we retrieved the mean
and the mean seasonal anomaly at each sampling point (precision of 1°) over the
2005–2012 period. Only the mean was retrieved for density. For the 6 other
variables, we retrieved the mean and the mean seasonal anomaly at each sampling
point (precision of 1°) over all available years. In total, we obtained 74 environ-
mental variables, which we reduced to 51 by getting rid of near-zero variance
variables and too highly correlated ones, using options “nzv” and “corr” from the
preProcess function of the caret package v6.076 in R v3.5.377. A detailed description
of these variables is available in Supplementary Data 2. We then scaled and cen-
tered the 51 selected environmental variables, and used a k-nearest neighbors
approach to replace NA values (6.6% of the data) by the mean of the concerned
variable in the five nearest samples in terms of global environmental profile
(knnImpute option from caret’s preProcess function76).

Identification of PFCs varying along environmental gradients. Among the
233,756 PFCs, we detected 4842 (2,1%) clusters with near-zero variance using caret
preProcess function76 with default parameters, i.e., they had less than 10% of
abundance values across all samples that were distinct, and a ratio between the
most common abundance value and the second most common one that was higher
than 95–5. These clusters were removed from further statistical analysis. We built a
random forest regression model for each of the remaining 228,914 PFCs, using the
environmental variables as predictors of cluster relative abundance. To suppress
eventual biases linked to over/underfitting due to training set selection, each model
was launched 10 times using 10 different training sets built using 75% of the
93 samples available. For each iteration, i.e., for each pair of the training set and
PFC, a random forest regression model was trained using a fivefold cross-validation
process, and the number of randomly tested predictors at each split was optimized
between a minimum of 5 and a maximum of 9 (the default value being of 7, the
floored square root of the number of environmental variables), while the number of
trees was fixed to 500. The model minimizing the root mean square error (RMSE)
was selected for each iteration and used to compute the mean prediction error over
the 10 iterations, as well as the mean R2, and the mean rank of importance in the
model for each environmental predictor. For each iteration, the selected model was
also used to produce predictions over the test set, and the mean R2 of these
predictions was computed over the 10 iterations. This way, we have for each PFC
an R2 based on the out-of-bag samples of the cross-validation process, and an R2

based on predictions over the test set (Fig. 1B). The mean R2 obtained from the
out-of-bag samples was used to discriminate PFCs following significant environ-
mental gradients from the ones showing no response to the environmental context.
Specifically, we considered every PFCs associated with a model with a mean R2

value over the arbitrary threshold of 0.5 to be hlePFCs, and over 0.25 to be linked
to environmental gradients. Different thresholds ranging from 0.25 to 0.75 were
tried for the definition of hlePFCs, thresholds higher than 0.5 tended to select too
few PFCs, and mainly the ones overabundant in the Mediterranean Sea, while too
low thresholds tended to diminish the R2 value and readability of the CCA
(cf next section). All random forest models were launched using the rf function of
the randomForest v4.6 R package78 through the train function of the Caret
package76.

Biogeography of PFCs linked to environmental gradients. We used a CCA to
describe in a more integrated way the relationships between PFCs and environ-
mental variables. The CCA used the relative abundance table of all PFCs linked to
environmental gradients (mean R2 of random forest regressions > 0.5) as response
variables, and 17 selected environmental variables as explanatory variables: bio-
geographical province, ocean region, season moment (i.e., early/middle/late),
temperature, depth, depth of the euphotic zone, conductivity seasonal anomaly, sea
surface temperature gradient, moon phase proportion, depth of the O2 minimum,
calcite saturation state, fluorescence, NO3 at 5 m, chlorophyll a, total alkalinity,
salinity, iron at 5 m. The 17 environmental variables were selected through a
backward and forward stepwise selection based on the AIC criterion79.

Using positions of PFCs in the two first dimensions of the CCA space (29.09%
of variance), we computed a barycenter position for each metabolic pathway
detected among hlePFCs (Fig. 3). Similarly, we computed barycenters for phyla,
classes, and genomic assemblies in the CCA space (Fig. 4, Supplementary Fig. 3).
Finally, convex hulls englobing all PFCs associated with a pathway were drawn for
a selection of pathways corresponding to (1) pathways linked to inter-organisms
interactions, (2) pathways associated to a priori selected biogeochemical functions,
and (3) pathways composed of only unknown sequences (Supplementary Fig. 3).

The exact same methods were applied to compute the biogeographical analysis
of the PFCs associated with the models with R2 values above 0.25 (see Section II of
Supplementary materials).
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Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Instructions on how to build or download the MAGs and metagenomes used in this
study are available at http://merenlab.org/data/tara-oceans-mags/. Tools and databases
used for functional annotations are available at http://eggnog-mapper.embl.de/ and
https://www.genome.jp/tools/kofamkoala/. All other data used in this study are available
at 10.6084/m9.figshare.12030795, including fasta files containing nucleotide sequences of
all proteins in PFCs, hlePFCs, dark PFCs, PFCs associated with Station 93, and PFCs
associated with Station 93 linked with Pseudoalteromonas MAGs. In this figshare
repository, we also provide summary tables including all PFC and random forest
associated statistics (e.g., all homogeneity and unknown scores, R2 values, variables
importances) for each PFCs, hlePFCs, and dark PFCs. Finally, we offer tables at the single
protein level showing the PFC ID, taxonomic and functional annotations, and nucleotide
sequences of each protein in PFCs, hlePFCs, and dark PFCs.

Code availability
All bash, perl, and R codes necessary to reproduce our analysis are available at https://
github.com/EmileFaure/MAGsProteinFunctionalClusters80.
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