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Abstract: Timely and efficient monitoring of crop phenology at a high spatial resolution are crucial
for the precise and effective management of agriculture. Recently, satellite-derived vegetation
indices (VIs), such as the Normalized Difference Vegetation Index (NDVI), have been widely used
for the phenology detection of terrestrial ecosystems. In this paper, a framework is proposed to
detect crop phenology using high spatio-temporal resolution data fused from Systeme Probatoire
d'Observation de la Tarre5 (SPOT5) and Moderate Resolution Imaging Spectroradiometer (MODIS)
images. The framework consists of a data fusion method to produce a synthetic NDVI dataset at
SPOT5’s spatial resolution and at MODIS’s temporal resolution and a phenology extraction algorithm
based on NDVI time-series analysis. The feasibility of our phenology detection approach was
evaluated at the county scale in Shandong Province, China. The results show that (1) the Spatial and
Temporal Adaptive Reflectance Fusion Model (STARFM) algorithm can accurately blend SPOT5 and
MODIS NDVI, with an R2 of greater than 0.69 and an root mean square error (RMSE) of less than
0.11 between the predicted and referenced data; and that (2) the estimated phenology parameters,
such as the start and end of season (SOS and EOS), were closely correlated with the field-observed
data with an R2 of the SOS ranging from 0.68 to 0.86 and with an R2 of the EOS ranging from 0.72
to 0.79. Our research provides a reliable approach for crop phenology mapping in areas with high
fragmented farmland, which is meaningful for the implementation of precision agriculture.
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1. Introduction

The phenology dynamics of regional vegetation reflect how ecosystems are responding to climate
change, and the timing of phenological cycles is often used as an effective parameter for gaining a
better understanding of vegetation-climate interactions and their implications on carbon cycling [1–3].
In the case of crops, phenology provides crucial information for irrigation scheduling, fertilizer
management, seasonal ecosystem carbon dioxide (CO2) exchange cognition, and biomass productivity
estimation [4,5]. Therefore, timely and accurate crop phenology detection is not only essential for
climate variability research but also significant for the scientific management and rational utilization
of farmland.

Traditionally, most crop phenology identifications involve time-consuming and laborious field
surveys. In recent years, with the development of remote sensing technology, a growing number of
studies have focused on utilizing satellite data to detect the phenology of different crops because the
frequent remotely sensed images have significant potential for monitoring vegetation dynamics [6,7].
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At present, to the best of the authors’ knowledge, phenology detections are mainly available at
medium or coarse levels because high-spatial-resolution images are constrained by either low temporal
resolution or low repeat cycles, and thus, it is almost impossible for these data to capture rapidly
changing crop phenology. Meanwhile, coarse spatial resolution data, such as the Moderate Resolution
Imaging Spectroradiometer (MODIS) [5,6,8], Systeme Probatoire d’Observation de la Tarre-Vegetation
(SPOT-VGT) [9,10], and NOAA Advanced Very High Resolution Radiometer (AVHRR) images [11,12],
are not suitable for phenology mapping in areas with fragmented landscapes because mixed pixels
may seriously affect the spectral characteristics in the coarse satellite images [8,13]. In some parts
of China, this limitation is more obvious because farmland is owned by different individuals and
is generally divided into small portions [14]. Therefore, detecting crop phenology at a high spatial
resolution is essential and extremely urgent in regions with small-scale fields.

Currently, although advances in satellite remote sensing provide more data source choices, data
with both high spatial resolution and high temporal resolution for extracting crop phenology at a
regional scale remain unavailable. To generate high spatial and temporal resolution data, various fusion
algorithms have been proposed and proven practicable. Gao et al. developed a Spatial and Temporal
Adaptive Reflectance Fusion Model (STARFM) algorithm for blending Landsat ETM+ and MODIS
data to generate daily surface reflectance data at ETM+ spatial resolutions firstly. Subsequently, several
modified methods aiming at improving the performance of the STARFM algorithm were presented [15].
For example, the Spatial Temporal Adaptive Algorithm for mapping Reflectance Change (STAARCH)
method, which was developed by Hilker et al., allows for an optimal input Landsat image to be chosen
and hence improves the accuracy of synthetic data [16]. Zhu et al. proposed an Enhanced Spatial
and Temporal Adaptive Reflectance Fusion Model (ESTARFM) and obtained more accurately blended
land surface reflectance data, especially over complex heterogeneous landscapes [17]. Recently, both
STARFM and ESTARFM have been successfully applied for the fusion of Landsat and MODIS data
in different environments [18–21], and several studies have attempted to test the feasibility of these
algorithms to fuse MODIS data with high-spatial-resolution data from other space-borne sensors [22],
which is very important for agriculture monitoring on more sophisticated levels. For example, Liu et al.
derived phenological parameters of C3 and C4 vegetation types at high spatial resolution through
fusing Landsat and time-series MODIS products [23]. Singha et al. have extracted the phenology of
rice in India based on the high spatio-temporal resolution data blended from China’s Environmental
Satellite (HJ-1A/B) and MODIS data [24]. All these applications have demonstrated the potential of
data fusion methods in crop phenology detection.

The objective of the presented study is to propose a framework for crop phenology detection
using high spatio-temporal resolution data blended from Systeme Probatoire d'Observation de la
Tarre5 (SPOT5) and MODIS products in spatially heterogeneous landscapes. In this research, we want
to answer two questions: (1) Is the STARFM algorithm appropriate for generating time-series data
with multiple combinations of SPOT5 and MODIS data sets; (2) Is the time-series data combining
SPOT5- with STARFM-predicted images suitable for detecting crop phenology changes in a typical
region with high fragmented farmland in the North China Plain (NCP)?

2. Study Area and Data

2.1. Study Area

The study was conducted in Dezhou city (115◦45′–117◦36′ E, 36◦24′–38◦1′ N), which is situated in
the western Shandong Province, one of the major production zones in China (as shown in Figure 1).
This area is dominated by irrigated agriculture and moist soil, with an annual mean temperature and
precipitation of 13.3 ◦C and 555.5 mm, respectively, concentrated from July to September. The farming
structure of the study site has typical characteristics of the planting pattern of the NCP, mainly a
rotation of winter wheat and summer maize, with occasional cotton and cash crops. The winter wheat
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is regularly sowed in mid-October and harvested in early June (wheat season), whereas summer maize
is planted in mid-June and harvested in late September (maize season).
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such as the SOS and EOS, were collected from 18 and 15 fields (sampling sites) during the growing 
season of winter wheat and summer maize to validate the phenology estimations. In particular, only 
relatively homogeneous and large fields which were comparable with the 250-m pixels of MODIS 
data were selected. A handheld global positioning system (GPS) from Unistrong Science & 
Technology Co., Ltd. (Beijing, China), with a positional accuracy of <5 m was used to record the 
location of each field [25,26]. Once the observation positions were determined, we went to the study 
area every month to survey the phenology information. But for the artificially planted crops, monthly 
frequency may not be sufficient because crops change quickly, so we also asked several local farmers 
to help us, they can record the phenological features (as shown in Table 1) every 5–10 days and thus 
can make up for our low observation frequency, the specific phenological date of each field was 
defined as when more than fifty percentage crops in this field has reached the same phenology stage.  

In particular, the SOS and EOS of winter wheat are corresponding to the jointing and maturity 
stages, while the SOS and EOS of summer maize are corresponding to the seven leaf and maturity 
stages of the ground observations. During the investigation periods, the crop and land use types were 
also recorded for the classification of different crops. 
  

Figure 1. Location and photographs of the study site. (a) Location of study area and sampling sites;
(b) Photograph of summer maize on 12 August 2015; (c) Photograph of winter wheat on 17 April 2015.

2.2. Data Acquisition and Processing

2.2.1. Ground Data

Field observation data of the crop phenology calendar from 2014 to 2015 within the study region,
such as the SOS and EOS, were collected from 18 and 15 fields (sampling sites) during the growing
season of winter wheat and summer maize to validate the phenology estimations. In particular, only
relatively homogeneous and large fields which were comparable with the 250-m pixels of MODIS data
were selected. A handheld global positioning system (GPS) from Unistrong Science & Technology
Co., Ltd. (Beijing, China), with a positional accuracy of <5 m was used to record the location of each
field [25,26]. Once the observation positions were determined, we went to the study area every month
to survey the phenology information. But for the artificially planted crops, monthly frequency may
not be sufficient because crops change quickly, so we also asked several local farmers to help us, they
can record the phenological features (as shown in Table 1) every 5–10 days and thus can make up for
our low observation frequency, the specific phenological date of each field was defined as when more
than fifty percentage crops in this field has reached the same phenology stage.

In particular, the SOS and EOS of winter wheat are corresponding to the jointing and maturity
stages, while the SOS and EOS of summer maize are corresponding to the seven leaf and maturity
stages of the ground observations. During the investigation periods, the crop and land use types were
also recorded for the classification of different crops.
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Table 1. Phenology stages and exact date in the study area. SOS: start of season; EOS: end of season;
DOY: day of the year.

Winter Wheat Summer Maize

Phenology Stage Date (DOY) Phenology Stage Date (DOY)

Sowing 288 Sowing 163
Emergence 298 Emergence 169

Tillering 325 Seven leaf 186 (SOS)
Wintering 349–51 (next year) Tasseling 222
Jointing 81 (SOS) Silking 227
Booting 103 Maturity 265 (EOS)
Maturity 153 (EOS) Harvest 274
Harvest 160 - -

Note: the date of each phenology in this table is the average value of date from all the sampling sites.

2.2.2. Satellite Data

Generally, daily and 8-day maximum value compositing (MVC) reflectance data can be obtained
from MODIS products. Although the daily data can better capture phenological differences, we
selected the 8-day composite MOD09Q1 product because the daily data can be easily affected by many
unavoidable factors such as clouds and haze. The MOD09Q1 data consist of red (R) and near-infrared
(NIR) bands, and the spatial resolution is 250 m. The title number of the MODIS data which covered
the study area is H27V05 and the MODIS product used in this study were from DOY281 (281st day
of the year) in 2014 to DOY289 (289th day of the year) in 2015, a period covered the entire growing
period of wheat and maize.

The SPOT5 satellite was successfully launched in May 2002 and can obtain high-spatial-resolution
data (10 m in the visible and near-infrared region and 20 m in the shortwave infrared region), with
a four-band spectrum ranging from 0.49 to 0.68 µm in the visible region (green and red bands) and
from 0.78 to 1.78 µm in the infrared region (near-infrared and shortwave infrared bands). In total, we
obtained ten SPOT5 images with less than 10% cloud cover during the 2014–2015 agricultural year, as
shown in Table 2. Moreover, the study area has a sample size of 3988 × 4240 pixels.

Table 2. SPOT5 image acquisitions used in this study.

Wheat Season Maize Season

Acquisition Date (Month/Day) DOY Acquisition Date (Month/Day) DOY

4/23 113 7/2 183
5/8 128 8/11 223
5/13 133 8/16 228
5/23 143 8/21 233
5/28 148 9/15 258

2.2.3. Auxiliary Data

An arable land mask derived from ChinaCover 2010 [27] and all the available multi-temporal
SPOT5 images which were also used for data fusion were employed to generate spatial distributions
of wheat and maize in 2015 based on the support vector machine (SVM) method. The phenology maps
were then produced over the crop planting regions.
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3. Methods

3.1. Data Fusion

Recently, although many data fusion methods developed based on the STARFM algorithm
have been proven to improve the fusion accuracy in relevant research, STARFM was selected as the
algorithm to generate high-spatial-resolution time-series data because it is the foundation of other
fusion methods and because it has fewer restrictions. We used STARFM to directly blend vegetation
indices (VIs) derived from SPOT5 and MOD09Q1 because several studies have found that STARFM
method performs better when directly fusing VIs rather than when the reflectance is fused and then
the VIs are calculated [28,29]. The NDVI (Normalized Difference Vegetation Index) (Equation (1)) was
chosen because it has been proven to be an effective indicator for phenology extraction [30]:

NDVI = (ρNIR − ρR)/(ρNIR + ρR) (1)

where ρNIR and ρR represent the land-surface reflectance of the near-infrared and red
bands, respectively.

The STARFM algorithm requires at least one pair of high- and coarse-resolution images that were
obtained in the same period and a series of coarse resolution images for the desired dates to predict
high-spatial-resolution data. The implementation of STARFM was divided into two parts (wheat
season and maize season) because large variations in land surface may occur over different seasons.
Specifically, when taking growing stages into consideration, the SPOT5 data on 23 April (DOY113) and
the MOD09Q1 product on DOY113 (represents a maximum value composite data over a 8 day period
from DOY113 to DOY120) were selected as one pair, and the SPOT5 data on 16 August (DOY228)
and the MOD09Q1 product on DOY225 were chosen as another pair to predict the high spatial and
temporal resolution NDVI, therein covering the whole growth period of wheat and maize, respectively.
The remaining SPOT5 images were used to evaluate the accuracies of the blended NDVI. Prior to
implementing the STARFM data fusion algorithm, we used the MODIS Reprojection Tools (MRT) to
reproject and resample the MODIS data to the projection and spatial resolution of the SPOT5 image.
There is no need to further process the SPOT5 data because they were provided pre-processed for
geometric and atmospheric corrections by THEIA land data center [31].

3.2. Data Smoothing

The averaged time-series NDVI profile of the study area for wheat and maize which extracted
from MODIS data over the 2014–2015 agricultural season is shown in Figure 2, from which the
phenomenon can be obtained that there were still fluctuations in the original time-series NDVI profile
even though the reflectance had been composited, which was most likely caused by climate and
atmospheric changes.

Because undesirable noises may influence the accuracy of the phenology extraction results, it is
essential to eliminate such noises. In past decades, various filtering algorithms have been proposed
and employed to reconstruct time-series data. However, an affirmatory method that could always
achieve optimal results still did not exist. In this research, three different filtering methods, asymmetric
Gaussian functions (A-G), double logistic functions (D-L) and Savitzky-Golay (S-G) filtering in the
TIMESAT software, were tested to smooth the time-series NDVI. As shown in Figure 2, the S-G filtering
method performed better for noise removal than did the Gaussian and logistic functions even though
noise remained in the profile, which agreed with several previous studies [32]. Therefore, S-G filtering
was chosen to smooth the time-series data. In addition, the periods for winter wheat and summer
maize (i.e., the dash line in the figure) were determined by the observation dates shown in Table 1,
and there appears to be two peaks in the NDVI profiles during the wheat season, as wheat entered a
dormant period, during which the NDVI decreased from the first peak due to low temperatures and
wheat almost stopped to grow, while the respiration is still normal, therefore the actual greenness was
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going down [33], then the NDVI moved towards the second peak. In this study, we only distinguished
the SOS of wheat when it recovered from dormancy.
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3.3. Phenology Detection

Among the numerous methods for deriving seasonal parameters from the time-series NDVI,
the threshold method, which assumes that a specific phenology will start if the NDVI value exceeds
a previously defined threshold, is widely applied because it generally keeps dates within a certain
reasonable range and can thus achieve relatively high accuracies [9,34]. In general, the setting of
thresholds is usually based on the characteristics of the NDVI curve; however, these characteristics
vary with crop type changes, and different crops have their own phenological stages during their
growing seasons [35]. In this study, we adopted the method developed by Pan et al. based on the ratio
of NDVImin and NDVImax (NDVIratio) over a specific period for crops to determine thresholds of the
SOS and the EOS [14]. Here, specific periods were defined as from the beginning to the peak and from
the peak to the end of the season to identify the NDVImin for the definitions of the SOS and the EOS.
Since the NDVImin may be different at the start and end of season, the threshold values are also varied
for the SOS and the EOS. The NDVI ratio was defined as follows:

NDVIratio = NDVImin/NDVImax (2)

where NDVImin and NDVImax are the annual minimum and maximum values of a specific range of
time-series NDVI, respectively.

The threshold value for the SOS and EOS was dependent on the highest probability of the NDVI
ratio, Figure 3 provides an example of the NDVI ratio and threshold calculation of SOS for winter
wheat. In our study, the NDVI ratio of the SOS and EOS for wheat was calculated by NDVImin on
day 41 and NDVImax on day 129, and NDVImin on day 161 and NDVImax on day 129. While the NDVI
ratio of the SOS and EOS for maize was determined according to NDVImin on day 161 and NDVImax on
day 241, and NDVImin on day 281 and NDVImax on day 241, respectively. Later, the threshold values
were calculated based on the highest probability of NDVI ratio within the study area. Finally, crop
phenological features, including the SOS and the EOS, were extracted based on the thresholds and the
NDVI time series in the TIMESAT software [36], that is if the NDVI values reached the thresholds of
SOS and EOS for pixels in the images, we considered it’s the time of SOS and EOS.
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Figure 3. The calculation of NDVIratio of SOS for winter wheat and threshold value were then
determined based on the highest probability of NDVIratio.

3.4. Accuracy Assessment

Three statistical criteria, the coefficient of determination (R2), the mean absolute error (MAE) and
the root mean square error (RMSE) were selected to evaluate the estimated SOS and EOS. Due to the
small amount of observational phenology data (15 for winter wheat and 18 for summer maize), it was
quite inefficient to withhold part of the data to evaluate the phenology extraction results; therefore,
the leave-one-out cross-validation (LOOCV) approach was selected to examine the accuracy of the
estimation models [37]. The LOOCV method involves using one observation as the validation sample
and the remaining observations as the training samples; this procedure was repeated N (number of
the observation values) times. The R2, MAE and RMSE of the algorithm were then estimated through
averaging the values obtained from the N iterations:

R2 = 1− ∑n
i=1(Mi − Fi)

2

∑n
i=1(Mi − Ai)

2 (3)

MAE =
1
n
×∑n

i=1|Mi − Ei| (4)
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RMSE =

√
1
n

n

∑
i=1

(Mi − Ei)
2 (5)

where n is the number of observations, Mi is the measured value, Fi is the linear fitting value, Ai is the
average value of the measured data and Ei is the estimated value.

4. Results

4.1. The STARFM Prediction Results

Comparisons between the predicted and observed NDVI are provided in Figures 4 and 5.
The scatterplots show that all the predicted data were closer to the 1–1 line, which demonstrates
the good performance of STARFM algorithm in the fusion of SPOT5 and MODIS products. The R2

and RMSE were chosen to measure the strength of the relationship between the estimated results and
the reference data. Overall, the R2 was higher than 0.69, and the RMSE was lower than 0.11 for all
predicted data. Specifically, the R2 was between 0.69 and 0.86, and the RMSE was between 0.06 and
0.11 in the wheat season. Meanwhile, the R2 ranged from 0.76 to 0.85, and the RMSE ranged from 0.06
to 0.08 between the predicted and observed NDVI values during the maize season.

The results also show that correlations between the blended and referenced NDVI were lower
for DOY137 than for DOY121 and DOY129 in the wheat season, and the correlations were lower for
DOY257 than for DOY233 during the maize season. This indicated that the accuracies of the predicted
data decreased when the time interval increased, a finding consistent with several previous studies [23],
which may be due to the probability of land surface and sun zenith angle changes that increase with
increasing time spans. The prediction accuracy was significantly decreased for DOY145 and DOY177.
This is most likely caused by intense farming activities such as harvesting and sowing occurring at the
end and start of the growing season of the two crops, respectively.
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were between −0.10 and 0.10. In the following research, all ten SPOT5 images were used to predict 
high spatio-temporal resolution NDVI, and only the nearest SPOT5 images in both the forward and 
backward temporal directions were used for prediction in order to rely on high-resolution 
observations that were as close as possible to the prediction dates. This indicated that the NDVI 
prediction accuracy may be higher than the accuracy given above. Additionally, the real SPOT5- and 
the STARFM-predicted images were combined when detecting the crop phenology parameters. 
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(b) DOY217; (c) DOY233; and (d) DOY257.

Figure 6 shows the visual comparison of predicted and reference NDVI, from which we can
obtain that they had good consistency because most of the difference values presented in Figure 6c
were between −0.10 and 0.10. In the following research, all ten SPOT5 images were used to predict
high spatio-temporal resolution NDVI, and only the nearest SPOT5 images in both the forward and
backward temporal directions were used for prediction in order to rely on high-resolution observations
that were as close as possible to the prediction dates. This indicated that the NDVI prediction accuracy
may be higher than the accuracy given above. Additionally, the real SPOT5- and the STARFM-predicted
images were combined when detecting the crop phenology parameters.
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4.2. Crop Classification and Mapping

Based on the available multi-temporal SPOT5 images and SVM method, the distribution maps
of wheat and maize were generated (Figure 7). As shown in the two figures, most of the wheat and
maize fields were overlapped, indicating that the planting area kept stable. The classification results
were evaluated using the ground survey data (92 points for wheat and 104 points for the other types
during the wheat season; and 103 points for maize and 123 points for the other types during the maize
season), and the assessment indicators contains producer’s accuracy, user’s accuracy, overall accuracy
and kappa coefficient.
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Tables 3 and 4 provide the results of the assessment, respectively, from which we can obtain
that the overall accuracies for both wheat and maize were above 86%, and the kappa coefficients
were higher than 0.73 when using SPOT5 images, which is acceptable for crop mapping. Meanwhile,
the overall accuracies for both wheat and maize were below 75%, and the kappa coefficients were
lower than 0.50 when involved the MODIS data, which demonstrated that the classification accuracies
were improved with the spatial resolution increasing. This mainly because it’s easier to produce
mixed pixels in the coarse or moderate spatial resolution images and thus result in the relatively low
classification accuracies.

Table 3. Classification accuracies of winter wheat using the SPOT5 and MODIS data.

Class
SPOT5 Data MODIS Data

Producer’s Accuracy User’s Accuracy Producer’s Accuracy User’s Accuracy

Wheat 89.13% 83.67% 73.91% 67.33%
Others 84.62% 89.79% 68.26% 74.74%

Overall Accuracy: 86.73%; Kappa: 0.7347 Overall Accuracy: 70.92%; Kappa: 0.4210

Table 4. Classification accuracies of summer maize using the SPOT5 and MODIS data.

Class
SPOT5 Data MODIS Data

Producer’s Accuracy User’s Accuracy Producer’s Accuracy User’s Accuracy

Maize 91.26% 87.85% 75.73% 70.91%
Others 89.43% 92.44% 73.98% 78.45%

Overall Accuracy: 90.27%; Kappa: 0.8044 Overall Accuracy: 74.78%; Kappa: 0.4944

4.3. Crop Phenology Extraction and Mapping

Based on the smoothed data using the S-G filtering, the thresholds of the SOS and EOS were
determined. Figure 8 shows the histograms of the NDVI ratio of wheat and maize, all of which were
similar to normal distributions. According to the highest probability of the frequencies of NDVI ratio,
the thresholds of the SOS and EOS for wheat were 0.45 and 0.32, and the thresholds of the SOS and
EOS for maize were 0.35 and 0.31, respectively. To compare the crop phenology estimation accuracy at
different spatial resolutions, we extracted the SOS and EOS of wheat and maize in both the time-series
MODIS data at the 250 m resolution and the predicted data at the 10 m resolution with the same
selected threshold determination methods. Figure 9 shows the frequency distributions of the NDVI
ratio of wheat and maize based on the time-series MODIS NDVI, where the thresholds of the SOS and
EOS for wheat were 0.40 and 0.30 and the thresholds of the SOS and EOS for maize were 0.29 and
0.25. Overall, the threshold of the SOS and the EOS for wheat was larger than that for maize, and the
threshold of the SOS was larger than that of the EOS for each individual crop.

In addition, the threshold of SOS and EOS for both crops obtained from the blended data were
more representative than the threshold that achieved from the MODIS products because they were more
consistent with the normal distribution, which also showed the benefits of using high spatio-temporal
resolution data. The relationships between the estimated SOS and EOS dates and the observation
data are presented in Figures 10 and 11. Figure 10 is the extraction result based on the time-series
blended NDVI (10 m resolution), and Figure 11 shows the extraction result using the time-series
MODIS NDVI (250 m resolution). As shown in Figure 10, all the estimations were closely related to the
observations, with an R2 greater than 0.67 and an RMSE lower than 2.40 days, and an MAE of less
than 2.30 days. For the SOS of maize, the prediction obtained the highest R2 (0.86) and a relatively
low RMSE (2.26 days), whereas the smallest R2 (0.68) and largest RMSE (2.39 days) can be observed
in the SOS estimation for wheat. Although the R2 of the SOS and EOS was 0.57 and 0.52 for wheat,
it was 0.64 and 0.56 for maize when using the MODIS NDVI (Figure 11). Overall, the accuracies
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of estimations based on the time-series blended data with higher R2, lower RMSE and MAE were
better than the results using MODIS data, which was also mainly due to the influence of mixed pixels.
To minimise the influence of differences in spatial resolution in accuracy evaluation and demonstrate
the practical effect of applying this generated NDVI dataset in crops phenology extraction, the blended
NDVI was aggregated to the resolution of MODIS and then extracted phenology to spatially match the
estimation result derived from the original MODIS data. Improvement in accuracy can be seen from
the comparison between Figures 11 and 12, the R2 between estimated and observed phenology has
increased, while the RMSE and MAE has decreased. All of this have indicated the feasibility of the
proposed framework for crop phenology monitoring. Based on the methodologies described above and
the spatial distributions of the two crops, the maps and histograms of phenology parameters using the
blended time-series NDVI were generated and are presented in Figures 12 and 13. As shown in the four
figures, the histograms of the SOS and EOS also appear somewhat similar to normal distributions, and
most of the SOS and EOS values were between DOY70–DOY85 and DOY150–DOY165 for wheat and
between DOY179–DOY195 and DOY260–DOY275 for maize, indicating that the maximum difference
of the SOS and EOS within the study area was approximately half a month for both wheat and
maize. This demonstrated estimated results were acceptable within a specific range, and therefore the
spatial distributions of crop phenology can provide favourable supplement for the observation from
agro-meteorological station. Moreover, there is little overlap between estimated EOS in Figure 13 and
estimated SOS in Figure 14, the most likely reason is that the farmland belonged to many different
farmers in China and lacked unified management, so when to sow, fertilize and harvest was decided
by each one, and therefore led to this phenomenon.
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5. Discussion

Since numerous studies on vegetation phenology detection have been conducted using
coarse-resolution data, such as the AVHRR, MODIS, and SPOT-VGT time series at regional scales
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and few studies were found using high-spatial-resolution data for crop phenology monitoring at
small-field scales, we proposed a framework for phenology detection using high spatio-temporal
resolution data blended from SPOT5 and MODIS products in this paper. The research provided an
approach for crops phenology detection at a finer scale and achieved favourable results, and also it
showed various advantages of applying the time-series fused high spatial resolution data than the
coarse spatial resolution data for phenology monitoring in the study region. Therefore, our study is
very meaningful for the implementation of precision agriculture. However, several problems listed as
below necessitate further improvements though we were able to accurately extract phenology.

5.1. High Spatial Resolution Data

Besides the limitation that we used the 8-day MODIS data instead of the daily data, which
may led to low estimation accuracy, the major limitation is that an insufficient number of SPOT5
images were available at the early stages of wheat, which may thus cause inaccurate predictions
because of the long-time spans between the input data pair and the predicted date. In our study, the
accuracies of synthetic data in the early season were still reliable, although they may not be as accurate
as the predictions that were close to the input SPOT5 data because the land surface of the planted
areas remained stable, as most agricultural activities were suspended during this period. For the
implementation of STARFM algorithm, even if only one base high-spatial-resolution image exists
it also could predict time-series high-spatial-resolution data covering the whole growing season of
crops, greater access to high-spatial-resolution data may result in higher fusion accuracies and hence
improve the performance of crop phenology identification. In this study, the strong potential of fusing
high-spatial-resolution SPOT5 and high-temporal-resolution MODIS data for phenology detection has
been proven, but since the SPOT5 images are acquired from commercial satellite which need to buy,
we would like to test the free source and widely used data obtained from Landsat to extract phenology
parameters, Figure 15 presented relationships between the phenology estimation results using high
spatio-temporal resolution data blended from two image pair of Landsat8 OLI and MODIS and the
field observations, from which we can see although the correlations (R2 were between 0.64 and 0.82,
RMSE were between 2.14 and 2.78 days, and MAE were between 1.95 and 2.65 days) were lower than
the estimations involving SPOT5 data, they were significantly correlated with the measured values.
This demonstrated the feasibility of utilizing Landsat data to detect crops phenology at high spatial
resolution when the commercial SPOT5 images are unavailable. Exhilaratingly, with recent satellite
missions, such as Europe’s Sentinel-2 and Sentinel-3 and China’s Gaofen series, new possibilities
emerge for data fusion approaches extending to products from other space-borne sensors, which will
contribute to better crop phenology monitoring.
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5.2. Smoothing Methods

The smoothing algorithm is also an important limitation that may influence phenology extraction
from satellite images. In this study, we tested three filtering methods in the TIMESAT software,
and we used the RMSE to quantitative analysis the difference between the observed and smoothed
values. The RMSE values are presented in Table 5, from which we can determine that S-G performed
better among the three filtering methods as it had lowest RMSE, whether for wheat (0.0152) or
for maize (0.0272). Therefore, the S-G filter is considered more suitable for the time-series NDVI
reconstruction. However, numerous other smoothing techniques have been developed for processing
time-series remote sensing data, and no agreement has been reached on which filter performs best [38].
As this is preliminary and exploratory research, we did not discuss substantially more issues about
which filter is suitable or better; this is beyond the scope of this study. Further research should
make additional comparisons of using different filtering methods to estimate phenology parameters.
In addition, unfavourable weather conditions, such as cloud cover, are another restriction for phenology
monitoring. Although the MVC technique and smooth filtering can attenuate the influence of
intermittent cloud cover, the presented method may not perform well in regions with successive
cloud covers, which will lead to large data gaps in the NDVI time series and ultimately affect the
accuracy of the extraction phenology.

Table 5. RMSE values for the three techniques of data filtering.

Filtering Methods
Crop Types

Winter Wheat Summer Maize

A-G 0.0158 0.0291
D-L 0.0235 0.0453
S-G 0.0152 0.0266

Here, the RMSE value indicate the difference between the mean NDVI time series obtained from
the three noise-reduction techniques and the corresponding experimental time series to which noise
reduction has been applied. The smaller the value, the better of the filter.

5.3. Data Fusion Algorithms

Because the phenology estimations are mainly based on time-series analysis when using remote
sensing techniques, the reliability and stability of data fusion methods are very important because
they may greatly influence the accuracy of the blended high-spatial-resolution data. In this paper,
we only explored the potential of the STARFM algorithm for fusing SPOT5 and MODIS products.
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Although its capability has been demonstrated, the prediction accuracy is also affected by limitations
of the fusion algorithm. For example, even though the fields are very small in our study area, some of
them are adjacent with the same crops. In a way they behave homogenously, a bit like mega-fields
(composed of many small fields), so it may be easier to produce high spatial resolution data. But
inaccurate prediction results may occur in planting regions with complex crop types across adjacent
small-scale fields, such as Austria and Sahelian region in Europe and Africa, respectively [39,40].
Moreover, the STARFM algorithm cannot predict change events if the disturbances are not recorded in
at least one of the base high-spatial-resolution images [15,17]. Fortunately, a number of researchers are
devoted to improving the prediction accuracies and extending applications of the fusion techniques.
For example, the STAARCH and ESTARFM algorithms were proposed in an attempt to overcome
several limitations of the STARFM algorithm [14,17]. Recently, a framework for the ESTARFM
algorithm was developed to make it applicable for large, cloud-prone and heterogeneous areas [41].
For future improvements, we will thoroughly test the existing data fusion methods and appraise their
applications in phenology detection.

5.4. Geometric Accuracy and PSF

The geometric accuracy and point spread function (PSF) may also influence the results of
phenology estimations. Since we used several pairs of SPOT5 and MODIS images to predict desired
high spatial resolution data, if there are geometric errors in these images, they will mismatched and
the predicted high spatial resolution data will not be so accurate. Moreover, the geometric accuracy
also can influence the validation of the phenology extractions. The PSF of a sensor describes how
much of a signal reaching a detector element actually comes from adjacent areas outside the nominal
observation areas of the pixel and it weighs the signal over the image plane contributing to the detector
readout [42,43]. Therefore, when computing vegetation index for each low spatial resolution pixel, PSF
effects should be taken into account and the corresponding weights should be used to compute the
fractional coverage of each land use types [44]. According to Schowengerdt, the sensor PSF which has
been modelled in several studies includes several components: the optical PSF, the image motion PSF,
the electronic PSF, and the detector PSF [43–46]. Even though for some remotely sensed images, such
as the MERIS, the PSF can be negligible for the unmixing-based data fusion approach [44,47], it should
be noted that this is not the case when using MODIS data because its triangular PSF results in overlap
between adjacent observations such that 25% of the signal is from adjacent areas [48]. Therefore, the
MODIS PSF also should be taken into account for the improvements of data fusion algorithms and
phenology detections in the future’s research.

5.5. VIs’ Selection and Influence

Finally, since many VIs can be derived from hyperspectral images and since some of them are
widely used in the estimation of vegetation biochemical and biophysical variables [49–51], further
studies should be focused on assessing the performance of different VIs in phenology monitoring
when using remotely sensed time-series data. Recently, several studies have achieved some progress in
this interesting field. For example, Meng et al. found that EVI (Enhanced Vegetation Index) and NDWI
(Normalized Difference Water Index) performed better than SAVI (Soil Adjusted Vegetation Index)
and NDVI in the optimal harvest date extraction for soybean [52]. The WDRVI (Wide Dynamic Range
Vegetation Index) was selected by Sakamoto et al. to detect maize and soybean phenology because this
index has been proven to have a higher sensitivity to changes at moderate to high biomass compared
to the NDVI [5]. In the future, we should like to assess the performance of other VIs (e.g., EVI and
WDRVI) and evaluate their suitability and capability for crop phenology estimation.

6. Conclusions

The detection of crop phenology at a high spatial resolution is of crucial importance for agriculture
management in China, which is a large agricultural country with high fragmented fields. In this study,
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we proposed a framework to map crop phenology using high spatio-temporal resolution data blended
from the SPOT5 and MODIS products and verified its feasibility in an agricultural county in Shandong
Province, China.

Our results show that: (1) the STARFM algorithm possesses the ability to blend SPOT5 and
MODIS data. The R2 between the predicted and observed NDVI ranged from 0.69 to 0.86 and from
0.76 to 0.86 during the wheat season and maize season, with acceptable RMSEs; In addition, (2) the
fused datasets have the potential to detect crop phenology at a high spatial resolution. Based on the
threshold method, the SOS and EOS that were extracted from the time-series NDVI were consistent
with the field-observed data, with the R2 of the SOS varying from 0.68 to 0.86 and the R2 of the EOS
varying from 0.72 to 0.79; Finally, (3) the accuracy of phenology estimations that involved blended data
was better than that using MODIS data, indicating the strong feasibility and reliability of the proposed
framework for phenology monitoring.

This research demonstrates the potential of using high spatial and temporal resolution data
blended from the STARFM algorithm to detect crop phenology. Here, it was only used to fuse SPOT5
and MODIS data, but it is not limited to these two products. The proposed approach can easily be
used with other satellite images for accurate phenology monitoring at finer scales.
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