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Abstract
Topological signals are variables or features associated with both nodes and edges of a network. Recently, in the context of topological 
machine learning, great attention has been devoted to signal processing of such topological signals. Most of the previous topological 
signal processing algorithms treat node and edge signals separately and work under the hypothesis that the true signal is smooth 
and/or well approximated by a harmonic eigenvector of the higher-order Laplacian, which may be violated in practice. Here, we 
propose Dirac-equation signal processing, a framework for efficiently reconstructing true signals on nodes and edges, also if they are 
not smooth or harmonic, by processing them jointly. The proposed physics-inspired algorithm is based on the spectral properties of 
the topological Dirac operator. It leverages the mathematical structure of the topological Dirac equation to boost the performance of 
the signal processing algorithm. We discuss how the relativistic dispersion relation obeyed by the topological Dirac equation can be 
used to assess the quality of the signal reconstruction. Finally, we demonstrate the improved performance of the algorithm with 
respect to previous algorithms. Specifically, we show that Dirac-equation signal processing can also be used efficiently if the true 
signal is a nontrivial linear combination of more than one eigenstate of the Dirac equation, as it generally occurs for real signals.
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Significance Statement

Machine learning and physics have a long-standing relation. Most notably, neural networks are based on statistical mechanics’ early 
breakthroughs in understanding learning, such as the Hopfield model and the Boltzmann machines. Here, we show that theoretical 
physics insights can also boost topological signal processing. Topological signal processing of node and edge signals defined on net
works is gaining large attention, but the node and edge signals are usually treated separately. The topological Dirac equation general
izes the Kogut–Susskind staggered fermions, and can be used to jointly process node and edge signals when adopted to regularize the 
signal processing loss function. Here, we demonstrate that the proposed Dirac-equation signal processing boosts the performance of 
topological signal processing when the true signal is not harmonic.
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Introduction
Physics and AI are strongly related (1) as the theory of information 
is at the core of natural physical systems as well as of learning. 

Indeed, it is not by chance that the theory of learning has its roots 

in physically inspired models such as the Hopfield model (2) 

strongly related to statistical mechanics of disordered systems 

(3, 4). In more recent developments of the field, however, not 

only classical statistical mechanics has become relevant to under

standing learning but also high-energy physics (5, 6), quantum 

physics (7), and network science (8–10) that are closer to a geomet

rical and topological interpretation of data.
Topological signal processing (11–14) and topological machine 

learning (15–19), are currently at the forefront of AI and combine 

algebraic topology (20) and higher-order networks to learning. At 
the core of the field, lies topological data analysis (21, 22) that is 
now one of the principal approaches in computational neurosci
ence and has been shown to be very successful in extracting im
portant topological information encoded in brain data (23–27). 
More recently, growing scientific interest has been addressed in 
the development of machine learning algorithms for processing 
and learning topological signals defined on networks (graphs) as 
well as simplicial complexes. Topological signals are variables 
associated not only to nodes but also to the edges of a network 
or higher dimensional simplices of simplicial complexes. 
Topological signals and specifically edges signals are ubiquitous, 
as they can in general be used to represent fluxes defined on the 
edges and also vector fields (11) such as currents in ocean (28) or 
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speed of wind at a given altitude and different locations on the 
Earth. Edge signals are also considered to be key for brain re
search: at the neuronal level, they describe synaptic signals, while 
at the level of brain regions, there are recent proposals to extract 
and analyze these signals from brain data (29, 30).

From the perspective of higher-order networks (9, 10, 31–33), 
the study of topological signals greatly enriches the dynamical de
scription of the networks. Indeed topological signals can undergo 
collective phenomena such as topological synchronization 
(34–36), and topological diffusion (28, 37–39) that display signifi
cant differences with their corresponding node-based dynamics.

From the perspective of AI, signal processing of topological sig
nals (11–14) leads to new connections with topology that were less 
significant for graph signal processing (40), and leads to the defin
ition of a new generation of neural network architectures based on 
topology (41), on topological message passing (42) and on sheafs 
(43–45).

Most of the topological signal processing algorithms are based 
on the properties of the higher-order Laplacians (12, 46–48), also 
called the combinatorial higher-order Laplacians, and treat the 
topological signal on nodes, edges, triangles, and so on separately, 
one dimension at a time. However, the higher-order Laplacians 
are not the only type of topological operators that can be used 
to treat topological signals. Recently, the topological Dirac oper
ator (9) has been proposed as the key topological operator that 
can treat jointly topological signals on nodes and edges exploiting 
all the information in the data across different dimensions. In this 
context it has been demonstrated that the topological Dirac oper
ator can be used to propose Dirac signal processing (DSP) (49) that 
outperforms higher-order Laplacian signal processing when the 
true signal deviates significantly from a harmonic signal. 
Following these two works, the Dirac operator has become a 
new playground not only to test new emergent dynamical proper
ties of networks and simplicial complexes (35, 50–53) and to per
form Topological Data Analysis tasks (54–60) but also to 
formulate Dirac-based Gaussian processes (61) and Dirac-based 
neural networks (62, 63).

In this work, we propose the Dirac-equation signal processing 
(DESP) algorithm that can jointly process node and edge signals 
of a network. This algorithm is based on the mathematical prop
erties of the topological Dirac equation (64) that is the generaliza
tion to arbitrary lattices of the staggered fermions by Kogut and 
Susskind and the Dirac–Kälher fermions defined on lattices 
(65, 66) and is inspiring further research in theoretical physics 
(67–69) and AI (63). The DESP greatly improves the performance 
of the algorithm with respect to the DSP algorithm proposed in 
Ref. (49). Indeed, the use of the eigenstates of the topological 
Dirac equation allows us to treat node and edge signals of differ
ent scales whose offset can be modulated by learning an addition
al parameter of the model that plays the role of the mass in the 
topological Dirac equation. The DESP can be used to reconstruct 
signals that are not harmonic under very general conditions. In 
particular, if the true signal is aligned to an eigenstate of the topo
logical Dirac equation, DESP can be used to efficiently reconstruct 
the signal, outperforming both the Laplacian signal processing 
and DSP. In this case, the learning of the mass parameter can be 
done by minimizing the loss of the algorithm or can be achieved 
by implementing physics insights and looking for the recon
structed signal that more closely obeys the relativistic dispersion 
relation which characterizes the eigenstates of the topological 
Dirac equation. When processing real topological signals, how
ever often the true signal is not aligned along a single eigenstate 
of the Dirac equation. In this case, we propose to use the iterated 

Dirac-equation signal processing (IDESP) algorithm that recon
structs the true signal by singling out the eigenstates of the topo
logical Dirac equation forming its decomposition, one eigenstate 
at a time.

Here, the performance of the DESP and the IDESP is validated 
over both network models and real networks with both synthetic 
and real data. The performance of the physics-inspired DESP and 
IDESP has greatly improved with respect to the simple DSP, and 
this research opens the way for further use of the topological 
Dirac equation in machine learning.

Background
Topological spinor
A graph G = (V, E) is formed by a set V of N0 nodes and a set E of N1 

edges. In the following, we will combine algebraic topology argu
ment to signal processing. To this end, we will consider an arbi
trary orientation of the edges induced by the node labels. All our 
signal processing algorithms will be nevertheless equivariant 
under change of orientation of the edges, so the particular choice 
of the edge orientation will not affect the results of any of the dis
cussed signal processing algorithms. The dynamical state of a 
network G is fully determined by the topological spinor ψ (64) 
which comprises both the node and edge topological signals. 
Mathematically the topological spinor ψ is given by the direct 
sum ψ = χ ⊕ ϕ where indicated by a 0-cochain χ ∈ C0 encoding for 
the node signals and a 1-cochain ϕ ∈ C1 encoding for the edge sig
nals. Thus the topological spinor ψ ∈ C0 ⊕ C1 can be represented 
as the N = N0 + N1 column vector ψ ∈ RN with N = N0 + N1 of 
block structure

ψ = χ
ϕ

􏼒 􏼓

, (1) 

with χ ∈ RN0 being the N0 column vector representing the node sig

nals and ϕ ∈ RN1 being the N1 column vector representing the edge 
signals.

Laplacian signal processing
The boundary operator and the higher-order Laplacians
Discrete exterior calculus (9, 20, 32) allows us to perform discrete 
differential operator on topological signals that are fundamental 
to be able to process and filter them. The exterior derivative 
d : C0 → C1 maps node signals to edge signals and encodes the dis
crete gradient of the node signal. In particular dχ is a 1-cochain as
sociating to each edge the difference between the 0-cochain χ 
calculated at its two end nodes, i.e.

[dχ]ℓ=[rs] = χs − χr. (2) 

On an unweighted network, the discrete divergence of the edge 

signal d⋆ : C1 → C0 maps edge signal into node signal such that

[d⋆ϕ]r =
􏽘N0

s=1

ϕ[sr] −
􏽘N0

s=1

ϕ[rs]. (3) 

It follows that both of these operators can be encoded by the 
boundary matrix B is the N0 × N1 matrix defined as

Brℓ =
1 if ℓ = [s, r],

−1 if ℓ = [r, s],
0 otherwise,

⎧
⎨

⎩
(4) 

where B⊤ encodes for the discrete gradient and B encodes for dis
crete divergence. From the boundary operator, we can construct 

two higher-order Laplacians L[0] = BB⊤ also called the graph 
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Laplacian and L[1] = B⊤B also called the first-order Laplacian of the 

network. The higher-order Laplacians L[0] and L[1] describe re

spectively the diffusion from nodes to nodes through edges and 
the diffusion from edges to edges through nodes.

Discussion on Laplacian signal processing and the challenges 
that it raises
In this paragraph, we introduce the Laplacian signal processing 
(LSP) which is an umbrella model including both graph signal pro
cessing (40) and simplicial signal processing (11–14). Suppose we 
were given a noisy node or edge signal θ ∈ Cn with n ∈ {0, 1} given 
by a true signal θ plus noise, i.e.

θ̃ = θ + ϵ, (5) 

where ϵ is the noise usually assumed to given by i.i.d. variables as
sociated to each node (for n = 0) or each edge (for n = 1). For n = 0, 
the LSP assumes that the true node signal is smooth and thus is 
formed predominantly by low eigenmodes of the graph 
Laplacian (40). Similarly, for n = 1, LSP (11–14) assumes that the 
true edge signal is almost harmonic, and thus able to capture 
fluxes going around the holes of the network. Under these as
sumptions, the Laplacian signal processing allows to generate a 

reconstructed signal θ̂ that minimizes the loss function LL

LL = ‖θ̂ − θ̃‖22 + τθ̂⊤L[n]θ̂. (6) 

Note that the loss function LL is independent of the edge orientations 
thus the results of the LSP is not affected by the particular choice of 
the orientations of the edges. For more background into invariance 
and equivariance of topological machine learning algorithms with 
respect to the choice of edge orientation, we refer the reader to the in
teresting discussion in Ref. (41). The Laplacian signal processing is at
tracting significant attention for its ability to efficiently reconstruct 
almost harmonic true signal on networks. Moreover, its extension 
to higher-order topological signals allows the treatment of almost 
harmonic topological signals of higher dimension, i.e. defined also 
on higher dimensional simplices and cell complexes (11–14).

However, the Laplacian signal processing also has important 
limitations. On one side, it cannot be used to reconstruct true sig
nals that deviate strongly from harmonic signals. This is relevant 
because, while for diffusing signals smoothness is a natural as
sumption, in general, if we consider topological signals that cor
respond to real features associated to the nodes and edges of a 
network, we cannot always assume that the signal is smooth or 
close to harmonic. The other limitation of this approach is that 
Laplacian signal processing treats separately node and edge sig
nals while treating node and edge signals jointly might in principle 
contribute to reducing the error in the reconstructed signal. In or
der to address these two important limitations, we will need to use 
a regularization kernel defined in terms of the topological Dirac 
operator, defining first the Dirac signal processing and then fur
ther improving on this latter algorithm with the Dirac-equation 
signal processing inspired by theoretical physics.

Dirac signal processing
DSP has been recently introduced in Ref. (49) in order to jointly 
process noisy node and edge signals defined on a network. The al
gorithm can also be generalized to treat more general signal pro
cessing problems defined on simplicial complexes. The key idea of 
DSP is to reconstruct the true signal by minimizing a loss function 
that depends on the Dirac operator (64) rather than just on the 
higher-order Laplacian. This key idea is shown to be central in 

order to efficiently filter the noise from true signals that are not 
harmonic. In order to introduce DSP, let us first discuss the major 
properties of the Dirac operator.

Dirac operator
The Dirac operator D : C0 ⊕ C1 → C0 ⊕ C1 (64) is a differential oper
ator that maps topological spinors into topological spinors and al
lows topological signals of nodes and edges to cross-talk. On a 
network G, the Dirac operator D is defined as D = d + d⋆ and thus 
the matrix representation D of the Dirac operator is a N ×N ma
trix with the following block structure:

D = 0 B
B⊤ 0

􏼒 􏼓

, (7) 

where the boundary operator is defined in Eq. 4. Interestingly, the 
Dirac operator allows topological signals of different dimensions 
to cross-talk as it is apparent from evaluating the action of the 
Dirac operator on the general topological spinor ψ given by Eq. 1. 
Indeed, we have

Dψ = Bϕ
B⊤χ

􏼒 􏼓

, (8) 

thus the Dirac operator allows to project node signals into edge 
signals and edge signals into node signals. The constitutive prop
erty of the Dirac operator is that its square is given by the Gauss– 
Bonnet Laplacian, i.e.

D2 = L[0] 0
0 L[1]

􏼒 􏼓

. (9) 

Thus, the Dirac operator can be interpreted as the square root of the 
Laplacian. Therefore, the Dirac operator has a zero eigenvalue with 
degeneracy equal to the sum of the Betti numbers β0 + β1, and there 
is always a basis in which the harmonic eigenvectors are localized 
only on nodes or on edges. Moreover, since L[0] and L[1] are isospec

tral, the nonzero eigenvalues λ of the Dirac operator are given by

λ = ± ��μ√ , (10) 

where μ is the generic nonzero eigenvalue of the graph Laplacian 
L[0]. The eigenvectors associated to eigenvalue 

��μ√ and eigenvalue 

− ��μ√ are related by chirality (see for instance discussion in Refs. 

(49, 64)), thus if (χ, ϕ) is associated to the positive eigenvalue, (χ, − 
ϕ) is associated to the opposite eigenvalue. Thus, the structure of 
the eigenvectors of the Dirac operator associated to eigenvalues 
of increasing values (from negative, to zero, to positive) is given by 
the eigenvector matrix,

Φ = U 0 Uharm U
−V Vharm 0 V

􏼒 􏼓

, (11) 

where U and V are the matrices of left and right singular vectors of 
the boundary operator associated to its nonzero singular values, 
while Uharm and Vharm are the matrices of left and right singular vec
tors of the boundary operator associated to its zero singular values. 
In particular, we note that the nonharmonic eigenmodes of the 
Dirac operator associated to the eigenvalue λ enforce that the 

node signal χ is related to the edge signal ϕ by λϕ = B⊤χ and vice ver
sa λχ = Bϕ. Thus, node and edge topological signals of single eigenm
odes of the Dirac operator need to have a compatible normalization 
and are not allowed to have arbitrarily different scales.

Discussion on DSP and the challenges that it raises
The key idea of DSP introduced in Ref. (49) is to process jointly 
node and edge signals in order to be able to exploit all the relevant 
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information present in the topological spinor. We assume that the 
true data are encoded by the topological spinor ψ, but that we 
have only access to the noisy signal ψ̃ given by

ψ̃ = ψ + ϵ, (12) 

where ϵ indicates the noise. As we have seen in the previous chap
ters, the underlying assumption of LSP is that the true signal is 
harmonic, or close to harmonic. On the contrary, in DSP the 
underlying assumption is that the signal has a major contribution 
aligned with the eigenvector associated to the eigenvalue λ = E of 
the Dirac operator, where the exact value of E can be actually 
learned by the algorithm. Given the noisy signal ψ̃, DSP recon
structs the signal ψ̂ by minimizing the loss function L, independ
ent of the edge orientation and given by

L = ‖ψ̂ − ψ̃‖22 + τψ̂⊤(D − EI)2ψ̂, (13) 

where E ∈ R and I indicates the identity matrix. The regularization 

term R = ψ̂⊤(D − EI)2ψ̂ filters more the components of the meas
ured signal associated to an eigenvalue λ of the Dirac operator D 

that depart more significantly from E, i.e. for which (λ − E)2 is large. 
Note however that the parameter E is not an external input of DSP 
algorithm and can be learned by the algorithm under very general 
conditions (49). Therefore, the DSP algorithm learns the hyper
parameter E in an unsupervised way. Eventually, depending on 
the specific problem under consideration, the best parameter τ 
can be learned by running the algorithm on a training dataset. 
Here and in the following, however, we keep τ as a free parameter 
of our signal processing procedure in line with the literature on 
the subject (11, 12).

It is also instructive to consider the limit in which E = 0, i.e. the 
true signal is indeed almost harmonic. In this case, the loss L re
duces to

L = ‖ψ̂ − ψ̃‖22 + τψ̂⊤D2ψ̂. (14) 

and since D2 is the Gauss–Bonnet Laplacian defined in Eq. 9, it fol
lows that DSP in this limit reduces to the LSP treating node and 
edge signals independently.

Dirac signal processing has been shown (49) to have an excel
lent performance when the true signal is an eigenstate of the 
Dirac operator, while when it is applied to true data the accuracy 
of the signal reconstruction decreases. Here, we identify two rea
sons for this decrease in the performance on real data. One reason 
is that the nonharmonic eigenmodes of the Dirac operator imply a 
strict relation between the norm of the node signal and the norm 
of the edge signal, while on real data node and edge signals might 
have a different scale. The second reason is that the true signal 
might be given by the combination of more than two eigenmodes 
of the Dirac operator. In order to address these two limitations, in 
this work we propose the Dirac-equation signal processing and 
the iterated Dirac-equation signal processing that greatly im
proves the performance of the Dirac signal processing on real 
data.

Dirac-equation signal processing
Here, we introduce the DESP, a signal processing algorithm that 
can jointly process node and edge signals that reduces to LSP 
and to DSP in limiting cases and in the most general case can over
come the limitations of the previously discussed signal processing 
algorithms. The formulation of the DESP is inspired by theoretical 
physics and builds on the mathematical structure of the eigen
states of the topological Dirac equation (64). Thus, before 

discussing the DESP algorithm and its performance on synthetic 
and real data, let us first outline the main properties of the topo
logical Dirac equation.

Topological Dirac equation
The topological Dirac equation (64) is a differential equation for a 
quantum wave function defined on an arbitrary network. This 
equation is the natural extension to an arbitrary network of the 
staggered fermions by Kogut and Susskind (65) and the 
Dirac-Kähler fermions (66) defined on a lattice. The Dirac equation 
is a wave equation for the topological spinor, defined as

i∂tψ =Hψ, (15) 

where the Hamiltonian H is linear on the Dirac operator D and de
pends on the mass m ≥ 0 as

H = D + mγ, (16) 

with the matrix γ being given by

γ = IN0 0
0 −IN1

􏼒 􏼓

. (17) 

Thus, the matrix γ can be used to reverse the relative sign of the 
nodes and edge signals. This matrix is called a gamma matrix, 
for more background on gamma matrices and their relation to 
theoretical physics (chirality of the Dirac operator) and their use 
in higher-order topological dynamics on networks and simplicial 
complexes we refer the reader to Refs. (35, 49, 51, 64). The eigen
states ψ of the topological Dirac equation associated to energy E 
satisfy the eigenvalue problem

Eψ = (D + mγ)ψ. (18) 

Using the definition of the Dirac operator Eq. 8 and the definition 
of the gamma matrix γ Eq. 17 this eigenvalue system can be writ
ten as

Eχ = Bϕ + mχ,

Eϕ = B⊤χ − mϕ.
(19) 

Thus, after a few algebraic steps we get

(E − m)(E + m)χ = BB⊤χ = L[0]χ,

(E − m)(E + m)ϕ = B⊤Bϕ = L[1]ϕ.
(20) 

This implies that the node signal χ is an eigenvector of the graph 

Laplacian L[0] with eigenvalue μ = λ2 and that the edge signal ϕ is 

an eigenvector of the first-order Laplacian L[1] with the same 

eigenvalue, where the energy E is related to λ through the relativis
tic dispersion relation

E2 = m2 + λ2. (21) 

In particular, it can be shown that both positive and negative en
ergy states are realized with

E = ±
���������
m2 + λ2

􏽰
. (22) 

Thus, the role of the mass is to introduce a gap in the energy spec
trum, as the energy values need to have an absolute value greater 
or equal to the mass, i.e. |E| ≥ m. The mass changes also signifi
cantly the properties of the eigenstates associated to nonhar
monic eigenvectors λ > 0. In order to see this, let us discuss the 
structure of the eigenvectors, encoded in the matrix of eigenvec
tors Φ

Φ = Ψ− Ψ−
harm Ψ+

harm Ψ−( 􏼁
. (23) 
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Here, Ψ± are the matrices associated to the eigenvectors with λ ≠ 0 
and E > m or E < −m, respectively, which are given by

ψ+
λ = C+

uλ
λ

|E| + m
vλ

􏼠 􏼡

, ψ−
λ = C−

λ
|E| + m

uλ

−vλ

􏼠 􏼡

, (24) 

where uλ and vλ are the left and right singular vectors of the 
boundary operator B associated to the singular value λ and C± 

are normalization constants. We note that the mass allows now 
to tune the relative normalization of the node and the edge signal 
which can now have very different scales. Only for m = 0 these ei
genvectors reduce to the eigenvector of the Dirac operator. The 
matrices Ψ±

harm encode the harmonic eigenvectors associated to 

λ = 0 and energy E = ±m. These eigenvectors are independent of 
the value of the mass and are given by

ψ+
harm = u0

0

􏼒 􏼓

, ψ−
harm = 0

v0

􏼒 􏼓

. (25) 

Note that the degeneracy of the eigenvalue E = m is given by the 
0-Betti number β0, while the degeneracy of the eigenvalue E = 
−m is given by the 1-Betti number β1. In Fig. 1, we represent the ei
genstates of the topological Dirac equation on two different net
works: the network skeleton of the Network Geometry with 
Flavor (NGF) model (70, 71) and a real fungi network from 
Ref. (72). From this figure, it is apparent that the harmonic eigen
states with energy E = ±m are significantly different from the non
harmonic eigenstates |E| > m. Indeed the harmonic eigenstates are 
nontrivially defined only on the nodes (E = m) or only on the edges 
(E = −m) with the harmonic mode at E = m being constant on the 
nodes and the generic harmonic mode at E = −m being a linear 
combination of modes localized on the cycles of the network. 
However the nonharmonic eigenstates of the topological Dirac 
equation at |E| > m involve nontrivial pattern localization and 
nontrivial distribution of the signal on both nodes and edges. It 
is clear that in general, an arbitrary topological network signal 
might not be harmonic, thus formulating a signal processing algo
rithm to infer these signals is an important research question.

DESP: problem set up and algorithm
Considering a noisy topological signal ψ̃ defined on both nodes and 
edges and given by the true signal ψ of the unitary norm, i.e. 
‖ψ‖2 = 1, plus the noise ϵ, i.e.

ψ̃ = ψ + ϵ, (26) 

where ϵ indicates the noise with noise level α (see Materials and 
methods for details). The DESP aims at reconstructing the true sig
nal making minimal assumptions. The assumption of the DESP is 
that the true signal is a general eigenvector of the topological 
Dirac equation with energy E and mass m to be determined by 
the algorithm where here and in the following. For E = m = 0, 
this assumption coincides with the underlying assumption of 
LSP, i.e. that the signal is harmonic or close to harmonic, and in
deed the DESP algorithm reduces to LSP in this case. For m = 0, 
this assumption coincides with the underlying assumption of 
DSP that the topological signal can be a general eigenmode of 
the Dirac operator, and indeed in this limit we recover DSP. 
However in the general case where E ≠ 0, m ≠ 0, DESP cannot be 
reduced to any of the previous algorithms and displays a much 
better performance for general signals than the previous two algo
rithms as it allows node and edge signal to have a different scale. 
Interestingly it is to be noted that the DESP admits a variation, 
the IDESP that would allow us in the next section to go even be
yond the assumption that the true signal is aligned to a single 

eigenstate of the topological Dirac equation and to reconstruct ef
ficiently true signals that are linear combinations of different ei
genstates of the topological Dirac equation that occur in real 
data. In DESP the reconstructed signal ψ̂ is obtained by minimizing 
the loss function L independent of the edge orientation and given 
by

L(ψ̂) = ‖ψ̂ − ψ̃‖22 + τψ̂⊤(D + mγ − EI)2ψ̂, (27) 

where here and in the following we use the notation I = IN . Note 
that here the regularization term leaves unchanged the compo
nent of the noisy signal aligned to the eigenstate of the topological 
Dirac equation with energy E and mass m while filtering out com
ponents associated with an energy E′ that deviates from E with a 

filter proportional to (E′ − E)2. For m = 0, we get the loss function 
of DSP given by Eq. 14, and when also E = 0, the algorithm reduces 
to the two decoupled LSP algorithms for node and edge signals. 
The significant benefit to considering DESP with respect to DSP 
is the fact that by introducing the mass m, DESP allows us to treat 
efficiently topological spinor whose node and edge signals have 
different scales as it occurs in general in data. The loss function 
can be minimized with respect to the reconstructed signal ψ̂ ob
taining

ψ̂ = I + τ(D + mγ − EI)2
􏽨 􏽩−1

ψ̃. (28) 

Moreover, the loss L can also be minimized with respect to E and m 
getting

m =
ψ̂⊤(EI − D)ψ̂

ψ̂⊤γψ̂
, E =

ψ̂⊤(D + mγ)ψ̂
ψ̂⊤ψ̂

. (29) 

Note that for the purpose of the DESP we will allow the mass m to 
take also negative real values as this is allowed in this topological 

Algorithm 1 Dirac-equation signal processing

Inputs: noisy signal ψ̃, Dirac operator D, gamma matrix γ, the 
regularization parameter τ, initial learning rate σ, precision δE for 
inferred energy values Ê, minimum number of iterations T, interval of 
possible mass values m ∈ [0, m̅]with m̅ > 0, precision δm for any inferred 
mass value m, method used to find optimal value of the mass, choose 
from: loss function optimization L, (default), relativistic dispersion 
relation method.
Output: The output of the DESP Algorithm starting from the generic 
noisy signal ψ̃ is indicated as ψ̂ = DESP(ψ̃).

1. m← 0
2. while m ≤ m̅ do
3.  t← 0
4.  ψ̂t,m ← ψ̃

5.  Êt,m ←
ψ̃⊤(D + mγ)ψ̃

ψ̃⊤ψ̃
6.  while |Êt,m − Êt−1,m| > δE or t < T do
7.   ψ̂t+1,m ← [ I + τ(D + mγ − Êt,m I)2]−1ψ̃

8.   Êt+1,m ← (1 − σ)Êt,m + σ
ψ̂⊤

t+1,m(D + mγ)ψ̂t+1,m

ψ̂⊤
t+1,mψ̂t+1,m

, where σ follows 
Armijo's rule.

9.   t← t + 1.
10.  ψ̂m ← ψ̂t,m

11.  Êm ← Êt,m

12.  Lm ← ‖ψ̂m − ψ̃‖22 + τψ̂⊤
m(D + mγ − Êm I)2ψ̂m

13.  Sm ← |
(ψ̂⊤

m(D + mγ)ψ̂m)
2

‖ψ̂m‖
4 −

ψ̂⊤
m D2ψ̂m

‖ψ̂m‖
2 − m2|

14.  m← m + δm
15. m̂← argminmL⇕

16. mS ← argminmS⇕

17. If inferring m by minimizing L⇕ (default): ψ̂ = ψm̂

18. If inferring m by minimizing S⇕: ψ̂ = ψmS
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setting (it is equivalent to changing the sign in front of the γ 
matrix).

The DESP learns the hyperparameters E and m in an unsuper
vised way, while τ remains here a free parameter as in DSP. 
Theoretically, it is possible to optimize ψ̂, m, E simultaneously. 
However, we would also like to guarantee computational effi
ciency, with a cost of negligible difference in accuracy. The DESP 
Algorithm (see pseudo-code in Algorithm 1) considers a sweep 
over different values of m, where in practice the values of the 
mass m will span an interval bounded by the extrema of eigenval
ues of the Dirac operator D. For each value of m, the DESP algo
rithm optimizes the reconstructed signal ψ̂m and learns the best 
value of the reconstructed energy Êm. This is done by iteratively in
terpolating the value of the estimated energy with the estimated 
value of the energy that minimizes the loss function. This iterative 
optimization is performed using the Armijo rule (75) that ensures 
that the interpolation parameter is chosen in such a way to guar
antee the decrease of the loss function at each step of the iter
ation. Having performed the sweep over the relevant values of 
the mass, the best choice of the mass can be selected according 
to different criteria. The default possibility is to minimize the 
loss L calculated over the reconstructed signal ψ̂m and energy 
Êm, associated to the mass m, i.e. minimizing Lm given by

Lm = ‖ψ̂m − ψ̃‖22 + τψ̂⊤
m(D + mγ − EI)2ψ̂m. (30) 

Thus the reconstructed signal ψ̂ is the reconstructed signal ψ̂m cor
responding to the optimized value of the mass m. Note that alterna
tively, we can optimize the value of the mass using the relativistic 
dispersion relation as we will discuss in the next paragraph.

If the true signal ψ is known, the performance of the DESP algo
rithm for every value of the mass m can be directly evaluated by 
calculating the error Δmψ given by

Δmψ = ‖ψ̂m − ψ‖2. (31) 

where ψ̂m is the reconstructed signal assuming the mass of m. 
Finally the error made by the DESP is given by Δψ given by

Δψ = ‖ψ̂ − ψ‖2. (32) 

In Fig. 2, we show the performance of the DESP algorithm when 
the true signal is aligned to a single eigenstate of the topological 
Dirac equation under very general conditions on the noise level. 
For each value of m considered by the algorithm, the iteration pro
cedure lowers the error Δψ (Fig. 2a) and finds the energy that best 
approximates the true energy (Fig. 2b). In particular if m is given by 

the true value mtrue, the energy Êt,m converges to the true energy 
value E as the number of iterations increases (Fig. 2b). Moreover, 
if we do not know the value of the true mass, by performing the 
sweep over m, the algorithm can efficiently recover the true value 
of the energy E and the mass m (Fig. 2c and d).

The role of the relativistic dispersion relation 
in DESP
In order to optimize for the mass of the signal, we can formulate a 
physics-inspired optimization method that exploits the fact that ei
genstates of the topological Dirac equation satisfy the relativistic 
dispersion relation given by Eq. 22. Therefore the reconstructed sig
nal that more closely approximates an eigenstate of the topological 

Fig. 1. The visualization of the eigenstates of the topological Dirac equation associated with the value of the mass m = 1.5 on the Network Geometry with 
Flavor model (NGF) (70, 71) (a) and on a real fungi network (72) (b). The eigenstates E = m = −1.5 and E = m = 1.5 are the harmonic eigenstates which are 
nonzero only on edges (E = −m = −1.5) or only on nodes (E = m = 1.5). The eigenstates with energy E > m = 1.5 are nonharmonic, they involve non trivially 
both node and edge signals, and display characteristic localized patterns. These latter signals are typical examples of signal that can be reconstructed 
with the DESP. The NGF network in (a) is a sample of a two dimensional NGF model with parameters β = 0 and flavor s = −1 N0 = 20 nodes and N1 = 37 
edges. This model is defined in Refs. (70, 71) and the code for generate network in this model is available at the repository (73). The fungi network in (b) is 
the Pp_M_Tokyo_U_N_26h_1.mat, of N0 = 411 nodes, and N1 = 645 edges from Ref. (72) available at the repository (74).
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Dirac equation should minimize the relativistic dispersion relation 
error (RDRE) Sm over m. The RDRE Sm is given by

Sm = |E2
m − (λ2

m + m2)|, (33) 

where for any choice of m, λ2
m is the expectation of the reconstructed 

signal ψ̂ over the Laplacian and Em is the expectation of the same sig
nal over the Hamiltonian, given by:

λ2
m =

ψ̂⊤
mD2ψ̂m

‖ψ̂m‖
2 , Em =

ψ̂⊤
mHψ̂m

‖ψ̂m‖
2 . (34) 

Thus, optimizing m according to the RDRE entails finding the value 
of the mass m that minimizes:

Sm = |E2
m − (|λm|

2 + m2)|

=
ψ̂⊤

m(D + mγ)ψ̂m

( 􏼁2

‖ψ̂m‖
4 −

ψ̂⊤
mD2ψ̂m

‖ψ̂m‖
2 − m2

􏼌
􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌
􏼌
,

(35) 

where Sm ≥ 0 in general and equal to zero if and only if ψ̂m is an 
eigenvector of the Dirac equation.

We observe that optimizing the loss function Lm given by Eq. 30
in general gives different results with respect to the ones obtained 
by minimizing the RDRE Sm. However, as long as the noise is not 
too high, the difference in the error made in reconstructing the 
true signal remains low (see Fig. 3).

The improved performance of DESP
The DESP algorithm reduces for m = E = 0 to LSP and for m = 0 to 
DSP. Therefore, the DESP algorithm can only provide an improved 

performance with respect to the two previous algorithms. In order 
to compare DESP with DSP and LSP and assess the entity of the im
proved performance of DESP, we consider the error in the recon
structed signal generated by the three algorithms when the true 
signal is aligned to a single eigenstate of the topological Dirac 
equation (see Fig. 4). We show that when the eigenstate is associ
ated to energy E and mass m = 0, DSP can outperform LSP, in par
ticular when the energy E deviates significantly from zero. Thus 
also DESP can greatly outperform LSP in this case. When the 
eigenstate is an arbitrary eigenstate associated to energy m and 
an arbitrary value of the energy E, DESP can also outperform 
DSP. This is a great indication that DESP constitutes an important 
step forward in processing general node and edge topological sig
nals. Note that, while here we work under the assumption that the 
true signal is aligned to a single eigenvector of the topological 
Dirac equation, in the next section we will also address this limi
tation by formulating the IDESP algorithm. When validating the 
performance of the DESP algorithm, it is also important to answer 
the question whether jointly filtering node and edge signals can be 
beneficial to extract more information from data. In order to ad
dress this question, we have considered the scenario where the 
noise level over node and edge signal is different and parame
trized respectively by the parameters α1 and α2 (see Materials 
and methods for details). In particular, we have considered the er
ror made by DESP on the reconstruction of the node signal Δχ 
when the noise on the edge signal is decreased, showing that a 
less noisy edge signal can contribute to reconstruct better the 
edge signal (see Fig. 5a). Similarly we have shown that the error 
made by DESP on the reconstruction of the edge signal Δϕ when 

Fig. 2. We consider a true signal given by an eigenstate of the topological Dirac equation. For any fixed value of m, the iterative nature of the DESP 
algorithm allows to decrease the true error Δψ with time t (a) and to best approximate the energy of the signal with time t so that if m is the true mass 
m = mtrue then the estimated energy Êt,m converges to the true energy Etrue (b). As the algorithm sweeps over different values possible value of the mass m, 
the true value of the mass and the true value of the energy are reliably estimated under very general conditions on the noise level (c and d). Here the DESP 
convergence to the true mass and energy parameters is demonstrated on the NGF network shown in Fig. 1. The true value of the mass is mtrue = 1.5 and 
the true value of the energy is Etrue = −3.19. The noise is generated using a value of the α parameter given by α = 0.3, while the loss Lused to detect both the 
energy and mass has filtration parameter τ = 10.
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the noise on the node signal is decreased, showing that a less noisy 
node signal can contribute to reconstruct better the node signal 
(see Fig. 5b). These results indicate clearly that jointly processing 
node and edge signals can allow to extract more information from 
data, leveraging on the information content encoded by both node 
and edge signals.

Iterated Dirac-equation signal processing
For treating real data, we need to go beyond our hypothesis that 
the true signal is a single eigenstate of the topological Dirac equa
tion. Indeed in general, the true signal in real data will be a linear 
combination of different eigenstates of the topological Dirac 
equation. Therefore, Algorithm 1 can only provide a prediction 
of the primary eigenstate ψ̂1. However, we can iterate the algo
rithm on ψ̃ − ψ̂1 to get the secondary eigenstate and we can iterate 
the process until the reduction of the coefficient of variation to the 
true or the estimated true value. This leads to the IDESP 

Algorithm 2, in which the DESP algorithm is iterated J times, pro
viding the reconstructed signal

ψ̂ =
􏽘J

j=1

ψ̂j. (36) 

However, iterating the DESP algorithm is not enough as we need 
reliable criteria for determining when to stop iterating it. Indeed, 
increasing the number of iterations J may not always lead to an in
crease in accuracy, as after a certain number of iterations, we 
might end up reconstructing also part of the noise. In the follow
ing, we assume that the true coefficient of variation 

(noise-to-signal ratio) ctrue
V of the measured signal, given by

ctrue
V =

‖ψ − ψ̃‖2
‖ψ‖2

(37) 

is either known or reliably estimated. In this case, the IDESP algo
rithm will iterate the DESP process up to the iteration Jopt that min

imizes the absolute difference of the coefficient of variation of the 

Fig. 3. The loss Lm, and the RDRE Sm, are plotted vs. m when the true signal is aligned to a single eigenstate of the topological Dirac equation of the NGF (a 
and b) and the fungi network (d and e) considered in Fig. 1. The minimization of the loss Lm and of the RDRE Sm lead to different estimated values of the 
mass (c and f). However, the error Δψ corresponding to these two methods to infer the true mass remains small under very general conditions on the noise 
level (c and f). The topological Dirac equation eigenstates have true parameters Etrue = −3.27 and mtrue = 1.5 for the NGF (a–c) and Etrue = 2.57 and mtrue = 
1.5 for the fungi network (d–f). The noise level is α = 0.3 and τ = 10 for both cases.

Fig. 4. The DESP includes both the LSP and the DSP as subcases, and in general, can outperform both LSP and DSP. In order to compare the methods, we 
consider first a true signal given by an eigenstate of the topological Dirac equation with m = 0 and tunable value of the energy E (indicating in this case the 
eigenvalue of the Dirac operator where E = 0). By assuming that the value of the mass m = 0 is known, DESP reduces to DSP that outperforms LSP (a) if the 
signal deviates from an almost harmonic signal (larger values of |E|). Indeed the error Δψ of the reconstructed signal is much lower for the DSP than for the 
LSP for larger values of the energy E. Secondly, we consider a true signal given by an eigenstate of the topological Dirac equation with a tunable value of 
the mass m and random value of the energy E. We show that DESP outperforms DSP by learning the true value of the mass, and the improvement in the 
error level Δψ is more significant as the absolute value of the mass m becomes larger (b). Here, the results are obtained by considering 100 noisy signals 
(the amplitude of the shaded regions indicates SD) on the NGF network shown in Fig. 1 with noise level α = 0.3. The DESP uses the loss function L with 
parameter τ = 10 to infer the true mass.
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reconstructed signal and the true coefficient of variation. 
Specifically, the IDESP will stop for J = Jopt with

Jopt = argminJ|cV(J) − ctrue
V |, (38) 

where the coefficient of variation cV(J) of the reconstructed signal 
after the J iterations is given by

cV(J) =
‖
􏽐J

j=1 ψ̂j − ψ̃‖2
‖
􏽐J

j=1 ψ̂j‖2
, (39) 

Only in this way, we have that if the reconstructed signal is equal 
to the true signal, cV(J) is the true noise-to-signal ratio and thus we 
guarantee that our optimization criterion given by Eq. 38 effect
ively stops at the right place. In the scenario in which the true co
efficient of variation is not known, this algorithm can always be 
used to provide an ensemble of signal reconstructions, i.e. provid

ing for any possible value of ctrue
V the reconstructed signal ψ̂ given 

by Eq. 36 with J = Jopt(ctrue
V ).

We test the IDESP on the real dataset of drifters in the ocean from 
the Global Ocean Drifter Program available at the AOML/NOAA 
Drifter Data Assembly Center already analyzed in Refs. (28, 49) 
(data available at the Repository (73) see Materials and methods 
for details), finding fairly good results (see Fig. 6 for a visualization 
of the performance of the IDESP algorithm). In order to quantify 
the performance of the IDESP on this real dataset, in Fig. 7, we moni
tor the true error Δ(J) at iteration J of the algorithm, i.e.

Δ(J) =
􏽘J

j=1

ψ̂j − ψ

􏼍
􏼍
􏼍
􏼍
􏼍
􏼍

􏼍
􏼍
􏼍
􏼍
􏼍
􏼍

2

. (40) 

We observe that the error lowers up to J = Jopt, validating the per

formance of the adopted IDESP algorithm. Due to the nature of 
the signal, IDESP can offer a great improvement. Note that this im
provement can be observed not only when in the DESP algorithm 
we determine the mass by minimizing the loss L but also when 
we determine the mass by minimizing the RDRE S. The iterated pro
cedure can be also be applied to the DSP algorithm leading to the 
Iterated Dirac signal processing (IDSP) algorithm finding very sig
nificant improvements as well, however using the IDESP allows to 

Fig. 5. DESP can jointly process signals on nodes and edges and allow us to extract relevant information across topological signals of different 
dimensions. Here, we plot the error Δχ = ‖χ̂ − χ‖/‖χ‖, where χ̂ is the reconstructed node signal, and χ is the true node signal as a function of the noise level 
α2 associated to the edge signal. We show that the error Δχ = ‖χ̂‖made on the reconstruction of the node signal decreases as α2 is lowered, when the noise 
level on the edge signal is kept equal to α2 = 0.5 (a). Similarly, we show the error Δϕ = ‖ϕ̂ − ϕ‖/‖ϕ‖where ϕ̂ is the reconstructed edge signal, and ϕ is the true 
edge signal as a function of the noise level α1 on the node signal. Also in this case we show that the error Δϕ made on the reconstruction of the edge signal 
decreases as the noise level α1 associated with the node signal is lowered, when the noise level on the edge signal is kept equal to α2 = 0.5 (b). The results 
suggest an improvement in performance when the noise level on either nodes or links is independently reduced. The shaded area refers to the standard 
deviation error of DESP calculated over 200 noisy signals of the NGF network shown in Fig. 1. In both panels, true signal is an eigenstate of the topological 
Dirac equation with true mass m = 1.5 and true energy E = −3.31.

Fig. 6. Visualization of IDESPS applied to the drifter data around Madagascar. The figure illustrates, from left to right, the noisy signal (with noise level 
α = 0.25), the result of the first iteration of the IDESP (J = 1), the final output of IDESP (J = 2), and the real true signal. The real data have been analyzed and 
preprocessed previously in Refs. (28, 49) and is freely available at (73)

Algorithm 2 Iterated Dirac-equation signal processing

Input: All the required inputs for DESP Algorithm including the 
measured signal ψ̃; the estimated or true coefficient of variation ctrue

V of 
the measured signal ψ̃.
Output: The output of the IDESP Algorithm starting from the measured 
signal ψ̃ is indicated as Ψ̂ = IDESP(ψ̃)

1: Δ0c← 0
2: J← 1
3: ϕ← ψ̃
4: ψ̂1 ← DESP(ϕ)
5: cV(1) ← ‖ψ̂1 − ψ̃‖2/‖ψ̂1‖2
6: Δ1c← cV(1) − ctrue

V

􏼌
􏼌

􏼌
􏼌

7: while ΔJc > ΔJ−1c do
8:  J← J + 1
9:  ϕ← ψ̃ −

􏽐J−1
j=1 ψ̂j

10:  ψ̂J ← DESP(ϕ)

11:  cV(J) ← ‖
􏽐J

j=1 ψ̂j − ψ̃‖2/‖
􏽐J

j=1 ψ̂j‖2

12:  ΔJc← cV(J) − cTrue
V

􏼌
􏼌

􏼌
􏼌

13: Ψ̂ =
􏽐J

j=1 ψ̂j.
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achieve the same coefficient of variations with fewer iterations, in
dicating the better suitability of the IDESP in approximating the true 
signals.

Conclusions
In this work, we propose DESP, a physics inspired algorithm that 
leverages on the properties of the topological Dirac equation to fil
ter and process jointly node and edge signals defined on the same 
network. We have demonstrated through both theoretical in
sights and numerical verification on synthetic and real data that 
DESP reduces to the previously proposed LSP and DSP and that 
in general scenarios can outperform both of them. In particular, 
DESP allows to jointly process both node and edge signals, extract
ing relevant information across the topological signal of different 
dimensions, adaptively adjusting for their different scales thanks 
to the introduction of the learnable mass parameter m. While the 
DESP processes signals assuming they are formed by a single 
eigenstate of the topological Dirac equation, the IDESP allows to 
treat more general signals formed by a linear combination of ei
genstates of the topological Dirac equation. This latter algorithm 
can further boost the performance of DESP on real signals as dem
onstrated here by applying this algorithm to an extensive dataset 
of drifters around Madagascar.

We hope that these results will raise further interest into the 
use of the topological Dirac operator and the topological Dirac 
equation in AI, stimulating further research in both signal pro
cessing and neural networks. For instance, in signal processing, 

an open question is to filter topological signals across a multiplex 
network or knowledge graph formed by networks of networks, 
thus exploiting the relevant information in the different layers 
without simply aggregating the data. Although the focus of this art
icle is on topological machine learning, it is noteworthy that the 
Dirac operator by jointly processing node and edge signals could im
prove the long-range information from distant nodes and therefore 
ameliorate over-squashing and over-smoothing problems of topo
logical deep learning found in graph neural networks.

Materials and methods
Noise model
In DESP, the noise ϵ associated to the noise level α is generated as 
follows. First, we draw the vector x of i.i.d. Gaussian variables xσ̂ 

with average zero and standard deviation α, associated to each 
simplex σ̂ of the network (node or edge) i.e. xσ̂ ∼ N (0, α) and then 
we filter out their harmonic component, putting

ϵ =
DD+x

��
D
√ , (41) 

where D+ indicates the pseudo-inverse of the Dirac operator and D 
its rank. This is the same noise model adopted in for DSP in Ref. (49). 
In Fig. 5, we consider a variation of this noise model in which the 
vector x is formed by i.i.d. Gaussian variables xσ̂ with different 
standard deviations depending on the dimension of the simplex σ̂. 
In particular we associate the nodes with a noise of standard devi
ation α1, i.e. xr ∼ N (0, α1) and the edges with standard deviation α2, 
i.e. x[rs] ∼ N (0, α2). The noise ϵ is then given by Eq. 41.

Drifter dataset
We test the IDESP algorithm on the real dataset of drifters in the 
ocean from the Global Ocean Drifter Program available at the 
AOML/NOAA Drifter Data Assembly Center (76). The drifters 
data set already analyzed in Ref. (28, 49) consists of the individual 
trajectories of 339 buoys around the island of Madagascar in the 
Pacific Ocean. Projected onto a tessellation of the space, this yields 
339 edge-flows, each representing the motion of a buoy between 
pairs of cells (data available at the Repository (73)). The resulting 
network is formed by N0 = 133 nodes, and N1 = 322 links. The edge 
topological signal θ is given on each edge by the sum of all the 339 
trajectories passing through that edge, representing the net phys
ical flow along each edge. In the absence of a true node signal, we 
generate a nontrivial topological spinor playing the role of our true 
signal ψ from the exclusive knowledge of the edge signal θ. 
Specifically, we consider the topological signal σ = (0, θ) defined 
on both nodes and edges and we put

ψ = C(σ + Dσ), (42) 

where C is the normalization constant that enforces ‖ψ‖2 = 1.
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