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Abstract

Increased deposition of amyloid-b peptide (Ab) at the cerebral endothelial cell (CEC) surface has been implicated in
enhancement of transmigration of monocytes across the brain blood barrier (BBB) in Alzheimer’s disease (AD). In this study,
quantitative immunofluorescence microscopy (QIM) and atomic force microscopy (AFM) with cantilevers biofunctionalized
by sialyl-Lewisx (sLex) were employed to investigate Ab-altered mechanics of membrane tethers formed by bonding
between sLex and p-selectin at the CEC surface, the initial mechanical step governing the transmigration of monocytes. QIM
results indicated the ability for Ab to increase p-selectin expression at the cell surface and promote actin polymerization in
both bEND3 cells (immortalized mouse CECs) and human primary CECs. AFM data also showed the ability for Ab to increase
cell stiffness and adhesion probability in bEND3 cells. On the contrary, Ab lowered the overall force of membrane tether
formation (Fmtf), and produced a bimodal population of Fmtf, suggesting subcellular mechanical alterations in membrane
tethering. The lower Fmtf population was similar to the results obtained from cells treated with an F-actin-disrupting drug,
latrunculin A. Indeed, AFM results also showed that both Ab and latrunculin A decreased membrane stiffness, suggesting a
lower membrane-cytoskeleton adhesion, a factor resulting in lower Fmtf. In addition, these cerebral endothelial alterations
induced by Ab were abrogated by lovastatin, consistent with its anti-inflammatory effects. In sum, these results
demonstrated the ability for Ab to enhance p-selectin expression at the CEC surface and induce cytoskeleton
reorganization, which in turn, resulted in changes in membrane-cytoskeleton adhesion and membrane tethering,
mechanical factors important in transmigration of monocytes through the BBB.
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Introduction

Alzheimer’s disease (AD) is the most prevalent age-related

neurodegenerative disease affecting higher cognitive functions,

learning, and memory of millions people worldwide. It is the most

common cause of dementia and the sixth-leading cause of death

among people aged 65 and older. Increased deposition of amyloid

b peptide (Ab) together with the increased numbers of activated

microglial cells in the parenchyma, and monocytes in the vessel

wall of AD brain have been observed [1,2]. Recent epidemiolog-

ical and laboratory studies have indicated the important role of

cerebral vascular factors in the progression of AD [3,4]. Peripheral

monocytes have been shown to migrate across the blood-brain

barrier (BBB) and differentiate into microglia within the brain

parenchyma [5]. In vitro studies have provided evidence demon-

strating that Ab deposition at the endothelial cell layer enhances

the transmigration of monocytes [6–8]. Increased transmigration

of monocytes into brains is thought to drive the disease progression

towards exacerbation of the oxidative and inflammatory condi-

tions characteristic of the AD brain.

Transmigration of monocytes is a sequential process with three

distinct adhesive events: 1) capture, tethering and rolling; 2) firm

adhesion and arrest; and 3) crawling on the endothelial surface to

find an intercellular junction for transmigration to the target tissue.

Primary capture by the endothelium and rolling are mediated by

tethering to selectins and selectin ligands [9,10]. Selectins belong

to the type I transmembrane cell adhesion molecule family and are

comprised of three members, namely, P, E, and L-selectins. P-and

E-selectin are expressed on the endothelial cell surface upon

exposure to different pro-inflammatory agents such as TNF-a,

interleukin, and lipopolysaccharide. Their roles in immune cell

rolling vary depending on the particular stimuli and the type of

tissue. The physiological ligands for selectins are glycoproteins,

including P-selectin glycoprotein ligand 1(PSGL-1), E-selectin

ligand 1 (ESL-1), and CD34. All these ligands carry conjugated

carbohydrate sialyl Lewisx (sLex) as an active binding site [11,12].

PLOS ONE | www.plosone.org 1 April 2013 | Volume 8 | Issue 4 | e60972



It is also important to note that cell-cell adhesion is governed by

the expression of adhesion molecules and their ligands as well as

the mechanical properties of the cells and cell membranes [13–

15]. Since the transmigration of monocytes across the BBB is both

a mechanical and biochemical process, the expression of adhesion

molecules and mechanical properties of endothelial cells are

critical factors that require investigation. In this study, we applied

AFM with cantilever tips bio-functionalized by sLex (Fig. 1) in

combination with quantitative immunofluorescence microscopy

(QIM) to study the direct effects of Ab oligomers on selectin

expression, actin polymerization, and mechanical and adhesion

properties in cerebral endothelial cells. In addition, we examined if

lovastatin, a cholesterol-lowering drug, attenuates Ab effects.

Materials and Methods

Reagents
Ab1–42 from American Peptides were prepared by diluting

5 mM Ab1–42 in DMSO to 100 mM in ice-cold culture Ham’s

medium and incubating at 4uC for 24 h. Lovastatin (Calbiochem)

was prepared following the manufacturer’s instruction. Briefly,

Lovastatin was converted into its active form by dissolving it in

absolute ethanol (20 mg/ml lovastatin) followed by the addition of

1N NaOH (to final concentration of 0.45 M). This solution could

be stored at 220uC until used. The solution was neutralized

(pH 7.2) with 1 N HCl immediately prior to the use. Latrunculin

A (Sigma) was dissolved in DMSO and then diluted in cell culture

medium to final concentration of 1 mM.

Cell culture
Mouse immortalized cerebral endothelial cells (bEnd3 line) were

from ATCC (Manassas, VA, USA), and primary human cerebral

endothelial cells (CEC) were from ScienCell Research Laborato-

ries (Carlsbad, CA, USA). Cells were cultured in DMEM with

10% PBS and 1% antibiotic/antimycotic and maintained in

humidified 5% CO2 incubator at 37uC.

Cell treatments
To demonstrate the effects of Ab oligomers on CECs, cells were

treated with two different concentrations of Ab oligomers (0.5 mM

and 1 mM) for 20 min prior to further characterizations. To test if

statin was capable of counteracting the effects of Ab, cells were

pre-treated with Lovastatin (20 mM) for 1 h, followed by Ab
treatment (1 mM). For a positive control of inflammatory

responses, CECs were treated with histamine (10 mM for

20 min). To demonstrate the role of cytoskeletal organization,

cells were incubated with 1 mM Latrunculin A (an actin

polymerization inhibitor) for 30 min before characterizations.

Immunofluorescent labeling
Cells were grown on cover slips until confluent. After

treatments, cells were fixed immediately using 3.7% paraformal-

dehyde solution for 30 min. To block non-specific binding, 5%

BSA in PBS was applied to cells for 1 h. P- or E-selectins at the cell

surface were labeled with its primary antibody (R&D systems)

without permeabilization at 4uC overnight, followed by goat Alexa

Fluor 594 anti-rat secondary antibody (Invitrogen) at 25uC for 1 h.

To confirm the specificity of the selectin primary antibodies,

labeling by secondary antibodies alone did not show immuno-

staining in the absence of the primary antibody. For F-actin

labeling, cells were permeablized by 0.1% Triton X-100 in PBS

for 5 min and incubated with Oregon-green phalloidin (250 nM)

(Invitrogen) in PBS with 1% BSA at 25uC for 1 h.

Quantitative Immunofluorescence microscopy (QIM)
Bright-field illumination and fluorescence microscopy were

performed with Nikon TE-2000 U fluorescence microscope and

406, NA 0.95 objective. Images were acquired using a cooled-

CCD camera controlled with a computer that runs MetaView

imaging software. The typical exposure time for fluorescence

image acquisition was 400 msec. Background subtraction was

performed for all images prior to analysis. Actin polymerization

was quantified by calculating the intensity of Oregon Green-

phalloidin-labeled F-actin per cell area. The intensity was then

normalized by the intensity of the labeled F-actin in control cells

(without any treatment). A similar approach was applied to

quantify the relative expression of P- and E- selectins. A total 300

images were analyzed.

Atomic Force Microscopy
A Bioscope system from Veeco, Inc. equipped with Nanoscope

IVa controller and Nanoscope 5.12 software and mounted on the

top of an Olympus IX81 microscope (Olympus) was used to

perform mechanical and adhesive measurements. All force curves

were processed with the NForceR software (Copyright October

10, 2006; Registration Number TXu1-328-659, Cardiovascular

Research Institute, Texas A&M University System).

Figure 1. Schematic descriptions of membrane tether forma-
tion and biofunctionalization for the AFM cantilever tip.
Membrane tether formation mediated by sLex-selectin bonding during
a monocyte rolling on the endothelial layer (upper) and the strategy
using AFM cantilever tips bio-functionalized by sLex to characterize the
mechanics of membrane tether adhesion (lower). (modified from Yves F.
Dufrêne, 2008).
doi:10.1371/journal.pone.0060972.g001

Ab on Cerebral Endothelial Membrane Tethering
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Bio-functionalization of the AFM cantilever tips
We adapted the procedure used by Micic (1999) [16] to

functionalize Si3N4 cantilevers with avidin, followed by incubation

with biotinylated-sLex to further functionalize cantilevers with sLex

coated surface (Fig. 1, lower). Briefly, after a 5-min wash in acetone

followed by UV irradiation for 15 min, triangular silicon nitride

cantilevers (Veeco, Texas) were immersed in 50 ml of biotin-BSA

(Sigma; 0.5 mg/ml in 100 mM NaHCO3) and incubated over-

night in 37uC humid chamber. The biotin-BSA coated cantilevers

were rinsed several times with PBS and fixed in 20% glutaralde-

hyde for 30 min, followed by incubation in the solution containing

avidin (Neutravidin; Pierce, 0.5 mg/ml in 100 mM NaHCO3).

Avidin functionalized cantilevers were washed and then incubated

in the 0.5 mg/ml biotin-sLex solution (Glycotech, Gaithersburg,

MD). At the loading rate ,400 pN/s, the unbinding force of

avidin-biotin is ,200 pN [17], which is much greater than that of

p-selectin-sLex (,50 pN) [12]. Therefore, the biotin-avidin bond

was assumed not to break during our experiments.

Measurements for cell adhesion probability, cell and
membrane stiffness, and force for membrane tether
formation (Fmtf)

The AFM was set to operate in force mode, and the

piezotransducer (PZT) was set to drive the cantilever to approach,

touch, make an indentation of the cell, and retract from the cell

over a predefined distance in the optical axis perpendicular to the

cell surface, which could be identified from the force curve (Fig. 2).

The force curve was generated from the recorded vertical-axis

movement of the PZT and the deflection of the cantilever with a

known dimension (320 mm in length and 22 mm width with a

pyramidal half-angle of 350) and a spring constant of ,1263 pN/

nm measured by the thermal noise method. Fig. 2A shows a

typical force curve with an adhesion event. The sudden release of

force occurred at the rupture of a membrane tether was used as a

measure of Fmtf through the bonding between p-selectin and sLex

calculated by multiplying the spring constant of the cantilever with

the deflection height associated with a membrane tether rupture

(Fig. 2A). Since adhesion events sometimes did not occur in some

force curves (Fig. 2B), adhesion probability was calculated by

dividing the number of curves with adhesion events by the total

number of curves. To measure the stiffness of the cell, the part of

the AFM force curve representing cell indentation was fitted by the

Hertz model: F = (2Ed2)/ [p (1-n2) tan a] to calculate E, the

Young’s modulus (i.e. the stiffness) of the cell, where F is the force,

d the indentation, n the Poisson ratio of the cell, assumed to be 0.5,

and a the half-operating angle of the indenting cone. To measure

membrane stiffness, DF/(the depth of indentation) are calculated

within 5 nm indentation at the cell surface (i.e. DF/5 nm). The

loading and unloading speeds of labeled cantilever tips were

1 mm/s, contact time - 0.2 sec. In this study, at least 2000 curves

were analyzed and reported for each experimental group.

Results

Oligomeric Ab1–42 enhanced P-selectin expression at the
CEC surface

To investigate the effects of Ab1–42 oligomers on the expression

of P-selectin at the CEC surface, quantitative immunofluorescence

microscopy (QIM) of P-selectin was performed without cell

permeabilization in the immunostaining procedure. Consistent

with the notion that Ab stimulates CECs for cellular adhesion and

transmigration [18], Ab1–42 increased P-selectin expression at the

surface of bEnd3 cells by 35–60% (Fig. 3B) and primary human

CECs by 10–22% (Fig. 3C). Since histamine is known for its ability

to increase P-selectin at the endothelial surface [15,19,20], results

with histamine were used as a positive control (Fig. 3B). Previous

study also reported the ability of lovastatin to abrogate histamine-

induced increase in P-selectin expression at the endothelial surface

[21]. In this study, lovastatin also suppressed Ab1–42-induced

increase in P-selectin expression at the CEC surface (Fig. 3B).

Ab1–42 enhanced actin polymerization
Ab1–42 has been reported to enhance actin polymerization and

induce actin stress fiber formation in neuronal cells. [22,23]. Since

the organization of cytoskeleton governs cell mechanics and

adhesion, we employed QIM of F-actin labeled with Oregon green

phalloidin to quantify actin polymerization induced by Ab1–42 in

CECs. As shown in Fig. 4A, B and C, QIM data showed that Ab1–

42 and histamine promoted actin polymerization in both primary

human CECs and bEnd3 cells. In contrast, significant reduction of

actin intensity was observed when cells were treated with

latrunculin A, an F-actin disruptive drug (Fig. 4A). Lovastatin

also decreased actin polymerization (Fig. 4B), but unlike

latrunculin, lovastatin did not cause a dramatic disorganization

of the cytoskeleton structure (Fig. 4A).

Figure 2. Typical force curves obtained from AFM measure-
ment. (A) Approach and retraction force curves with adhesion; and (B)
without adhesion. The cantilever approaches (a to b), touches (b),
makes indentation (b to c) and retracts (d) from the cell. Force of
membrane tether formation (Fmtf) was measured at the sudden drop of
force when a rupture of a membrane tether occurred (denoted by an
arrow).
doi:10.1371/journal.pone.0060972.g002

Ab on Cerebral Endothelial Membrane Tethering
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Adhesion probability and molecular specificity of
adhesion

Consistent with QIM results showing that both histamine and

Ab42 increased P-selectin at the CEC surface (Fig. 3), AFM data

demonstrated that adhesion probability increased upon Ab42 or

histamine treatment (0.3460.07 for control; 0.5160.08 for

histamine; 0.5560.06 and 0.6660.07 for 0.5 mM and 1 mM of

Ab42 respectively), and inhibited after lovastatin treatment

(0.2860.08) (Fig. 5A).

To address whether these adhesion events are specific through

bonding with the selectin-sLex interactions, AFM data demonstrated

Figure 3. Effects of Ab, histamine, and lovastatin on P-selectin
expression at the CEC surface. (A) Fluorescent micrographs of
fluorescently-labeled P-selectin at the bEnd3 cells. (B) Relative P-selectin
intensity at the bEnd3 cell surface and (C) the human primary CEC
surface. ***p#0.001, **p#0.01 compare to the control; uuu p#0.001
compare to the Ab (1 mM) treatment group.
doi:10.1371/journal.pone.0060972.g003

Figure 4. Effects of Ab, and histamine on actin polymerization
in CECs. (A) Fluorescent micrographs of Oregon-green phalloidin-
labeled F-actin in bEnd3 cells. (B) Relative F-actin intensity in bEnd3 cells
and (C) primary human CECs. ***p#0.001, ** p#0.01, * p#0.05 compare
to the control; uuu p#0.001 compare to the Ab (1 mM) treatment group.
doi:10.1371/journal.pone.0060972.g004

Ab on Cerebral Endothelial Membrane Tethering
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that in cells pretreated with histamine, the probability of adhesion for

cantilevers coated with only biotin was at least twofold lower as

compared to those coated with sLex (Fig. 5B). Lower adhesion

probabilities were also obtained when P-selectin at the cell surface

was blocked with its antibodies (Fig. 5B). These results indicated that

adhesion events and membrane tether formation in this study are

facilitated by specific molecular interactions between p-selectin and

sLex.

Cell stiffness characterized by AFM
The part of the AFM force curves representing cell indentation

was used to measure the stiffness of the cells. As the cantilever tip

of the AFM approached and made a contact at the endothelial

surface (b in Fig. 2A), continued approach makes an indentation (c

in Fig. 2A) at the cell surface. The relationship between the force

applied to make the indentation and the position of the cantilever

was recorded and fitted with Hertz model to calculate the elastic

modulus, which characterized the mechanical stiffness and had a

value 6.861.9 kPa for control CECs (Fig. 6). Both Ab42 and

histamine had a dramatic effect on CECs stiffness, showing

increases to 15.162.7 kPa, 12.262.6 kPa, 19.965.8 kPa for

histamine, 0.5 mM and 1 mM of Ab42, respectively. In contrast,

lovastatin and latrunculin A showed an opposite effect and

significantly decreased stiffness of the cells as compared to the

control (2.360.7 kPa and 2.461.8 kPa for lovastatin and

latrunculin). At the same time, stiffness of the cells was not

significantly changed if lovastatin was applied prior to treatment

with Ab42 (8.461.1 kPa).

Force of membrane tether formation characterized by
AFM

To study the effects of Ab42 oligomers on the force of

membrane tether formation (Fmtf) mediated by sLex-selectin

bonding, AFM with cantilever tips bio-functionalized by sLex

were applied (Fig. 1). In the force mode, the piezotransducer (PZT)

was set to drive the cantilever to approach, touch, make an

indentation on the cell, and retract from the cell. As the cantilever

was retracted from the cell, the surface of the cell was lifted up and

formed membrane tethers from the cantilever tip if adhesion

between the cell surface and cantilever tip had occurred [24]. As

the cantilever moved further away from the cell, the rupture of

tether was detected; and the force required to maintain a

membrane tether (i.e. force of membrane tether formation, Fmtf)

was recorded with a fixed retraction speed (1 mm/s). The adhesion

ruptures were detected in the retraction part of force curves as

evident by a sudden change in force acting on the cantilever

(Fig. 2A). Retraction curves without adhesion did not exhibit these

rupture events (Fig. 2B).

Fig. 7 represents the Fmtf measurement for an untreated (control)

and experimental groups of mouse CECs. The average Fmtf was

4465 pN for control CECs. According to the theory of

membrane-cytoskeleton adhesion [25], Ab-induced actin poly-

Figure 5. Effects of Ab, histamine, and lovastatin on adhesion
probability at the bEND3 cell surface with AFM cantilever tips
biofunctionalized by conjugating sLex at their surface. (A)
Adhesion probability was measured for cells treated with histamine, Ab,
lovastatin and Ab and lovastatin alone. Adhesion probability was
calculated by normalizing the number of force curves with adhesion
events by the total number of force curves. ***p#0.001, **p#0.01
compare to the control; uuup#0.001 compare to the Ab (1 mM)
treatment group. (B) bEND3 was treated with histamine, and adhesion
probability was measured. A highest adhesion probability was obtained
for the cantilever coated with sLex; whereas lower adhesion probabil-
ities were obtained for the cantilever coated with biotin only, and cells
treated with antibody of P-selectin, indicating that Fmtf measured in this
study are highly molecularly specific through sLex-P-selectin bonding.
***p#0.001compare to the sLex coating group.
doi:10.1371/journal.pone.0060972.g005

Figure 6. Cell stiffness. (A) Cell stiffness (Elastic modulus) for bEND3
cells treated with histamine, Ab, lovastatin and Ab, lovastatin alone, and
latrunculin A. The elastic modulus was calculated by fitting the cell
indentation part of the force curves with Hertz model. ***p#0.001,
**p#0.01 compare to the control; uup#0.01compare to the Ab (1 mM)
treatment group.
doi:10.1371/journal.pone.0060972.g006

Ab on Cerebral Endothelial Membrane Tethering
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merization as shown in Fig. 4 may increase membrane-cytoskel-

eton adhesion resulting in a greater Fmtf. Surprisingly, opposite to

results with histamine, Fmtf measured for cells treated with 1 mM

and 0.5 mM Ab was 34% and 18% lower compared with the

control, respectively, (i.e. 2963 pN and 3662 pN for cells treated

with respective 1 mM and 0.5 mM Ab in Fig. 7A). When cells were

treated with latrunculin A, similar results to those with Ab
treatment were obtained. Interestingly, when lovastatin was

applied prior to treatment with Ab, Fmtf was similar to that of

the control (Fig. 7A).

In order to further investigate the effects of Ab on Fmtf,

histograms of Fmtf measured from different experimental groups

(filled bars) were plotted and superimposed with those from the

control group (unfilled bars). This comparison showed that in the

control group, a distribution of Fmtf with a major population peak

at Fmtf<32.5 pN was obtained (Fig. 7B). Histamine enhanced actin

polymerization in cells, and shifted the major population peak to a

higher Fmtf<44 pN, while Latrunculin A disrupted F-actin,

resulting in the peak at a lower Fmtf<22.5 pN (Fig. 7B).

Interestingly, cells treated with 0.5 mM of Ab produced two

population peaks at Fmtf<20 pN and 39 pN (Fig. 7B). The major

population peak corresponding to the lower Fmtf produced by Ab
suggests that Ab caused a disruption of subcellular connectivity

between the plasma membrane and cytoskeleton, since the

distribution at the lower Fmtf was similar to that of cells treated

with Latrunculin A. These mechanical alterations in response to

Ab are dose-dependent, as the peak at the higher Fmtf subsided and

only the major peak at the lower Fmtf remained for cells treated

with a higher dose of Ab (1 mM) (Fig. 7B). Pretreatment of cells

with lovastatin suppressed these mechanical alterations induced by

Ab, as the Fmtf distribution was almost totally overlapped with that

of the control experiment (Fig. 7B).

Characterization of Cell membrane stiffness
The Fmtf data suggests that the treatment of CECs with Ab

caused lower connectivity between plasma membranes and

cytoskeleton. It is believed that higher cytoskeletal connectivity

to membranes should provide additional mechanical strength to

plasma membranes; therefore, cell membrane stiffness can be a

measure for cytoskeletal connectivity to membranes (i.e. the

membrane-cytoskeleton adhesion). To quantify cell membrane

stiffness, we analyzed the ‘‘approaching’’ force curves when the

cantilever made a ,5 nm indentation at the cell surface (Fig. 8B).

5 nm is about the thickness of the bilayer membrane. Consistent

with data of actin polymerization and Fmtf, treatment with

histamine resulted in a higher cell membrane stiffness, while

Latrunculin A resulted in a lower cell membrane stiffness. (Fig. 8A)

On the other hand, Ab caused lower cell membrane stiffness

(Fig. 8A), suggesting that Ab produced lower cytoskeletal

connectivity to plasma membranes in cells. The lower cell

membrane stiffness resulted from Ab was suppressed by lovastatin

(Fig. 8A).

Discussion

Primary capture of circulating monocytes from a bloodstream

mediated by membrane tethering is the initial mechanical step in

transmigration. This dynamic process requires special mechanisms

for establishing stable cell-cell contact. The P- and E-selectins are

the adhesion molecules that specialize in mediating this process on

activated endothelium. P-selectin is stored in Weibel-Palade bodies

inside the endothelial cells and can be mobilized to the cell surface

within minutes [11]. Earlier studies showed upregulation of P-

selectin expression in brain ECs associated with enhanced

transmigration of immune cells across the BBB in pathological

conditions, such as ischemia and atherosclerosis [26,27]. There is

also evidence that Ab soluble aggregates selectively activate

cerebral vascular endothelium and increase transmigration of

monocytes across the BBB [6,7]. Our data here show that Ab42

oligomers promoted the expression of P-selectin at the surface of

the CECs. Since E-selectin induction occurs on the transcriptional

level, the duration of Ab treatment (20 min) did not lead to a

detectable change of E-selectin expression.

In addition to adhesion molecules, such as selectin, the

mechanical properties of the cell membrane are a critical factor

influencing the cell-cell adhesion [13–15]. Earlier works have

confirmed that lower tether extraction force favors rolling. It has

been shown that tether formation reduces the adhesion force

between the endothelial cells and leukocytes, assisting the

formation of new bonds and stabilizing rolling [28]. Enrichment

of endothelial cells with cholesterol has been found to increase

Figure 7. Ab on force of membrane tether formation (Fmtf)
mediated by sLex-selectin bonding. (A) Fmtf was measured at the
sudden drop of force when a rupture of a membrane tether occurred
(Fig. 2A). A bar graph summarizes Fmtf measured for cells treated with
histamine, Ab, lovastatin and latrunculin A. ***p#0.001, **p#0.01,
*p#0.05 compare to the control; uup#0.01 compare to the Ab (1 mM)
treatment group. (B) The distributions of Fmtf were plotted for different
experimental groups. Fmtf distribution for the control group is
represented in unfilled bars, and superimposed with other experimental
groups represented in grey bars for comparison.
doi:10.1371/journal.pone.0060972.g007

Ab on Cerebral Endothelial Membrane Tethering
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tether length and reduce force bond, and increase the bond

lifetime, which resulted in increased chance of adhesion [14]. We

found that Ab42 oligomers decrease Fmtf and increase probability of

adhesion. Taken together, our data suggest that Ab facilitates

primary capture of monocytes and rolling adhesion at the brain

endothelial cell surface through promoting P-selectin expression,

and lowering Fmtf, which favors adhesion.

Membrane tether extraction strongly depends on the F-actin

network condition and membrane-cytoskeleton integrity [29,30].

It has been shown that disruption of the actin cytoskeleton and

glycocalyx backbone removal lead to decrease of adhesion energy

[31]. Latrunculin A, a well-known inhibitor of actin polymeriza-

tion, has been reported to decrease the cell’s average elastic

modulus and adhesion force [32–34]. It is also observed that

statins can significantly impair F-actin stress fiber formation [35].

Our data are in good agreement with those reported in the

literature showing that latrunculin A and lovastatin lower the

amount of F-actin in the CECs. Consistent with the QIM results,

our AFM study demonstrated that both lovastatin and Latrunculin

A resulted in a decrease of cell stiffness, membrane stiffness, and

Fmtf. Consistent with those from others showing the ability for

histamine to induce cytoskeletal F-actin polymerization and

increase the cell adhesion force [15,36,37], our AFM study also

showed histamine to increase cell stiffening and higher Fmtf.

Although Ab has been found to increase actin polymerization

and cause formation of actin stress fiber [38,39], Ab42 treatment

surprisingly decreased Fmtf mediated by sLex-selectin bonding.

Previous studies have demonstrated that variability in tether

extraction force could also provide information in membrane-

cytoskeleton association: enhanced membrane-cytoskeleton inter-

actions make tethers less homogeneous, and, vice versa, no

significant difference is observed in the case of low connectivity

[14]. Our force distribution analysis indicated that in contrast to

histamine, Ab42 (1 mM), significantly decreased force range

variability (Fig. 7B). Therefore, despite that both histamine and

Ab42 enhance P-selectin expression, increase probability of

adhesion, and promote actin polymerization, their effects on Fmtf

are different. Interestingly, two distinct populations of Fmtf were

observed for 0.5 mM Ab42 treatment. The presence of two

populations of Fmtf and a lower cell membrane stiffness indicate

the ability of Ab42 oligomers to weaken locally-subcellular

membrane-cytoskeleton association. Taken together, these me-

chanical results lead to a new hypothesis that Ab induces

dissociation of the adhesion between the cytoskeleton and the

lipid bilayer membrane by disrupting the cytoskeletal linkage to

plasma membranes or altering the attachment of transmembrane

proteins (e.g., cadherins, integrins) to F-actin.

QIM and AFM data have demonstrated that Ab42 oligomers

promoted expression of P- selectin, induced stress fibers formation,

increased cell stiffness but decrease membrane stiffness, increased

the probability of adhesion, and lower Fmtf; and these effects were

suppressed by lovastatin. Statins are the inhibitors of hydroxy-3-

methylglutaryl coenzyme A reductase (HMG-CoA), an enzyme

that catalyzes the cholesterol synthesis in the liver and other tissues

[40]. In addition, statins have been demonstrated to have anti-

inflammatory effects independent of cholesterol reduction. They

attenuate vascular inflammation, upregulate nitric oxide expres-

sion in endothelial cells, microglia and monocytes, inhibit

leukocytes recruitment to vascular cells, and significantly decrease

the migration of monocytes and lymphocytes across the human

BBB [41,42]. Furthermore, statins have been shown to be

potentially therapeutic for AD by inhibiting Ab-stimulated

expression of interleukin-1b and reduce the levels of Ab [43–

45]. A retrospective epidemiological study recently demonstrated

that long-term treatment of hypercholesterolaemic patients with

lovastatin, simvastatin, and pravastatin lowered the risk of

developing AD [43,46–48]. However, the mechanisms linking

Ab and statins on CEC function remain poorly understood. Our

findings showing the effects of Ab42 on the membrane tether

adhesion of cerebral endothelial cells, and how lovastatin

counteracts these effects provide new insights into the mechanism

of neuroinflammation in AD brains, and may offer new

approaches for preventive treatment of the disease. This study

should prove to provide insights into new therapeutic strategies,

since microglial cell activity is a crucial factor in Ab clearance and

immunotherapy for treatment of AD [49,50].
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Figure 8. Membrane stiffness. (A) Membrane stiffness for cells
treated with histamine, Ab, lovastatin and Ab, lovastatin alone, and
latrunculin A. (B) Membrane stiffness is measured by calculating the
slope (denoted by the arrow) from 5 nm indentation at the cell surface.
***p#0.001, **p#0.01 compare to the control; uup#0.01, uuup#0.001
compare to the Ab (1 mM) treatment group.
doi:10.1371/journal.pone.0060972.g008
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