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Abstract

Portfolio construction is one of the most critical problems in financial markets. In this paper,

a new two-phase robust portfolio selection and optimization approach is proposed to deal

with the uncertainty of the data, increasing the robustness of investment process against

uncertainty, decreasing computational complexity, and comprehensive assessments of

stocks from different financial aspects and criteria are provided. In the first phase of this

approach, all candidate stocks’ efficiency is measured using a robust data envelopment

analysis (RDEA) method. Then in the second phase, by applying robust mean-semi vari-

ance-liquidity (RMSVL) and robust mean-absolute deviation-liquidity (RMADL) models, the

amount of investment in each qualified stock is determined. Finally, the proposed approach

is implemented in a real case study of the Tehran stock exchange (TSE). Additionally, a sen-

sitivity analysis of all robust models of this study is examined. Illustrative results show that

the proposed approach is effective for portfolio selection and optimization in the presence of

uncertain data.

1. Introduction

The portfolio selection and optimization problems are two of the main branches of studies in

investment management. Extensive researches have been done on the portfolio selection prob-

lem from different viewpoints [1–3]. The most important research in this area has been by

Markowitz [4]. He presented the concept of diversity in the portfolio selection problem. In the

original Markowitz’s [4] model, the portfolio selection problem is developed by only two crite-

ria, i.e., risk and return. However, the decision to purchase a stock and select a portfolio of

stocks can be more difficult since many attributes must be considered simultaneously. Some of

these attributes may include the rate of return, the rate of liquidity, systematic risk, non-system-

atic risk, financial ratios, etc. Decision-makers (DMs) and investors can use the multi-criteria

decision making (MCDM) approach to consider more than two criteria in selecting stocks [5].

Data envelopment analysis (DEA) is one of the popular and powerful MCDM approaches

applied to reach this goal. DEA estimates the relative efficiency of decision-making units
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(DMUs) considering the multiple inputs and multiple outputs [6–8]. DEA can be implemented

in portfolio construction by measuring stocks’ efficiency to recognize good stocks and filter

bad stocks. It should be noted that in classic DEA models, each DMU could specify a set of

weights that show it in the most favorable condition in comparison to other DMUs. This flexi-

bility in choosing weights for each DMU caused that the efficiency of stocks to be considered

optimistic. Thus, to propose the conservative approach and resolve this issue, after filtering the

undesirable stocks and detecting the most desirable stocks, it is needed to reevaluate the quali-

fied stocks in another phase in order to assign the amount of investment in each stock.

Another point that should be considered in the proposed approach for portfolio construc-

tion is the uncertain nature of parameters [9–12]. Because in the real-world, we face uncertain

data, and one of the most important features of financial markets is their embedded uncer-

tainty. Also, one of the most important assumptions in DEA is that the measured data are cer-

tain. However, a little bias or deviation in data’s values can cause significant differences in the

results. In a worst-case, we will face infeasible solutions. Especially when the efficiencies of

units are close, it is essential to develop a procedure and models for ranking the stocks and,

consequently, decision-making about weights of the stocks in the portfolio that is capable of

being employed under uncertainty. Robust optimization (RO) methodology is one of the pop-

ular methods that can be used to deal with uncertainty [13–15].

The goal of the current study is to propose a robust two-phase approach for portfolio con-

struction problem by using data envelopment analysis and robust optimization approaches. In

the first phase, the efficiency of all stocks that can be invested, are evaluated and measured. At

the end of this phase, only the stocks that pass the filter of the investor are qualified for a candi-

date to be invested in the second phase. In this phase, DEA models are used. Then, in the sec-

ond phase, the amount invested in each qualified stock is decided, and finally, the portfolio

will be created. In this phase, mean-semi variance-liquidity (MSVL) and mean-absolute devia-

tion-liquidity (MADL) models are used. It should be noted that in each phase, uncertainty is

considered by a robust optimization method. Finally, the proposed approach of paper will be

implemented in a real case study of the Tehran stock exchange (TSE).

The main advantages of the proposed approach in this study can be summarized as follows:

(1) the presented approach can be applied in the presence of uncertain data, (2) computational

complexity of portfolio optimization is decreased by the first phase in order to satisfy cardinal-

ity constraint, (3) conservatism levels of the investment process is increased using of two-

phases method and considering uncertainty, (4) all candidate stocks for investment are com-

prehensively assessed from different financial aspects and criteria by employing the MCDM

approaches.

The rest of this paper is organized as follows. The literature and research gaps are reviewed

in Section 2. The nomenclatures and background of the paper is explained in Section 3, which

contains the classic portfolio models, basic DEA models, and main robust optimization

approaches. Two phases approach for portfolio construction problem of this research is pre-

sented in Section 4. The proposed approach for the portfolio selection problem is implemented

for a real case study of the Tehran stock exchange that will be presented in Section 5. All of the

proposed models have been studied using sensitivity analysis in Section 6. Finally, the conclu-

sions of this study and some directions for future research are provided in Section 7.

2. Literature review

In this section, the literature review for robust DEA as well as robust portfolio selection and

optimization will be introduced. Moreover, the literature gaps and characteristics of this study

will be highlighted.
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2.1. Robust data envelopment analysis

Sadjadi & Omrani [16] were the pioneer researchers that worked on robust data envelopment

analysis (RDEA) model with consideration of uncertainty on output parameters for measuring

the performance of Iranian electricity distribution companies. In the last decade, the applica-

tion of RDEA approach is increased more and more in different real-world problems and case

studies. A more detailed classification of the most important RDEA studies is illustrated in

Table 1 by considering three characteristics: DEA model, uncertainty set, and application. The

characteristics of our work have also been presented in the last row of Table 1.

Table 1. A review of robust data envelopment analysis.

Year Research DEA Model Uncertainty Set Application

2008 Sadjadi & Omrani [16] CCR-Input Oriented Box & Ellipsoidal Electricity Distribution Companies

Box & Polyhedral

2010 Roghanian & Foroughi [17] CCR-Input Oriented Box & Polyhedral Airports

2010 Sadjadi & Omrani [18] Bootstrap DEA Box & Polyhedral Telecommunication Companies

2010 Shokouhi et al. [19] Interval DEA BSA

2011 Gharakhani et al. [20] CCR-Input Oriented Box & Ellipsoidal High Schools

Box & Polyhedral

2011 Sadjadi et al. [21] Supper Efficiency DEA Box & Ellipsoidal Gas Companies

2011 Sadjadi et al. [22] Interactive DEA Box & Polyhedral Electricity Distribution Companies

2012 Foroughi & Esfahani [23] CCR-Input Oriented Box & Polyhedral Airports

2012 Jalali Naini & Nouralizadeh [24] CCR-Input Oriented Box & Polyhedral Insurance Companies

2012 Khaki et al. [25] CCR-Input Oriented Box & Polyhedral Public Health Centers

2013 Omrani [26] Common Set of Weights DEA Box & Polyhedral Gas Companies

2014 Shokouhi et al. [27] Interval DEA Box & Polyhedral

2015 Khamseh & Zahmatkesh [28] CCR-Input Oriented Box & Polyhedral Oil Facility Supporting Industry

2015 Lu [29] BCC-Output Oriented Ellipsoidal Meta-Heuristics Algorithms

Box & Polyhedral

2015 Mardani & Salarpour [30] Interval DEA Box & Polyhedral Potato Production

2016 Aghayi & Maleki [31] Directional Distance Function Box & Polyhedral Power Plants / Bank Branches

2016 Aghayi et al. [32] Common Set of Weights DEA Box & Polyhedral Bank Branches

2016 Ardekani et al. [33] Network DEA Box & Polyhedral Electricity Power Networks

2017 Arabmaldar et al. [34] CCR-Input Oriented Box & Polyhedral Forest Districts / Gas Companies

Supper Efficiency DEA

2017 Bayati & Sadjadi [35] Network DEA Box & Ellipsoidal Electricity Power Networks

Box & Polyhedral

2017 Omrani & Bozorgi-Amiri [36] CCR-Input Oriented Box & Polyhedral Gas Companies

2017 Shabanpour et al. [37] CCR-Input Oriented Box & Polyhedral Sustainable Suppliers

2018 Ehrgott et al. [38] BCC-Input Oriented Ellipsoidal Radiotherapy Design

2018 Wu & Wu [39] CCR-Input Oriented Ellipsoidal Hospitals

2018 Yousefi et al. [40] CCR-Input Oriented Box & Polyhedral Automotive Parts

2019 Aghayi et al. [41] Malmquist Productivity Index Box & Polyhedral Bank Branches

2019 Alizadeh & Omrani [42] CCR-Input Oriented Box & Polyhedral CO2 Laser Cutting Machine

2019 Lee & Prabhu [43] Malmquist Productivity Index Box & Polyhedral Community Youth Prevention Programs

2019 Lu et al. [44] Multi-Objective DEA Box & Ellipsoidal New-Energy Vehicle Manufactures

2019 Salahi et al. [45] Russell Measure Ellipsoidal Banks / Flexible Manufacturing Systems

Enhanced Russell Measure

2019 Toloo & Mensah [46] BCC-Input Oriented Box & Polyhedral Banks

2019 Yousefi et al. [47] CCR-Input Oriented Box & Polyhedral Power Plants

2020 Mardani & Taki [48] CCR-Input Oriented Box & Polyhedral Energy / Agriculture

(Continued)
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2.2. Robust portfolio selection and optimization

There are some practical models and studies in robust portfolio selection and optimization

(RPSO) problem. Ben-Tal et al. [51] initially introduced a robust model for multi-stage portfo-

lio (asset allocation) problems. According to the applicability and effectiveness of robust opti-

mization in investment problem, proposing and applying RPSO models have increased in

recent years by many researchers [52–54]. A more detailed classification of the most important

studies of robust portfolio selection and optimization is introduced in Table 2 by considering

three characteristics: investment model, uncertainty set, and research feature. Also, the charac-

teristics of our work have been illustrated in the last row of Table 2.

As it can be seen in the last row of Tables 1 and 2, in this paper, a new RPSO approach will

be proposed. Notably, this approach consists of two phases: the first phase is the application of

robust data envelopment analysis models to qualify efficient stocks and the second phase is the

application of robust portfolio optimization models in order to construct an optimal portfolio.

Table 1. (Continued)

Year Research DEA Model Uncertainty Set Application

2020 Mensah [49] CCR-Input Oriented Ellipsoidal Banks

Additive-Constant Returns to Scale Box & Ellipsoidal

2020 Salahi et al. [50] CCR-Input Oriented Box & Polyhedral Gas Companies / Forest Districts

Common Set of Weights DEA

Our Work (First Phase) CCR-Input Oriented Box & Polyhedral Stock Exchange / Portfolio Selection

CCR-Output Oriented

BCC-Input Oriented

BCC-Output Oriented

Additive-Constant Returns to Scale

Additive-Variable Returns to Scale

https://doi.org/10.1371/journal.pone.0239810.t001

Table 2. A review of robust portfolio selection and optimization.

Year Research Investment Model Uncertainty Set Research Feature

2000 Ben-Tal et al. [51] Asset Allocation Ellipsoidal Multi-Stage

2003 El Ghaoui et al. [55] Value at Risk Ellipsoidal Worst Case

2003 Goldfarb and Iyengar [56] Mean—Variance Ellipsoidal Simulated Data

2003 Halldórsson & Tütüncü

[57]

Mean—Variance Box Saddle-Point Problem / Interior-Point Algorithm

2004 Tütüncü & Koenig [58] Mean—Variance Box Saddle-Point Problem / Interior-Point Algorithm

2008 Bertsimas & Pachamanova

[59]

Mean Polyhedral Multi-Period / Transaction Costs

2008 Quaranta & Zaffaroni [60] Conditional Value at Risk Box Italian Market

2009 Chen and Tan [61] Mean—Variance Asymmetric Interval Random Chance-Constrained Programming

2009 Zhu & Fukushima [62] Conditional Value-at-Risk Box Worst-Case

Ellipsoidal

2011 Fonseca et al. [63] Mean—Variance Ellipsoidal Currency Portfolio

2011 Gregory et al. [64] Mean Box &

Polyhedral

Correlated / Uncorrelated / Cost of Robustness

2011 Guastaroba et al. [65] Mean—Conditional Value-at-

Risk

Box &

Ellipsoidal

London Stock Exchange Market

Box &

Polyhedral

2011 Gülpınar et al. [66] Mean—Variance Ellipsoidal Discrete Asset Choice

2011 Moon & Yao [67] Mean—Absolute Deviation Box &

Polyhedral

Three Different Time Horizons

(Continued)
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Table 2. (Continued)

Year Research Investment Model Uncertainty Set Research Feature

2012 Chen & Kwon [68] Index Tracking Box &

Polyhedral

Passive Fund Management

2012 Fonseca et al. [69] Mean—Variance Ellipsoidal International Portfolio / Quanto Option

2012 Ling & Xu [70] Mean—Variance—Option Ellipsoidal Option Portfolio

2012 Sadjadi et al. [71] Mean Box &

Ellipsoidal

Cardinality Constraint / Genetic Algorithm

Box &

Polyhedral

Norm-Based

2013 Ghahtarani & Najafi [72] Mean—Systematic Risk—Beta Box &

Polyhedral

Multi-Objective / Goal Programming / Trading Constraints

2013 Gülpınar and

Pachamanova [73]

Asset–Liability Management Ellipsoidal Pension Fund

2013 Hasuike & Katagiri [74] Mean Ellipsoidal Interactive Fuzzy Satisficing Method

2014 Bandi and Bertsimas [75] Option Pricing Box &

Polyhedral

Option Portfolio / American Option / Volatility Smile

Norm-Based

2014 Dai & Wen [76] Conditional Value-at-Risk Norm-Based Genal Affine Data Perturbation

2015 Liu et al. [77] Mean Box &

Polyhedral

Multi-Period / Prospect Theory / Particle Swarm Optimization

2015 Rezaie et al. [78] Mean—Conditional Value-at-

Risk

Box &

Polyhedral

Ideal and Anti-Ideal Compromise Programming

2016 Gülpınar et al. [79] Asset–Liability Management Ellipsoidal Investment Products with Guarantees

Asymmetric

2016 Li et al. [80] Mean—Absolute Deviation Asymmetric Forward and Backward Deviations

2016 Wang & Cheng [81] Mean—Variance Box &

Polyhedral

Linear Optimization Problem

Norm-Based

2017 Lotfi et al. [82] Conditional Value-at-Risk Box &

Polyhedral

Buy-and-Hold Strategy

2017 Sharma et al. [83] Omega—Conditional Value-at-

Risk

Mixed Worst Case

Box

Ellipsoidal

2018 Ghahtarani & Najafi [84] Mean—Absolute Deviation Box &

Polyhedral

Stochastic Dominance

2018 Goli et al. [85] Mean—Variance Box &

Polyhedral

Product Portfolio / Invasive Weed Optimization Algorithm

2019 Chen & Wei [86] Mean—Variance Ellipsoidal Multi-Objective / Multi-Objective Particle Swarm Optimization

2019 Kara et al. [87] Conditional Value-at-Risk Parallelepiped Robustness and Sensitivity Analysis

2019 Sehgal & Mehra [88] Omega Ratio Box &

Polyhedral

Cutting plane algorithm

Semi-Mean Absolute Deviation

Ratio

Weighted Stable Tail Adjusted

Return Ratio

2020 Moghadam et al. [89] Mean—Interval Semi-Absolute

Deviation

Box &

Polyhedral

Multi-Period / Prospect Theory / Genetic Algorithm / Grey Wolf Optimizer Algorithm

/ Butterfly Optimization Algorithm

2020 Vaezi et al. [90] Mean Box &

Polyhedral

Genetic Algorithm / Knapsack Problem / Trading Constraints

Our Work (Second

Phase)

Mean—Semi Variance—

Liquidity

Box &

Polyhedral

Two-Phase Approach / Robust Data Envelopment Analysis

Mean—Absolute Deviation—

Liquidity

https://doi.org/10.1371/journal.pone.0239810.t002
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3. Nomenclatures and background

3.1. The nomenclatures of paper

The indices, parameters, and decision variables are described as follows:

Indices

j

i

r

t

set of stocks j ¼ 1; . . . ; n

the set of inputs i ¼ 1; . . . ;m

set of outputs r ¼ 1; . . . ; s

set of periods t ¼ 1; . . . ;T

Parameters

Rtj

�Rj

RE

s2
j

sjh

�Lj

LE

k

Aj

Bj

xi0

yr0

xij

yrj

G

D

di

return of jth stock in ith period

average return of jth stock

benchmark or target level of the expected portfolio return

variance of jth stock

covariance between jth stock and hth stock

average liquidity of jth stock

benchmark or target level of the expected portfolio liquidity

number of authorized stocks in portfolio

minimum amount of the total fund which can be invested in the jth stock

maximum amount of the total fund which can be invested in the jth stock

ith input of stock0 ðthe stock under investigationÞ

rth output of stock0 ð the stock under investigationÞ

ith input of jth stock

rth input of jth stock

level of conservatism budget of uncertaintyð Þ

perturbation of uncertain parameters

confidence level for satisfying the ith constraint

Decision Variables

oj

tj

xt

zt

ur

vi

w0

weight of jth stock in portfolio

binary variable which will be one if any of jth stock is held and zero otherwise

semi variance of portfolio in tth period

absolute deviation of portfolio tth inperiod

weight for the rth output

weight for the ith input

returns to scale of stock0 is the stock under investigation

3.2. Classic portfolio models and risk measures

The first method in portfolio selection is proposed by Markowitz [4]. The mean-variance

(MV) model for solving the portfolio selection problem is as Model (1):
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Y
MV

Min
Xn

j¼1

o2

j s
2
j þ 2

Xn� 1

j¼1

Xn

h¼jþ1

ojohsjh ¼
Xn

j¼1

Xn

h¼1

ojohsjh

S:t:
Xn

j¼1

�Rjoj � RE

Xn

j¼1

oj ¼ 1

oj � 0; 8j

ð1Þ

As shown in Model (1), the variance criterion is used as a risk measure for portfolio. It

should be explained that variance as a risk measure for portfolio selection penalizes both

returns above and below expected return. Markowitz [91] suggested semi variance (SV) as a

downside risk measure that quantifies possibilities of return below the expected return. The

definition of semi variance risk measure is as Eq (2):

SV ¼ E Max 0;RE �
Xn

j¼1

Rijoj

( ) !2 !

¼

RE �
Xn

j¼1

Rijoj

 !2

if RE �
Xn

j¼1

Rijoj > 0 ;

0 if RE �
Xn

j¼1

Rijoj � 0:

8
>>>>><

>>>>>:

ð2Þ

To solve the mean-variance model, DMs need the covariance matrix that estimation of this

matrix is difficult with the real-world data, but by using of the mean- semi variance (MSV)

model, it is not required to compute the covariance matrix and the joint distribution of stocks

is needed to be computed.

Since the original Markowitz’s [4] model is a quadratic programming (QP) model and it is

difficult to be solved for large data sets, Konno & Yamazaki [92] proposed absolute deviation

(AD) instead of variance as a risk measure for portfolio selection. The mean- absolute devia-

tion model (MAD) is a linear programming (LP) model and reduce computational time. The

definition of absolute deviation is as Eq (3):

AD ¼ RE �
Xn

j¼1

Rijoj

�
�
�
�
�

�
�
�
�
�
¼

RE �
Xn

j¼1

Rijoj if RE �
Xn

j¼1

Rijoj > 0 ;

Xn

j¼1

Rijoj � RE if RE �
Xn

j¼1

Rijoj � 0:

8
>>>><

>>>>:

ð3Þ

This risk measure quantifies the deviation from the expected return and by using MAD

model, it is not required to compute the covariance matrix.

3.3. Data envelopment analysis

Data envelopment analysis was proposed by Charnes et al. [93] for the first time and it is based

on Farrell’s [94] idea. This methodology is a non-parametric technique for performance evalu-

ation and ranking the homogeneous decision-making units. Charnes et al. [93] proposed the

first DEA model that based on the constant returns to scale (CRS) assumption and called the

CCR model. Then, Banker et al. [95] developed CCR model based on the variable returns to

scale (VRS) assumption and called the BCC model. The CCR and BCC models are radial
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projection constructs. Charnes et al. [96] proposed the DEA model by considering simulta-

neously both input minimization and output maximization which is called Additive (ADD)

model. It is worth noting that CCR, BCC and Additive models are radial, radial and non-radial

models, respectively.

Y
CCR� IO
Classic

Max
Xs

r¼1

yr0ur

S:t:
Xm

i¼1

xi0vi ¼ 1

Xs

r¼1

yrjur �
Xm

i¼1

xijvi � 0; 8j

ur; vi � 0; 8r; i

ð4Þ

Y
CCR� OO
Classic

Min
Xm

i¼1

xi0vi

S:t:
Xs

r¼1

yr0ur ¼ 1

Xs

r¼1

yrjur �
Xm

i¼1

xijvi � 0; 8j

ur; vi � 0; 8r; i

ð5Þ

Y
BCC� IO
Classic

Max
Xs

r¼1

yr0ur þ w0

S:t:
Xm

i¼1

xi0vi ¼ 1

Xs

r¼1

yrjur �
Xm

i¼1

xijvi þ w0 � 0; 8j

ur; vi � 0; 8r; i

ð6Þ

Y
BCC� OO
Classic

Min
Xm

i¼1

xi0vi � w0

S:t:
Xs

r¼1

yr0ur ¼ 1

Xs

r¼1

yrjur �
Xm

i¼1

xijvi þ w0 � 0; 8j

ur; vi � 0; 8r; i

ð7Þ
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Y
ADD� CRS
Classic

Min
Xm

i¼1

xi0vi �
Xs

r¼1

yr0ur

S:t: �
Xs

r¼1

yrjur þ
Xm

i¼1

xijvi � 0; 8j

ur � 1; 8r

vi � 1; 8i

ð8Þ

Y
ADD� VRS
Classic

Min
Xm

i¼1

xi0vi �
Xs

r¼1

yr0ur � w0

S:t: �
Xs

r¼1

yrjur þ
Xm

i¼1

xijvi � w0 � 0; 8j

ur � 1; 8r

vi � 1; 8i

ð9Þ

With respect to CCR, BCC and Additive models are basic and popular DEA models, in this

research, input-oriented CCR (CCR-IO) model, output-oriented CCR (CCR-OO) model,

input-oriented BCC (BCC-IO) model, output-oriented BCC (BCC-OO) model, Additive

model with constant returns to scale (ADD-CRS) and Additive model with variable returns to

scale (ADD-VRS) will be applied. The multiplier form of CCR-IO, CCR-OO, BCC-IO,

BCC-OO, ADD-CRS and ADD-VRS models are introduced in Models (4) to (9), respectively.

3.4. Robust optimization

In real cases, generally, the inputs and outputs of DEA models are tainted by uncertainty [97–

105]. The imprecision of the input parameters increases when there is a low access to reliable

historical data. In this condition, it is important to protect the robustness of the solution

obtained from the DEA model; otherwise, the efficiency and ranking of the concerned DMUs

may become unreliable and consequently significant costs may impose on different stakehold-

ers. To prevent such undesirable outcome robust optimization methods can be employed

[106]. Notably, a solution to a DEA model is said to be robust if it remains feasible for almost

all possible values of uncertain parameters and the corresponding ranking should have mini-

mum variation for all possible values of imprecise parameters. Here, a hard-worst-case robust

optimization approach is applied to cope with uncertain parameters in the DEA model [107].

This approach does not need significant historical data and therefore it can be applied in

almost all of the real-life DEA problems. In addition, this method assures the feasibility of the

DEA model solution for all possible values of uncertain parameters in the assumed convex

uncertainty set. Soyster [108], Ben-Tal & Nemirovski [109] and Bertsimas & Sim [110] pre-

sented a popular and main robust optimization approach in convex uncertainty set.

In robust optimization method, for dealing with uncertainty in data, consider a particular

constraint a of a nominal model and let Λa represent the set of coefficients in constraint a that

are subject to uncertainty. It should be noted that each entry αab,b 2 Λa is modeled as a sym-

metric and bounded random variable which takes values in ½aab � âab; aab þ âabÞ. The central

of this interval at the point αab is a nominal value and âab is the perturbation of uncertain

parameters αab,b 2 Λa. Finally, robust counterpart of constraint a based on Soyster [108], Ben-
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Tal & Nemirovski [109] and Bertsimas & Sim [110] robust optimization approaches are pro-

posed as Eqs (10) to (12), respectively:

Soyster
X

b

aab φb þ
X

b2La

âab�b � ba; 8a

� �b � φb � �b; 8b

� � 0

8
>>>>><

>>>>>:

ð10Þ

Robust Counterpart of
X

b

~aabφb � ba; 8a

Ben � Tal & Nemirovski
X

b

aab φb þ
X

b2La

âab�ab þ Oa

ffiffiffiffiffiffiffiffiffiffiX

b2La

â
r

2
ab s

2
ab � ba; 8a

� �ab � φb � sab � �ab; 8a; b 2 La

� � 0

8
>>>>>>><

>>>>>>>:

ð11Þ

Bertsimas & Sim
X

b

aab φb þ ZaGaþ
X

b2La

Pab � ba; 8a

Za þ Pab � âab�b; 8a; b 2 La

� �b � φb � �b; 8a; b 2 La

Z; P; � � 0

8
>>>>>>>>><

>>>>>>>>>:

ð12Þ

It is worth mentioning that robust optimization approach of Soyster [108] is too conserva-

tive. Ben-Tal & Nemirovski [109] proposed a robust approach but their robust counterpart is

nonlinear programming (NLP) which can be problematic in the real-world problems although

the model can adjust the conservatism by parameter O. Bertsimas and Sim’s [110] robust

approach can flexibly adjust the level of conservatism of the robust solutions by parameter Γ
and robust counterpart in their approach is linear programming (LP) [111–114]. With respect

to this feature and linearity of robust counterpart in Bertsimas and Sim’s [110] robust

approach, this approach will be used in this paper for dealing with uncertainty in all models.

Please note that RO approaches of Soyster [108], Ben-Tal & Nemirovski [109] and Bertsimas

& Sim [110] are presented based on “box”, “box & ellipsoidal”, and “box & polyhedral” uncer-

tainty sets, respectively.

4. The proposed robust approach for portfolio selection and

optimization problem

In this section, the robust approach for portfolio construction problem in the financial markets

is presented. This approach contains two phases that in continuous, steps of each phase, thor-

oughly are explained. Fig 1 presents a schematic summary of all steps in two-phase robust

portfolio construction approach of this paper.
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4.1. Phase I: Portfolio selection

In this phase during 6 steps, the performance of all stocks that investors can invest in them, are

evaluated and measured. At the end of this phase, only the stocks that pass the filter of the

investor are qualified to be a candidate that can be invested in the second phase.

Step 1.1. Choose a Data Envelopment Analysis (DEA) model. In the first step of phase

1, the data envelopment analysis models are chosen to evaluate the stocks. In this paper,

CCR-IO, CCR-OO, BCC-IO, BCC-OO, ADD-CRS and ADD-VRS models are selected. Nota-

bly, all of DEA models that are used in this study, are presented in the Subsection 3.3.

Step 1.2. Choose a financial criteria for evaluating the stocks. In the second step of

phase 1, financial criteria for evaluation of stocks are chosen from different perspectives that

contains of return, risk, profitability, liquidity, leverage, valuation and growth. Based on

Fig 1. The methodology of proposed two-phase robust portfolio selection and optimization approach.

https://doi.org/10.1371/journal.pone.0239810.g001
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literature review, expert opinion and Delphi method, inputs and outputs of DEA models are as

shown in Table 3.

Step 1.3. Choose a robust optimization approach. In the third step of phase 1, with

respect to weaknesses and strengths of Soyster [108], Ben-Tal & Nemirovski [109] and Bertsi-

mas & Sim [110] robust approaches, the Bertsimas & Sim’s [110] (B&S) robust approach are

selected for dealing with uncertain parameters in DEA models. It should be noted that the for-

mulation of robust counterpart in the B&S robust approach are presented in Subsection 3.4.

Step 1.4. Proposing the Robust Data Envelopment Analysis (RDEA) model. In the

fourth step of phase 1, robust data envelopment analysis models are proposed. This step is the

most important step in the first phase. In order to consider the uncertainty of input and output

parameters in DEA models based on Bertsimas & Sim’s [110] robust approach, primarily all of

the constraints, to become less than or equal constraints. In each of the CCR-IO, CCR-OO,

BCC-IO and BCC-OO models, how to convert the equal constraint to less than or equal con-

straints, will be discussed in the following, respectively.

The compact form (CF) of CCR-IO model is as Model (13). If vx0 = 1 become to vx0� 1,

the optimal solution does not change.

Y
CCR� IO

ClassicðCFÞ

Max uy0

S:t: vx0 ¼ 1

uyj � vxj � 0; 8j

u; v � 0

ð13Þ

Max uy0

S:t: vx0 � 1

uyj � vxj � 0; 8j

u; v � 0

ð14Þ

Proposition 1. The optimal solution of Model (13) is equal to Model (14).

Table 3. The inputs and outputs of DEA models.

Financial Criteria Symbol Description

Inputs Price to Earnings Ratio (P/

E)

I (1) Stock price divided by net income per share

Quick Ratio I (2) Total current assets minus inventory divided by total current

liabilities

Solvency Ratio-II I (3) Total liability divided by shareholders equity

Beta (β) I (4) Systematic Risk

Standard Deviation (σ) I (5) Non-Systematic Risk

Outputs Earnings per Share (EPS) O (1) Net income minus dividends divided by common shares

Rate of Return O (2) Proportion of gain or loss on an investment over a specified

period

Rate of Liquidity O (3) Degree which presents stock ability to be bought or sold in the

market quickly

Earnings per Share Growth

Rate

O (4) Current quarters EPS divided by the previous quarters EPS minus

one

https://doi.org/10.1371/journal.pone.0239810.t003
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Proof. Assume that the optimal solution of Model (14) is ð�u; �vÞ. By contradiction, suppose

that �vx0 < 1 (it should be noted that �vx0 > 0). ðû; v̂Þ are considered as û ¼ �u=�vx0 and

v̂ ¼ �v=�vx0. Because of ûyj � v̂xj ¼ ð�uyj � �vxjÞ=�vx0 � 0 (with respect to 1=�vx0 > 0 and

�uyj � �vxj � 0), v̂x0 ¼ ð�vx0Þ=�vx0 ¼ 1, û � 0 and v̂ � 0, ðû; v̂Þ are the feasible solution of

Model (14). Also, in the objective function ûy0 ¼ ð�uy0Þ=�vx0, with respect to suppose that

�vx0 < 1, thus 1=�vx0 > 1 and finally ûy0 > �uy0 that this is contradicts with optimality of ð�u; �vÞ.
So, at any optimal solution of Model (14), always �vx0 ¼ 1.

The compact form of CCR-OO model is as Model (15). If uy0 = 1 become to uy0� 1, the

optimal solution does not change.

Y
CCR� OO

ClassicðCFÞ

Min vx0

S:t: uy0 ¼ 1

uyj � vxj � 0; 8j

u; v � 0

ð15Þ

Min vx0

S:t: uy0 � 1

uyj � vxj � 0; 8j

u; v � 0

ð16Þ

Proposition 2. The optimal solution of Model (15) is equal to Model (16).

Proof. Assume that the optimal solution of Model (16) is ð�u; �vÞ. By contradiction, suppose

that �uy0 > 1. ðû; v̂Þ are considered as û ¼ �u=�uy0 and v̂ ¼ �v=�uy0. Because of ûyj � v̂xj ¼

ð�uyj � �vxjÞ=�uy0 � 0 (with respect to 1=�uy0 > 0 and �uyj � �vxj � 0), ûy0 ¼ ð�uy0Þ=�uy0 ¼ 1,

û � 0 and v̂ � 0, ðû; v̂Þ is the feasible solution of Model (16). Also, in the objective function

v̂x0 ¼ ð�vx0Þ=�uy0, with respect to suppose that �uy0 > 1, thus 1=�uy0 < 1 and finally v̂x0 < �vx0

that this is contradicts with optimality of ð�u; �vÞ. So, at any optimal solution of Model (16),

always �uy0 ¼ 1.

The compact form of BCC-IO Model is as Model (17). If vx0 = 1 become to vx0� 1, the

optimal solution does not change.

Y
BCC� IO

ClassicðCFÞ

Max uy0 þ w0

S:t: vx0 ¼ 1

uyj � vxj þ w0 � 0; 8j

u; v � 0

ð17Þ

Max uy0 þ w0

S:t: vx0 � 1

uyj � vxj þ w0 � 0; 8j

u; v � 0

ð18Þ
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Proposition 3. The optimal solution of Model (17) is equal to Model (18).

Proof. Assume that the optimal solution of Model (18) is ð�u; �v; �w0Þ. By contradiction, sup-

pose that �vx0 < 1 (it should be noted that �vx0 > 0). ðû; v̂; ŵ0Þ are considered as û ¼ �u=�vx0,

v̂ ¼ �v=�vx0 and ŵ0 ¼ �w0=�vx0. Because of ûyj � v̂xj þ ŵ0 ¼ ð�uyj � �vxj þ �w0Þ=�vx0 � 0 (with

respect to 1=�vx0 > 0 and �uyj � �vxj þ �w0 � 0), v̂x0 ¼ ð�vx0Þ=�vx0 ¼ 1, û � 0 and v̂ � 0,

ðû; v̂; ŵ0Þ is the feasible solution of Model (18). Also, in the objective function

ûy0 þ ŵ0 ¼ ð�uy0 þ �w0Þ=�vx0, with respect to suppose that �vx0 < 1, thus 1=�vx0 > 1 and finally

ûy0 þ ŵ0 > �uy0 þ �w0 that this is contradicts with optimality of ð�u; �v; �w0Þ. So, at any optimal

solution of Model (18), always �vx0 ¼ 1.

The compact form of BCC-OO Model is as Model (19). If uy0 = 1 become to uy0� 1, the

optimal solution does not change.

Y
BCC� OO

ClassicðCFÞ

Min vx0 � w0

S:t: uy0 ¼ 1

uyj � vxj þ w0 � 0; 8j

u; v � 0

ð19Þ

Min vx0 � w0

S:t: uy0 � 1

uyj � vxj þ w0 � 0; 8j

u; v � 0

ð20Þ

Proposition 4. The optimal solution of Model (19) is equal to Model (20).

Proof. Assume that the optimal solution of Model (20) is ð�u; �v; �w0Þ. By contradiction, sup-

pose that �uy0 > 1. ðû; v̂; ŵ0Þ are considered as û ¼ �u=�uy0, v̂ ¼ �v=�uy0 and ŵ0 ¼ �w0=�uy0.

Because of ûyj � v̂xj þ ŵ0 ¼ ð�uyj � �vxj þ �w0Þ=�uy0 � 0 (with respect to 1=�uy0 > 0 and

�uyj � �vxj þ �w0 � 0), ûy0 ¼ ð�uy0Þ=�uy0 ¼ 1, û � 0 and v̂ � 0, ðû; v̂; ŵ0Þ is the feasible solution

of Model (20). Also, in the objective function v̂x0 � ŵ0 ¼ ð�vx0 � �w0Þ=�uy0, with respect to sup-

pose that �uy0 > 1, thus 1=�uy0 < 1 and finally v̂x0 � ŵ0 < �vx0 � �w0 that this is contradicts

with optimality of ð�u; �v; �w0Þ. So, at any optimal solution of Model (20), always �uy0 ¼ 1.

Now, according to B&S robust approach, all the robust DEA models in this paper that con-

tain RCCR-IO, RCCR-OO, RBCC-IO, RBCC-OO, RADD-CRS, and RADD-VRS are pre-

sented as Models (21) to (26), respectively:
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Y
CCR� IO
Robust

Max C

S:t: C �
Xs

r¼1

yr0ur þ Zy
0G

y
0
þ
Xs

r¼1

Py
r0 � 0

Xm

i¼1

xi0vi þ Zx
0
Gx

0
þ
Xm

i¼1

Px
i0 � 1

Xs

r¼1

yrjur �
Xm

i¼1

xijvi þ ZjGj þ
Xs

r¼1

Py
rj þ

Xm

i¼1

Px
ij � 0; 8j

Zy
0 þ Py

r0 � Dyr0ur; 8r

Zx
0
þ Px

i0 � Dxi0vi; 8i

Zj þ Py
rj � Dyrjur; 8j; r

Zj þ Px
ij � Dxijvi; 8j; i

Zx
0
;Zy

0;Zj; P
y
r0; P

y
rj; Px

i0; P
x
ij; ur; vi � 0; 8j; r; i

ð21Þ

Y
CCR� OO
Robust

Min C

S:t:
Xm

i¼1

xi0vi þ Zx
0
Gx

0
þ
Xm

i¼1

Px
i0 � C � 0

�
Xs

r¼1

yr0ur þ Zy
0G

y
0
þ
Xs

r¼1

Py
r0 � � 1

Xs

r¼1

yrjur �
Xm

i¼1

xijvi þ ZjGj þ
Xs

r¼1

Py
rj þ

Xm

i¼1

Px
ij � 0; 8j

Zx
0
þ Px

i0 � Dxi0vi; 8i

Zy
0 þ Py

r0 � Dyr0ur; 8r

Zj þ Py
rj � Dyrjur; 8j; r

Zj þ Px
ij � Dxijvi; 8j; i

Zx
0
;Zy

0;Zj; P
y
r0; P

y
rj; Px

i0; P
x
ij; ur; vi � 0; 8j; r; i

ð22Þ
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Y
BCC� IO
Robust

Min C

S:t: C �
Xs

r¼1

yr0ur � w0 þ Zy
0G

y
0
þ
Xs

r¼1

Py
r0 � 0

Xm

i¼1

xi0vi þ Zx
0
Gx

0
þ
Xm

i¼1

Px
i0 � 1

Xs

r¼1

yrjur �
Xm

i¼1

xijvi þ w0 þ ZjGj þ
Xs

r¼1

Py
rj þ

Xm

i¼1

Px
ij � 0; 8j

Zy
0 þ Py

r0 � Dyr0ur; 8r

Zx
0
þ Px

i0 � Dxi0vi; 8i

Zj þ Py
rj � Dyrjur; 8j; r

Zj þ Px
ij � Dxijvi; 8j; i

Zx
0
;Zy

0;Zj; P
y
r0; P

y
rj; Px

i0; P
x
ij; ur; vi � 0; 8j; r; i

ð23Þ

Y
BCC� OO
Robust

Min C

S:t:
Xm

i¼1

xi0vi � w0 þ Zx
0
Gx

0
þ
Xm

i¼1

Px
i0 � C � 0

�
Xs

r¼1

yr0ur þ Zy
0G

y
0
þ
Xs

r¼1

Py
r0 � � 1

Xs

r¼1

yrjur �
Xm

i¼1

xijvi þ w0 þ ZjGj þ
Xs

r¼1

Py
rj þ

Xm

i¼1

Px
ij � 0; 8j

Zx
0
þ Px

i0 � Dxi0vi; 8i

Zy
0 þ Py

r0 � Dyr0ur; 8r

Zj þ Py
rj � Dyrjur; 8j; r

Zj þ Px
ij � Dxijvi; 8j; i

Zx
0
;Zy

0;Zj; P
y
r0; P

y
rj; Px

i0; P
x
ij; ur; vi � 0; 8j; r; i

ð24Þ
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Y
ADD� CRS
Robust

Min C

S:t: �
Xs

r¼1

yr0ur þ
Xm

i¼1

xi0vi þ Z0G0 þ
Xs

r¼1

Py
r0 þ

Xm

i¼1

Px
i0 � C � 0

Xs

r¼1

yrjur �
Xm

i¼1

xijvi þ ZjGj þ
Xs

r¼1

Py
rj þ

Xm

i¼1

Px
ij � 0; 8j

ur � 1; 8r

vi � 1; 8i

Z0 þ Py
r0 � Dyr0ur; 8r

Z0 þ Px
i0 � Dxi0vi; 8i

Zj þ Py
rj � Dyrjur; 8j; r

Zj þ Px
ij � Dxijvi; 8j; i

Z0;Zj; P
y
r0; P

y
rj; Px

i0; P
x
ij; ur; vi � 0; 8j; r; i

ð25Þ

Y
ADD� VRS
Robust

Min C

S:t: �
Xs

r¼1

yr0ur þ
Xm

i¼1

xi0vi � w0 þ Z0G0 þ
Xs

r¼1

Py
r0 þ

Xm

i¼1

Px
i0 � C � 0

Xs

r¼1

yrjur �
Xm

i¼1

xijvi þ w0 þ ZjGj þ
Xs

r¼1

Py
rj þ

Xm

i¼1

Px
ij � 0; 8j

ur � 1; 8r

vi � 1; 8i

Z0 þ Py
r0 � Dyr0ur; 8r

Z0 þ Px
i0 � Dxi0vi; 8i

Zj þ Py
rj � Dyrjur; 8j; r

Zj þ Px
ij � Dxijvi; 8j; i

Z0;Zj; P
y
r0; P

y
rj; Px

i0; P
x
ij; ur; vi � 0; 8j; r; i

ð26Þ

Note that in this step, six robust data envelopment analysis (RDEA) models that are popular

in the DEA field are proposed.

Step 1.5. Run the RDEA model for desired Γ and Δ. In the fifth step of phase 1, the

robust DEA model with consideration of the conservatism level Γ and perturbation Δ for per-

formance measurement of all stocks will be run. Also, by applying the RDEA Model, all stocks

will be ranked. For the constraint i to be violated with probability at most δi, it is sufficient to

choose Γi at least equal to Eq (27):

1 � di ¼ 1 � Fð
Gi � 1
ffiffiffi
n
p Þ , Gi ¼ 1þ F� 1

ð1� diÞ

ffiffiffi
n
p

ð27Þ

Where F, the cumulative distribution, is function of the standard Gaussian variable and n
is the number of uncertain parameters in the constraint i.
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Step 1.6. Selection of top stocks from first phase. In the sixth step of phase 1, with

respect to cardinality constraint ∑τj = k for portfolio selection in the second phase, top k stocks

that qualified for pass the first phase to second phase will be selected. For conservative perspec-

tive to selection of the best stocks in first phase, top k stocks will be selected based on the aver-

age rank of per stock in all RDEA models contain of RCCR-IO, RCCR-OO, RBCC-IO,

RBCC-OO, RADD-CRS and RADD-VRS models.

4.2. Phase II: Portfolio optimization

In this phase with 5 steps, the amount to be invested in each qualified stock is decided and

finally the portfolio is created. In other words, in this phase DM makes a decision for weights

of qualified stocks from the first phase in the portfolio.

Step 2.1. Proposing the portfolio optimization (PS) model for qualified stocks. In the

first step of phase 2, two portfolio optimization models with consideration of risk, return and

liquidity will be proposed. In the first model, semi variance and in the second model, absolute

deviation are risk measures, respectively. For consideration of return and liquidity, two con-

straints are added to each model that ensures achieving the desired minimum expected return

and desired minimum expected liquidity of investor. Also, in order to develop the model for

covering the financial market constraint, cardinality constraint and purchasing limitation

should be considered.

Now, the mean-semi variance-liquidity (MSVL) model and the mean-absolute deviation-

liquidity (MADL) model are proposed as Models (29) and (30), respectively:

Y
MSVL

Min
1

T

XT

t¼1

x
2

t

S:t:
Xn

j¼1

�Rjoj � RE

Xn

j¼1

�Ljoj � LE

xt � RE �
Xn

j¼1

Rtjoj; 8t

Xn

j¼1

oj ¼ 1

Xn

j¼1

tj ¼ k

Ajtj � oj � Bjtj; 8j

tj 2 f0; 1g; 8j

xt;oj � 0; 8t; j

ð28Þ
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Y
MADL

Min
1

T

XT

t¼1

zt

S:t:
Xn

j¼1

�Rjoj � RE

Xn

j¼1

�Ljoj � LE

zt � RE �
Xn

j¼1

Rtjoj; 8t

zt �
Xn

j¼1

Rtjoj � RE; 8t

Xn

j¼1

oj ¼ 1

Xn

j¼1

tj ¼ k

Ajtj � oj � Bjtj; 8j

tj 2 f0; 1g; 8j

zt;oj � 0; 8t; j

ð29Þ

It is worth noting that in MSVL and MADL models, cardinality constraint ∑τj = k for port-

folio selection is satisfied by first phase.

Step 2.2. Choose a robust optimization approach. In the second step of phase 2, the

Bertsimas & Sim’s [110] robust approach is selected for dealing to uncertain data and parame-

ters in MSVL and MADL models. It should be noted that the formulation of robust counter-

part in the B&S robust approach is presented in the Subsection 3.4.

Step 2.3. Proposing robust Portfolio Optimization (RPO) models. In the third step of

phase 2, robust portfolio optimization models will be proposed. This step is the most
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important step in the second phase. According to B&S robust approach, the RMSVL and

RMADL models are proposed as Models (30) and (31):

Y
MSVL
Robust

Min
1

T

XT

t¼1

x
2

t

S:t: �
Xn

j¼1

�Rjoj þ Z�RG
�R þ

Xn

j¼1

P�R
j � � RE

�
Xn

j¼1

�Ljoj þ Z�LG
�L þ

Xn

j¼1

P�L
j � � LE

RE �
Xn

j¼1

Rtjoj þ ZR
j G

R
j þ

Xn

j¼1

PR
tj � xt; 8t; j

Xn

j¼1

oj ¼ 1

Xn

j¼1

tj ¼ k

Z�R þ P�R
j � D�Rjoj; 8j

Z�L þ P�L
j � D�Ljoj; 8j

ZR
j þ PR

tj � DRtjoj; 8t; j

Z�R ;Z�L ;ZR
j ; P

�R
j ; P

�L
j ; P

R
tj � 0; 8t; j

Ajtj � oj � Bjtj; 8j

tj 2 f0; 1g; 8j

xt;oj � 0; 8t; j

ð30Þ
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Y
MADL
Robust
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�R
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�L
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R1
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R2
tj � 0; 8t; j

Ajtj � oj � Bjtj; 8j

tj 2 f0; 1g; 8j

zt;oj � 0; 8t; j

ð31Þ

In this step, two robust portfolio optimization models that are RMSVL and RMADL are

proposed.

Step 2.4. Run the RPS model to achieve desired Γ and Δ. In the fourth step of phase 2,

the robust portfolio optimization model with consideration of the desired level of conservatism

Γ and perturbation Δ is run to make a decision for weights of the qualified stocks obtained

from the first phase. As same as the fifth step of phase 1, for the constraint i to be violated with

probability at most δi, it is sufficient to choose Γi at least equal to Eq (27).

Step 2.5. Portfolio construction with weights of the RPO model. In the fifth step of

phase 2, finally, with respect to weights of top k stocks in the RMSVL and RMADL models, the

investor desired portfolio will be constructed. It should be noted that, with changing the

desired minimum expected return and desired minimum expected liquidity of the investor,

the efficient frontier will be made.

5. Case study and numerical results

In this section, the implementation of the proposed approach of this paper for the portfolio

construction problem, is presented for a real-world case study from Tehran stock exchange
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(TSE). TSE, with a history of nearly half a century, is one of the most attractive financial mar-

kets in the Middle East region. Pharmaceutical industry involving 27 stocks is selected and

financial data are extracted from March 2013 to March 2014. Summary of real-world data

from Pharmaceutical industry of Tehran stock exchange (TSE) that are used in this research

are as Table 4.

Now, after collecting data, the robust CCR-IO, robust CCR-OO, robust BCC-IO, robust

BCC-OO, robust ADD-CRS and robust ADD-VRS models will be run. According to the

desired confidence level of 90% in order to satisfy the constraints in the robust data envelop-

ment analysis models, based on Eq (27), the level of conservatism Γ is set equal to 3.56, 3.86

and 4.84 for constraints with 4, 5 and 9 uncertain parameters, respectively. Also, the perturba-

tions Δ is set to 0.05. The results of all RDEA models that are presented in Model (21) to (26)

are introduced in Table 5.

After running all RDEA models, the ranking of all stocks in RCCR-IO, RCCR-OO,

RBCC-IO, RBCC-OO, RADD-CRS and RADD-VRS models are presented in Table 6.

Table 4. Summary of real-world data from Tehran Stock Exchange (TSE).

Stocks Inputs Outputs

I (1) I (2) I (3) I (4) I (5) O (1) O (2) O (3) O (4)

PDRO 7.43 1.18 1.22 1.03 0.02 3344 1.93 157.67 59.33

DLGM 13.38 0.49 3.87 0.70 0.03 213 2.06 183.48 133.33

THSH 11.58 0.59 2.85 0.01 0.02 799 0.69 110.28 30.16

DDPK 7.70 0.86 2.27 0.54 0.05 693 2.73 122.76 56.85

TMVD 6.58 1.16 1.00 0.64 0.02 2965 1.04 166.99 10.66

DAML 8.70 0.87 3.91 0.57 0.03 1386 1.98 156.08 2.74

DFRB 7.76 1.07 1.84 1.40 0.03 1277 2.04 164.07 31.17

DKSR 8.96 0.97 1.36 1.48 0.03 121 2.64 228.88 369.42

DARO 7.93 7.07 0.10 1.27 0.03 1553 1.85 187.63 54.67

DABO 9.03 0.86 3.44 0.71 0.03 1357 2.30 143.68 93.15

DRZK 7.91 0.96 1.72 0.68 0.03 1493 2.88 167.43 96.65

DOSE 18.43 1.06 1.23 1.56 0.04 997 1.92 169.70 67.00

PKSH 6.41 0.90 5.95 1.67 0.03 528 0.73 227.86 53.22

IRDR 7.47 0.72 3.00 1.09 0.03 306 1.59 187.99 230.39

DALZ 7.46 1.28 1.21 1.49 0.03 956 2.49 205.22 111.30

DSBH 8.39 1.35 0.86 1.60 0.04 2340 2.91 155.82 95.56

DPAK 6.82 0.79 4.43 1.30 0.05 666 2.52 177.08 119.82

DJBR 6.94 1.21 0.94 0.94 0.03 659 3.14 219.36 122.76

KIMI 6.81 0.73 2.28 6.24 0.21 227 5.74 147.27 438.33

EXIR 8.20 0.82 5.16 1.14 0.03 1283 3.14 198.36 118.24

DSIN 7.52 1.21 0.84 0.97 0.03 1222 1.80 174.39 94.68

ROZD 8.84 1.01 0.95 0.28 0.07 131 1.46 26.37 286.26

AMIN 5.73 0.97 1.45 0.74 0.04 696 4.15 163.71 230.03

DZAH 5.40 0.95 2.83 1.20 0.07 2699 2.35 44.51 129.27

ABDI 10.22 0.60 4.81 0.59 0.03 404 2.21 181.41 83.42

ALBZ 6.90 1.00 1.93 1.41 0.03 418 1.49 228.42 104.07

DSOB 6.75 1.06 1.57 1.46 0.03 655 2.65 221.73 104.58

Mean 8.34 1.18 2.33 1.21 0.04 1088.44 2.31 167.34 123.22

SD 2.58 1.17 1.50 1.07 0.04 851.51 1.03 48.01 101.97

Max 18.43 7.07 5.95 6.24 0.21 3344 5.74 228.88 438.33

Min 5.40 0.49 0.10 0.01 0.02 121 0.69 26.37 2.74

https://doi.org/10.1371/journal.pone.0239810.t004
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According to cardinality constraint in RMSVL and RMADL, k is set equal to 10, ten stocks

that have a higher average rank in Table 6 are selected. Finally, the set of stocks that selected

from RDEA models are PDRO, DLGM, THSH, TMVD, DKSR, DARO, DJBR, KIMI, ROZD,

and AMIN. In order to run RMSVL and RMADL models, the monthly data for the return and

the liquidity of the selected stocks are extracted for 12 months between March 2013 to March

2014 from TSE. The real data for the return and the liquidity of the selected stocks per 12 peri-

ods are presented in Tables 7 and 8, respectively:

Now, after selecting stocks from the first phase, in the second phase, the robust mean-semi

variance-liquidity (RMSVL) and robust mean-absolute deviation-liquidity (RMADL) models

will be run. According to the desired confidence level of 90% in order to satisfy the constraints

in the RMSVL and RMADL models, based on Eq (27), the level of conservatism Γ is set equal

to 5.05 for a constraint with 10 uncertain parameters. Also, the perturbations Δ is set to 0.05

and taking into account the expected liquidity of portfolio is fixed equal to 10.50, and the

expected return of the portfolio is increased. With considering the different expected returns

of the portfolio, the results of RMSVL and RMADL models that are presented in Models (30)

and (31) are introduced in Tables 9 and 10:

As can be seen in the results, with an increase in the expected return of the portfolio, the

risk of portfolio is also increased. The efficient frontier of RMSVL and RMADL are presented

in Figs 2 and 3, respectively.

Table 5. The results of robust DEA models.

Stocks Robust CCR-IO Robust CCR-OO Robust BCC-IO Robust BCC-OO Robust ADD-CRS Robust ADD-VRS

PDRO 0.85887 1.16433 0.88791 1.10312 29.87672 22.87556

DLGM 0.84602 1.18200 0.90960 1.13212 25.70614 22.84913

THSH 0.86882 1.15099 0.91623 1.10438 5.15744 4.06436

DDPK 0.71995 1.38898 0.88951 1.34676 61.67257 55.00222

TMVD 0.85481 1.16984 0.91623 1.10534 25.36754 22.85278

DAML 0.79114 1.26399 0.90124 1.21064 39.54300 35.12576

DFRB 0.69491 1.43904 0.84832 1.34537 76.09811 62.20772

DKSR 0.85595 1.16830 0.90727 1.10470 32.45019 22.84938

DARO 0.85575 1.16856 0.91623 1.10595 26.44291 19.18050

DABO 0.76187 1.31256 0.87295 1.30348 51.04647 48.93671

DRZK 0.85135 1.17460 0.90870 1.12988 27.15691 23.33055

DOSE 0.67946 1.47177 0.87701 1.35464 86.38817 62.94803

PKSH 0.82837 1.20720 0.90559 1.10516 38.97710 22.91794

IRDR 0.83047 1.20414 0.90969 1.18742 34.87790 32.73420

DALZ 0.73721 1.35646 0.80370 1.14626 65.60089 30.61510

DSBH 0.85606 1.16814 0.90077 1.10779 32.14735 24.66641

DPAK 0.79327 1.26060 0.90483 1.25902 44.12418 44.11159

DJBR 0.85682 1.16711 0.90937 1.10447 27.74941 22.73128

KIMI 0.84950 1.17716 0.90722 1.10386 34.44683 23.76253

EXIR 0.84526 1.18306 0.89649 1.10443 33.07610 23.57070

DSIN 0.80445 1.24309 0.91155 1.24237 38.35772 36.18096

ROZD 0.84649 1.18135 0.91623 1.11277 16.50960 16.31644

AMIN 0.86319 1.15850 0.91174 1.10522 25.74536 22.44055

DZAH 0.84416 1.18461 0.90703 1.10841 40.36772 31.02423

ABDI 0.84234 1.18717 0.90652 1.13665 27.02603 22.44868

ALBZ 0.83444 1.19841 0.90530 1.10507 38.56758 22.87104

DSOB 0.83244 1.20129 0.87665 1.10501 39.79929 22.87686

https://doi.org/10.1371/journal.pone.0239810.t005
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Table 6. The ranking of stocks in robust DEA models.

Stocks Robust

CCR-IO

Robust

CCR-OO

Robust

BCC-IO

Robust

BCC-OO

Robust

ADD-CRS

Robust

ADD-VRS

Average

PDRO 3 3 22 1 10 11 8

DLGM 12 12 8 17 4 7 9

THSH 1 1 1 3 1 1 1

DDPK 25 25 21 26 24 25 25

TMVD 8 8 1 11 3 9 5

DAML 22 22 18 21 19 21 21

DFRB 26 26 26 25 26 26 26

DKSR 6 6 11 6 12 8 7

DARO 7 7 1 12 6 3 3

DABO 23 23 25 24 23 24 24

DRZK 9 9 10 16 8 14 11

DOSE 27 27 23 27 27 27 27

PKSH 19 19 15 9 18 13 16

IRDR 18 18 7 20 15 20 19

DALZ 24 24 27 19 25 18 23

DSBH 5 5 19 13 11 17 12

DPAK 21 21 17 23 22 23 22

DJBR 4 4 9 5 9 6 4

KIMI 10 10 12 2 14 16 10

EXIR 13 13 20 4 13 15 14

DSIN 20 20 6 22 16 22 20

ROZD 11 11 1 15 2 2 6

AMIN 2 2 5 10 5 4 2

DZAH 14 14 13 14 21 19 17

ABDI 15 15 14 18 7 5 13

ALBZ 16 16 16 8 17 10 15

DSOB 17 17 24 7 20 12 18

https://doi.org/10.1371/journal.pone.0239810.t006

Table 7. The return of stocks per period.

Periods Selected Stocks in Phase 1

PDRO DLGM THSH TMVD DKSR DARO DJBR KIMI ROZD AMIN

Period 1th 0.0160 0.2266 -0.0031 0.1359 0.1685 0.0097 0.0508 0.2122 0.0071 0.1094

Period 2th -0.1193 -0.0638 -0.2154 0.0289 0.0012 0.0563 0.1100 0.5835 0.0049 0.1238

Period 3th 0.3156 0.1300 0.1015 0.3195 0.3108 0.0468 0.3073 0.6966 0.0497 0.1197

Period 4th 0.2472 0.4190 0.1030 0.1672 0.5002 0.7275 0.5629 0.5675 0.0829 0.0322

Period 5th 0.1063 0.1474 0.0232 -0.1552 -0.0924 0.0633 -0.0493 -0.2953 0.0188 0.1704

Period 6th 0.0909 -0.1696 0.1883 0.0055 0.0133 0.1084 0.0361 -0.0666 0.0028 0.3193

Period 7th 0.2347 0.1540 0.0636 0.1367 0.3673 0.0068 0.1900 -0.0393 0.0118 0.3822

Period 8th 0.3047 0.3167 0.0343 0.1907 0.3148 0.0769 0.4905 1.2232 0.0005 0.5867

Period 9th 0.1981 0.1549 0.0480 0.0689 0.2201 0.2104 0.2029 0.5297 0.1466 0.1842

Period 10th -0.1011 0.0860 0.0240 -0.0097 0.0317 0.2085 -0.1096 -0.0594 0.1328 -0.0580

Period 11th 0.0028 -0.0609 0.2036 -0.0174 -0.2285 -0.1966 -0.1507 -0.1246 0.0161 0.0803

Period 12th 0.0483 -0.0157 0.0332 -0.0210 0.0523 0.0066 0.2050 -0.0113 0.5774 -0.0563

Average Return 0.1120 0.1104 0.0504 0.0708 0.1383 0.1104 0.1538 0.2680 0.0876 0.1662

https://doi.org/10.1371/journal.pone.0239810.t007
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Table 8. The liquidity of stocks per period.

Periods Selected Stocks in Phase 1

PDRO DLGM THSH TMVD DKSR DARO DJBR KIMI ROZD AMIN

Period 1th 9.83 14.76 3.91 8.41 14.2 6.62 12.19 14.07 1.20 10.67

Period 2th 18.08 11.97 14.55 16.38 21.04 19.55 19.43 5.31 1.33 14.79

Period 3th 17.78 1.81 15.79 14.24 18.37 8.69 12.33 7.35 3.51 7.01

Period 4th 10.52 14.66 16.47 20.09 18.36 15.84 20.57 11.23 3.34 4.62

Period 5th 15.96 15.00 9.43 18.88 18.54 18.10 19.31 19.15 3.41 5.21

Period 6th 18.77 14.35 12.73 18.55 19.72 14.76 19.79 20.07 1.00 17.48

Period 7th 19.10 18.94 17.66 19.03 20.52 18.52 19.59 5.76 1.20 9.58

Period 8th 15.99 18.60 9.09 18.89 19.69 17.33 19.59 4.97 0.67 12.88

Period 9th 20.10 19.80 9.34 20.74 20.78 14.80 20.65 13.87 0.97 20.47

Period 10th 17.74 15.31 6.29 18.26 18.77 18.05 14.78 18.8 1.55 18.20

Period 11th 13.63 18.84 12.82 15.49 17.25 20.07 20.31 14.31 4.03 17.05

Period 12th 14.23 18.00 8.44 17.98 19.39 19.11 19.25 16.73 2.70 18.92

Average Liquidity 15.98 15.17 11.38 17.25 18.89 15.95 18.15 12.64 2.08 13.07

https://doi.org/10.1371/journal.pone.0239810.t008

Table 9. The Results of robust Mean-Semi Variance-Liquidity (RMSVL) model.

Expected Liquidity of Portfolio 10.50

Expected Return of Portfolio 0.060 0.090 0.120 0.150 0.180 0.210 0.240

Weight of Selected Stocks from Phase .1 in Portfolio

PDRO 0.01000 0.01000 0.01000 0.01000 0.01000 0.01000 0.01000

DLGM 0.01000 0.03768 0.12088 0.01993 0.01000 0.01000 0.01000

THSH 0.18201 0.08600 0.01000 0.01000 0.01000 0.01000 0.01000

TMVD 0.01000 0.01000 0.01000 0.01000 0.01000 0.01000 0.01000

DKSR 0.01000 0.01000 0.01000 0.01000 0.01000 0.01000 0.01000

DARO 0.11863 0.08240 0.03309 0.01000 0.01000 0.01000 0.01000

DJBR 0.01000 0.01000 0.01000 0.01000 0.01000 0.01000 0.01000

KIMI 0.05947 0.03302 0.02084 0.11980 0.31677 0.58535 0.89555

ROZD 0.20666 0.21947 0.23321 0.20386 0.06407 0.01000 0.01000

AMIN 0.38323 0.50142 0.54198 0.59641 0.54916 0.33465 0.02445

Risk (SV) of Portfolio 0.00019 0.00086 0.00211 0.00489 0.01289 0.02839 0.05780

https://doi.org/10.1371/journal.pone.0239810.t009

Table 10. The Results of robust Mean-Absolute Deviation-Liquidity (RMADL) model.

Expected Liquidity of Portfolio 10.50

Expected Return of Portfolio 0.080 0.105 0.130 0.155 0.180 0.205 0.230

Weight of Selected Stocks from Phase .1 in Portfolio

PDRO 0.01000 0.01000 0.01000 0.01000 0.01000 0.01000 0.01000

DLGM 0.20348 0.21193 0.17378 0.01029 0.01000 0.01000 0.01000

THSH 0.46927 0.23438 0.01000 0.01000 0.01000 0.01000 0.01000

TMVD 0.01000 0.01000 0.01435 0.01000 0.01000 0.01000 0.01000

DKSR 0.01000 0.01000 0.01000 0.01000 0.01000 0.01000 0.01000

DARO 0.03168 0.01000 0.01000 0.01000 0.01000 0.01000 0.01000

DJBR 0.01000 0.01000 0.01292 0.01000 0.01000 0.01000 0.01000

KIMI 0.01000 0.01000 0.02959 0.16350 0.28806 0.53365 0.79215

ROZD 0.17849 0.19811 0.24012 0.20019 0.02690 0.01000 0.01000

AMIN 0.06708 0.29558 0.48925 0.56602 0.61504 0.38635 0.12785

Risk (AD) of Portfolio 0.05130 0.05915 0.07289 0.10469 0.15438 0.23195 0.32218

https://doi.org/10.1371/journal.pone.0239810.t010
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6. Sensitivity analysis

In this section, the sensitivity analysis of all robust models that are presented for different

Γand Δ. The Sensitivity analysis RCCR-IO, RCCR-OO, RBCC-IO, RBCC-OO, RADD-CRS,

RADD-VRS, RMSVL and RMADL models are presented in Tables 11–18, respectively. Also,

the trend of results from all robust models are introduced in Figs 4–11, respectively:

As can be seen in Tables 11–18 and Figs 4–11, the results indicate that, as the budget of

robustness Γ increases from 0% to 100% for uncertain parameters, the objective function gets

worse. Also, as the perturbations Δ increases from 0.01 to 0.1, the objective function gets worse

than the nominal problem. It should be noted that the expected return and the expected liquid-

ity of portfolio in both of robust MSVL and robust MADL models are set equal to 0.013 and

14.50, respectively.

Fig 2. Efficient frontier of RMSVL.

https://doi.org/10.1371/journal.pone.0239810.g002

Fig 3. Efficient frontier of RMADL.

https://doi.org/10.1371/journal.pone.0239810.g003
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In the end of this section, the portfolio performance based on RMSVL and RMADL models

will be analyzed. Accordingly, five popular measures including excess mean return (EMR),

downside deviation (DD), Sharpe ratio (SHR), information ratio (IR), and Sortino ratio (SOR)

are applied. A brief description of these measures is introduced as follows:

EMR: Describe portfolio’s reward over market index or the difference between portfolio

return and market index return. EMR is calculated by Eq (32), where RP and RI denote on

portfolio return and market index return, respectively. Please note that higher values of EMR

are desirable.

EMR ¼
1

T

XT

t¼1

ðRPðtÞ � RIðtÞÞ ð32Þ

DD: Describe the underachievement of portfolio from the market index. DD is calculated

Table 11. The results of robust CCR-IO model with different Γ and Δ.

Stocks CCR-IO Robust CCR-IO

Γi = 25% Γi = 50% Γi = 100%

Δ = 0.01 Δ = 0.1 Δ = 0.01 Δ = 0.1 Δ = 0.01 Δ = 0.1

PDRO 1 0.98576 0.86619 0.97577 0.78265 0.96079 0.66942

DLGM 1 0.98321 0.84203 0.97131 0.74458 0.96079 0.66942

THSH 1 0.98945 0.90056 0.97927 0.81429 0.96079 0.66942

DDPK 0.87950 0.85406 0.69452 0.84501 0.60422 0.84501 0.58876

TMVD 1 0.98493 0.86045 0.97446 0.77128 0.96079 0.66942

DAML 0.95574 0.93380 0.77865 0.92271 0.68497 0.91826 0.63979

DFRB 0.84316 0.82303 0.67786 0.81337 0.59220 0.81010 0.56443

DKSR 1 0.98649 0.87389 0.97521 0.77880 0.96079 0.66942

DARO 1 0.98682 0.88025 0.97570 0.78672 0.96079 0.66942

DABO 0.92518 0.90290 0.75447 0.89289 0.66705 0.88890 0.61934

DRZK 1 0.98708 0.87209 0.97446 0.76513 0.96079 0.66942

DOSE 0.82973 0.80513 0.61687 0.79845 0.56551 0.79719 0.55544

PKSH 1 0.97310 0.76003 0.96464 0.69536 0.96079 0.66942

IRDR 1 0.97847 0.80217 0.96586 0.70360 0.96079 0.66942

DALZ 0.89608 0.86782 0.71059 0.86329 0.63237 0.86094 0.59985

DSBH 1 0.98608 0.86503 0.97475 0.77227 0.96079 0.66942

DPAK 0.96745 0.93981 0.72583 0.93040 0.65497 0.92951 0.64763

DJBR 1 0.98496 0.85913 0.97481 0.77250 0.96079 0.66942

KIMI 1 0.98591 0.86883 0.97273 0.75750 0.96079 0.66942

EXIR 1 0.98407 0.84879 0.97252 0.75397 0.96079 0.66942

DSIN 0.97871 0.95010 0.74282 0.94241 0.68175 0.93873 0.65423

ROZD 1 0.97968 0.81546 0.97065 0.73979 0.96079 0.66942

AMIN 1 0.98801 0.88741 0.97754 0.79776 0.96079 0.66942

DZAH 1 0.98112 0.82557 0.97107 0.74233 0.96079 0.66942

ABDI 1 0.98097 0.82698 0.96949 0.73059 0.96079 0.66942

ALBZ 1 0.97586 0.78337 0.96725 0.71394 0.96079 0.66942

DSOB 1 0.97630 0.78709 0.96607 0.70501 0.96079 0.66942

https://doi.org/10.1371/journal.pone.0239810.t011
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by Eq (33). Please note that lower values of DD are desirable.

DD ¼
1
ffiffiffiffi
T
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XT

t¼1

ðMin ðRPðtÞ � RIðtÞÞ; 0f gÞÞ
2

s

ð33Þ

SHR: Describe the average earned return over risk-free return rate per unit of standard

deviation. SHR is calculated by Eq (34), where E(RP), Rf, and σ(RP) denote on average portfolio

return, risk-free return rate, and standard deviation of portfolio return. Please note that higher

values of SHR are desirable.

SHR ¼

EðRPÞ � Rf

sðRPÞ
if EðRPÞ > Rf

0 if EðRPÞ � Rf

8
><

>:
ð34Þ

IR: Describe the risk-adjusted returns of a financial asset or portfolio relative to a certain

Table 12. The results of robust CCR-OO model with different Γ and Δ.

Stocks CCR-OO Robust CCR-OO

Γi = 25% Γi = 50% Γi = 100%

Δ = 0.01 Δ = 0.1 Δ = 0.01 Δ = 0.1 Δ = 0.01 Δ = 0.1

PDRO 1 1.01445 1.15449 1.02483 1.27772 1.04081 1.49383

DLGM 1 1.01708 1.18760 1.02954 1.34303 1.04081 1.49383

THSH 1 1.01067 1.11042 1.02117 1.22807 1.04081 1.49383

DDPK 1.13701 1.17088 1.43984 1.18341 1.65503 1.18341 1.69849

TMVD 1 1.01531 1.16218 1.02621 1.29655 1.04081 1.49383

DAML 1.04632 1.07090 1.28428 1.08377 1.45991 1.08902 1.56301

DFRB 1.18602 1.21503 1.47523 1.22946 1.68862 1.23442 1.77170

DKSR 1 1.01369 1.14431 1.02542 1.28403 1.04081 1.49383

DARO 1 1.01336 1.13604 1.02490 1.27109 1.04081 1.49383

DABO 1.08087 1.10754 1.32544 1.11996 1.49913 1.12498 1.61463

DRZK 1 1.01309 1.14668 1.02621 1.30696 1.04081 1.49383

DOSE 1.20521 1.24204 1.62108 1.25242 1.76833 1.25440 1.80038

PKSH 1 1.02764 1.31573 1.03665 1.43811 1.04081 1.49383

IRDR 1 1.02200 1.24662 1.03535 1.42127 1.04081 1.49383

DALZ 1.11598 1.15232 1.40729 1.15837 1.58136 1.16152 1.66708

DSBH 1 1.01411 1.15603 1.02590 1.29488 1.04081 1.49383

DPAK 1.03365 1.06404 1.37774 1.07481 1.52678 1.07583 1.54409

DJBR 1 1.01527 1.16397 1.02584 1.29450 1.04081 1.49383

KIMI 1 1.01429 1.15097 1.02804 1.32013 1.04081 1.49383

EXIR 1 1.01618 1.17815 1.02826 1.32631 1.04081 1.49383

DSIN 1.02175 1.05252 1.34622 1.06111 1.46680 1.06527 1.52851

ROZD 1 1.02075 1.22630 1.03024 1.35174 1.04081 1.49383

AMIN 1 1.01213 1.12687 1.02297 1.25352 1.04081 1.49383

DZAH 1 1.01924 1.21128 1.02979 1.34710 1.04081 1.49383

ABDI 1 1.01940 1.20921 1.03147 1.36876 1.04081 1.49383

ALBZ 1 1.02474 1.27654 1.03386 1.40068 1.04081 1.49383

DSOB 1 1.02428 1.27051 1.03512 1.41841 1.04081 1.49383

https://doi.org/10.1371/journal.pone.0239810.t012
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benchmark and it is calculated by Eq (35). Please note that higher values of IR are desirable.

IR ¼
EMR

sðRP � RIÞ
if EMR > 0

0 if EMR � 0

8
<

:
ð35Þ

SOR: Describe the return per unit risk and it is calculated by Eq (36). Please note that

higher values of SOR are desirable.

SOR ¼
EMR
DD

if EMR > 0

0 if EMR � 0

8
<

:
ð36Þ

Now, by applying Eqs (32) to (36), all performance measures are calculated for RMSVL and

RMADL models. It should be explained that the risk-free return rate is 0.10. The results of

EMR, DD, SHR, IR, and SOR are presented in Table 19:

Table 13. The results of robust BCC-IO model with different Γ and Δ.

Stocks BCC-IO Robust BCC-IO

Γi = 25% Γi = 50% Γi = 100%

Δ = 0.01 Δ = 0.1 Δ = 0.01 Δ = 0.1 Δ = 0.01 Δ = 0.1

PDRO 1 0.98958 0.89733 0.97989 0.81197 0.97545 0.78180

DLGM 1 0.99010 0.90164 0.98300 0.83906 0.98020 0.81818

THSH 1 0.99302 0.93171 0.98607 0.86667 0.98020 0.81818

DDPK 0.98315 0.96800 0.84515 0.96404 0.80717 0.96368 0.80439

TMVD 1 0.99302 0.93171 0.98607 0.86667 0.98020 0.81818

DAML 0.99785 0.98513 0.87741 0.97908 0.82449 0.97769 0.81366

DFRB 0.93931 0.92689 0.82344 0.92119 0.77744 0.91991 0.76595

DKSR 1 0.99123 0.91389 0.98345 0.84432 0.98020 0.81818

DARO 1 0.99302 0.93171 0.98607 0.86667 0.98020 0.81818

DABO 0.98148 0.96630 0.85067 0.95993 0.79770 0.95779 0.78631

DRZK 1 0.99118 0.91132 0.98399 0.84721 0.97998 0.81650

DOSE 0.97150 0.95400 0.81951 0.95173 0.79494 0.95154 0.79244

PKSH 1 0.98738 0.87715 0.98160 0.82909 0.98020 0.81818

IRDR 1 0.98995 0.90031 0.98302 0.84028 0.98020 0.81818

DALZ 0.90532 0.89184 0.80093 0.88531 0.74286 0.88286 0.72334

DSBH 1 0.98904 0.89188 0.98151 0.82743 0.97871 0.80674

DPAK 1 0.98455 0.85267 0.98035 0.81931 0.98020 0.81818

DJBR 1 0.99222 0.92202 0.98463 0.85360 0.98013 0.81769

KIMI 1 0.98784 0.88164 0.98219 0.83380 0.98020 0.81818

EXIR 1 0.98721 0.87557 0.98003 0.81559 0.97816 0.80254

DSIN 1 0.98956 0.89642 0.98413 0.84945 0.98020 0.81818

ROZD 1 0.99302 0.93171 0.98607 0.86667 0.98020 0.81818

AMIN 1 0.99233 0.92465 0.98486 0.85566 0.98020 0.81818

DZAH 1 0.98678 0.87175 0.98171 0.82999 0.98020 0.81818

ABDI 1 0.98907 0.89265 0.98157 0.82831 0.98020 0.81818

ALBZ 1 0.98870 0.88984 0.98185 0.83086 0.98020 0.81818

DSOB 1 0.98284 0.84880 0.97539 0.79472 0.97362 0.77699

https://doi.org/10.1371/journal.pone.0239810.t013
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According to the results, it is obviously observed that both of two proposed models includ-

ing RMSVL and RMADL are effective to construction of optimal portfolio. In other words, the

proposed approach is capable to achieve desirable return in comparison with risk-free return

rate. It should be noted that the performance of RMSVL model is marginally better than

RMADL model under all five measures.

7. Conclusions and future research directions

In this study, a novel approach for the portfolio construction problem is proposed in order to

deal with data uncertainty, increasing conservatism levels of the investment process, decreas-

ing computational complexity, and assessing comprehensive of stocks. Accordingly, this study

presents six RDEA models based on the most widely cited and popular classic data envelop-

ment analysis models in the first phase and two robust portfolio optimization models includ-

ing robust mean-semi variance-liquidity and robust mean-absolute deviation-liquidity in the

second phase. It is worth mentioning here that the uncertainty is considered on all data in two

Table 14. The results of robust BCC-OO model with different Γ and Δ.

Stocks BCC-OO Robust BCC-OO

Γi = 25% Γi = 50% Γi = 100%

Δ = 0.01 Δ = 0.1 Δ = 0.01 Δ = 0.1 Δ = 0.01 Δ = 0.1

PDRO 1 1.01205 1.12607 1.01765 1.18954 1.02020 1.22222

DLGM 1 1.01687 1.18696 1.02476 1.28242 1.02498 1.28516

THSH 1 1.00891 1.09266 1.01622 1.17225 1.02041 1.22495

DDPK 1.13393 1.16983 1.41073 1.18154 1.55598 1.18154 1.58623

TMVD 1 1.01489 1.15579 1.02022 1.22239 1.02022 1.22239

DAML 1.03937 1.07008 1.27203 1.07838 1.38154 1.07975 1.40154

DFRB 1.17676 1.20597 1.44294 1.21709 1.48118 1.22023 1.48933

DKSR 1 1.01122 1.11631 1.01774 1.19093 1.02020 1.22222

DARO 1 1.01124 1.11316 1.01760 1.18905 1.02032 1.22383

DABO 1.05556 1.09348 1.31751 1.10704 1.45387 1.10929 1.51272

DRZK 1 1.01246 1.13709 1.02217 1.24885 1.02460 1.28019

DOSE 1.20196 1.23488 1.47071 1.23872 1.49600 1.23928 1.50002

PKSH 1 1.01951 1.21315 1.02012 1.22116 1.02020 1.22222

IRDR 1 1.02200 1.24656 1.03356 1.39814 1.03505 1.41682

DALZ 1.03545 1.05532 1.24298 1.05659 1.26261 1.05670 1.26964

DSBH 1 1.01069 1.11213 1.01737 1.18663 1.02066 1.22824

DPAK 1 1.03567 1.35882 1.04948 1.45341 1.05001 1.46319

DJBR 1 1.01446 1.15041 1.01914 1.20840 1.02020 1.22222

KIMI 1 1.01050 1.10822 1.01655 1.17570 1.02020 1.22222

EXIR 1 1.01299 1.13524 1.01842 1.19915 1.02020 1.22222

DSIN 1 1.03008 1.34081 1.04021 1.41352 1.04600 1.41545

ROZD 1 1.01957 1.21293 1.02125 1.23598 1.02153 1.23976

AMIN 1 1.01038 1.10877 1.01698 1.18134 1.02054 1.22666

DZAH 1 1.01453 1.15428 1.01934 1.21114 1.02076 1.22956

ABDI 1 1.01919 1.20698 1.02531 1.28964 1.02576 1.29550

ALBZ 1 1.01950 1.21321 1.02001 1.21964 1.02020 1.22222

DSOB 1 1.01847 1.20052 1.01967 1.21529 1.02020 1.22222

https://doi.org/10.1371/journal.pone.0239810.t014
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phases including input and output data in DEA models and financial parameters in MSVL

and MADL models by robust optimization approach. Finally, a real-life case study from the

Tehran stock exchange is implemented to demonstrate the applicability of the proposed two-

phase robust portfolio selection and optimization approach and exhibit the efficacy and effec-

tiveness of the presented method in this paper. Additionally, the sensitivity analysis of all

robust models of this study is illustrated. The results show that the proposed approach is effec-

tive for portfolio construction under uncertainty environment. Also, the computational com-

plexity for consideration cardinality constraint in portfolio optimization models by applying

the presented two phases approach is decreased. In other words, this approach does not need

any meta-heuristic algorithm for solving the portfolio optimization model with investment

constraint. In the end, the main contributions of this study can be summarized as follows:

• The paper introduces a novel two-phase portfolio selection and optimization approach.

• Six RDEA models are proposed in order to stock performance measurement under

uncertainty.

Table 15. The results of robust ADD-CRS model with different Γ and Δ.

Stocks AD-CRS Robust AD-CRS

Γi = 25% Γi = 50% Γi = 100%

Δ = 0.01 Δ = 0.1 Δ = 0.01 Δ = 0.1 Δ = 0.01 Δ = 0.1

PDRO 0 3.65643 37.45114 6.05471 64.97821 8.43777 92.81550

DLGM 0 2.91139 30.80281 5.18180 55.73806 6.18585 68.04430

THSH 0 0.69140 7.00529 1.03995 11.13443 1.21859 13.40444

DDPK 30.37334 35.04552 76.31671 36.50649 97.86207 36.73282 99.82867

TMVD 0 3.06794 31.29587 5.10759 54.46824 5.57546 61.33001

DAML 7.50025 12.59990 53.22080 14.09519 76.00912 14.27135 82.05741

DFRB 35.02655 41.24548 90.43678 43.40321 123.41540 43.46187 128.14580

DKSR 0 3.98785 39.96642 6.67440 69.99896 9.10942 100.20360

DARO 0 3.79401 33.93707 5.54876 54.59318 7.45697 82.02667

DABO 18.92588 22.84836 59.42628 25.48741 88.22402 27.05158 103.92240

DRZK 0 2.93318 31.72120 5.35655 59.09796 6.50460 71.55058

DOSE 40.44215 47.40927 116.13680 49.45541 139.73530 49.63439 139.82360

PKSH 0 5.87426 61.33857 7.56819 83.10288 7.75171 85.26880

IRDR 0 4.54350 47.53508 6.88257 75.21511 7.45034 81.95375

DALZ 23.19415 30.46042 85.64939 31.71215 112.53550 31.96632 119.92000

DSBH 0 3.55396 38.64280 6.45874 69.96103 7.63826 83.92442

DPAK 6.18014 11.67245 64.82339 13.60567 87.68671 13.78958 89.94580

DJBR 0 3.34420 34.90031 5.65924 60.31189 7.47842 82.23933

KIMI 0 3.90669 40.29165 6.77174 74.61919 7.25317 79.78490

EXIR 0 4.10206 43.55984 6.61524 72.50218 8.26636 90.93000

DSIN 3.90420 9.43575 60.36415 11.00143 78.67761 11.63905 85.62784

ROZD 0 2.36523 25.84014 3.25817 35.80736 3.26715 35.93865

AMIN 0 3.30466 33.21742 5.30152 55.77706 6.82785 75.10635

DZAH 0 5.30572 55.36421 7.90774 86.84616 8.10041 89.10451

ABDI 0 3.50297 36.16572 5.36715 58.57706 6.15982 67.75799

ALBZ 0 5.24289 53.96454 7.59610 83.25427 8.13529 89.48816

DSOB 0 5.55939 58.23972 7.72743 84.57440 8.16920 89.86116

https://doi.org/10.1371/journal.pone.0239810.t015

PLOS ONE A novel two-phase robust portfolio selection and optimization approach under uncertainty

PLOS ONE | https://doi.org/10.1371/journal.pone.0239810 October 12, 2020 31 / 43

https://doi.org/10.1371/journal.pone.0239810.t015
https://doi.org/10.1371/journal.pone.0239810


Table 16. The results of robust ADD-VRS model with different Γ and Δ.

Stocks AD-VRS Robust AD-VRS

Γi = 25% Γi = 50% Γi = 100%

Δ = 0.01 Δ = 0.1 Δ = 0.01 Δ = 0.1 Δ = 0.01 Δ = 0.1

PDRO 0 3.52118 36.24569 4.58095 45.83396 4.60421 46.05732

DLGM 0 2.83180 30.48616 4.50850 46.91908 4.55274 47.27024

THSH 0 0.67434 6.84956 0.79674 8.35060 0.79674 8.35060

DDPK 29.92194 33.93887 71.97706 34.85604 82.08175 34.88818 82.08175

TMVD 0 2.89362 30.22294 4.57137 45.77568 4.57650 45.90758

DAML 6.63915 12.48890 50.58868 13.95809 64.14033 14.22329 65.10247

DFRB 33.98478 39.38327 79.42991 41.42798 83.88614 41.65799 84.03302

DKSR 0 3.96673 39.74660 4.57449 45.74768 4.58977 45.89810

DARO 0 3.72513 33.82268 3.82967 38.44936 3.82967 38.44936

DABO 13.88503 22.49131 57.35480 25.19395 76.04247 26.85489 81.11245

DRZK 0 2.78368 29.43598 4.70625 49.82927 5.52904 58.10281

DOSE 39.67503 44.32403 82.95036 44.95094 84.21140 44.95094 84.21651

PKSH 0 4.51065 45.13373 4.58770 45.88366 4.59585 45.96445

IRDR 0 4.53210 47.14990 6.44546 69.94132 6.66532 71.45331

DALZ 7.82084 12.29129 52.09176 12.38475 53.44778 12.38475 53.59838

DSBH 0 3.09388 31.81045 4.98775 50.27810 5.10502 51.71274

DPAK 0 6.65582 63.52113 9.20924 79.83819 9.30589 80.56057

DJBR 0 3.33418 34.35464 4.55439 45.61685 4.58307 45.86061

KIMI 0 3.46690 35.17490 4.75557 47.57243 4.75819 47.59474

EXIR 0 3.64449 37.30933 4.73618 47.52315 4.76861 47.96000

DSIN 0 5.20796 59.53734 7.09164 73.53110 8.01303 73.53110

ROZD 0 2.24241 25.23877 3.23651 34.11476 3.23651 34.11476

AMIN 0 3.28046 32.87439 4.56505 46.69973 4.92826 49.53274

DZAH 0 4.61072 46.57645 6.33814 64.52310 6.82637 69.47096

ABDI 0 3.44291 35.06341 4.46196 47.11460 4.53616 47.96477

ALBZ 0 4.43154 44.34075 4.57671 45.77012 4.59096 45.90900

DSOB 0 4.27479 42.95009 4.57773 45.77941 4.59334 45.93082

https://doi.org/10.1371/journal.pone.0239810.t016

Table 17. The results of Robust Mean-Semi Variance-Liquidity (RMSVL) model with different Γ and Δ.

Stocks & Portfolio MSVL Robust MSVL

Γi = 25% Γi = 50% Γi = 100%

Δ = 0.01 Δ = 0.1 Δ = 0.01 Δ = 0.1 Δ = 0.01 Δ = 0.1

Weight of Selected Stocks from Phase .1 in Portfolio

PDRO 0.01000 0.01000 0.07197 0.01000 0.06643 0.01000 0.01000

DLGM 0.18614 0.18366 0.13747 0.18365 0.06998 0.18526 0.06049

THSH 0.01739 0.02382 0.01000 0.01948 0.01000 0.01753 0.01000

TMVD 0.01000 0.01023 0.03986 0.01285 0.06154 0.01000 0.04753

DKSR 0.01000 0.01000 0.11040 0.01000 0.05664 0.01000 0.13109

DARO 0.13683 0.14357 0.13075 0.13751 0.06655 0.13762 0.07597

DJBR 0.17334 0.17639 0.13194 0.18078 0.35142 0.18254 0.36135

KIMI 0.01000 0.01000 0.01576 0.01000 0.01339 0.01000 0.01000

ROZD 0.03011 0.02286 0.01000 0.02137 0.01000 0.02105 0.01000

AMIN 0.41618 0.40946 0.34184 0.41436 0.29405 0.41600 0.28356

Risk (SV) of Portfolio 0.00480 0.00496 0.00668 0.00502 0.00802 0.00503 0.00869

https://doi.org/10.1371/journal.pone.0239810.t017
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• Two robust portfolio optimization models with different risk measures are presented.

• Sensitivity analysis of all eight robust models in this study are illustrated.

• The proposed approach is implemented in a real- life case study of Tehran stock exchange.

For future studies, uncertainty programming approaches such as fuzzy mathematical pro-

gramming and chance-constrained programming can be applied in order to deal with another

type of data uncertainty [115–119]. Moreover, data-driven robust optimization (DDRO)

approach can be employed for proposing data-driven robust portfolio optimization (DDRPO)

models [120–123].

Table 18. The Results of Robust Mean-Absolute Deviation-Liquidity (RMADL) model with different Γ and Δ.

Stocks & Portfolio MADL Robust MADL

Γi = 25% Γi = 50% Γi = 100%

Δ = 0.01 Δ = 0.1 Δ = 0.01 Δ = 0.1 Δ = 0.01 Δ = 0.1

Weight of Selected Stocks from Phase .1 in Portfolio

PDRO 0.01000 0.01000 0.01000 0.01000 0.06276 0.01000 0.01000

DLGM 0.16973 0.17994 0.09240 0.17527 0.06367 0.17443 0.01000

THSH 0.01000 0.01000 0.01000 0.01000 0.01000 0.01000 0.01000

TMVD 0.09270 0.08418 0.06303 0.07989 0.05814 0.07870 0.01000

DKSR 0.01000 0.01000 0.13372 0.01000 0.05309 0.01000 0.01000

DARO 0.27319 0.27135 0.15836 0.27842 0.07215 0.27970 0.22800

DJBR 0.01000 0.01413 0.13917 0.02171 0.36385 0.02352 0.46564

KIMI 0.01000 0.01000 0.01000 0.01000 0.01000 0.01000 0.01000

ROZD 0.01980 0.01000 0.01000 0.01000 0.01000 0.01000 0.01000

AMIN 0.39457 0.40039 0.37332 0.39472 0.29635 0.39366 0.23635

Risk (AD) of Portfolio 0.08748 0.09020 0.11894 0.09089 0.13527 0.09109 0.13816

https://doi.org/10.1371/journal.pone.0239810.t018

Fig 4. The trend of robust CCR-IO model for different Γ and Δ.

https://doi.org/10.1371/journal.pone.0239810.g004
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Fig 5. The trend of robust CCR-OO model for different Γ and Δ.

https://doi.org/10.1371/journal.pone.0239810.g005

Fig 6. The trend of robust BCC-IO model for different Γ and Δ.

https://doi.org/10.1371/journal.pone.0239810.g006
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Fig 7. The trend of robust BCC-OO model for different Γ and Δ.

https://doi.org/10.1371/journal.pone.0239810.g007

Fig 8. The trend of robust ADD-CRS model for different Γ and Δ.

https://doi.org/10.1371/journal.pone.0239810.g008
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Fig 9. The trend of robust ADD-VRS model for different Γ and Δ.

https://doi.org/10.1371/journal.pone.0239810.g009

Fig 10. The trend of portfolio SV in RMSVL.

https://doi.org/10.1371/journal.pone.0239810.g010
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58. Tütüncü R. H., & Koenig M. (2004). Robust asset allocation. Annals of Operations Research, 132(1–

4), 157–187.

59. Bertsimas D., & Pachamanova D. (2008). Robust multiperiod portfolio management in the presence of

transaction costs. Computers & Operations Research, 35(1), 3–17. https://doi.org/10.1016/j.cor.

2006.02.011

60. Quaranta A. G., & Zaffaroni A. (2008). Robust optimization of conditional value at risk and portfolio

selection. Journal of Banking & Finance, 32(10), 2046–2056. https://doi.org/10.1016/j.jbankfin.2007.

12.025

61. Chen W., & Tan S. (2009). Robust portfolio selection based on asymmetric measures of variability of

stock returns. Journal of Computational and Applied Mathematics, 232(2), 295–304. https://doi.org/

10.1016/j.cam.2009.06.010

62. Zhu S., & Fukushima M. (2009). Worst-case conditional value-at-risk with application to robust portfo-

lio management. Operations Research, 57(5), 1155–1168. https://doi.org/10.1287/opre.1080.0684

63. Fonseca R. J., Zymler S., Wiesemann W., & Rustem B. (2011). Robust optimization of currency port-

folios. The Journal of Computational Finance, 15(1), 3–30. https://doi.org/10.21314/JCF.2011.227

64. Gregory C., Darby-Dowman K., & Mitra G. (2011). Robust optimization and portfolio selection: The

cost of robustness. European Journal of Operational Research, 212(2), 417–428. https://doi.org/10.

1016/j.ejor.2011.02.015

65. Guastaroba G., Mitra G., & Speranza M. G. (2011). Investigating the effectiveness of robust portfolio

optimization techniques. Journal of Asset Management, 12(4), 260–280. https://doi.org/10.1057/jam.

2011.7
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