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Summary 
The development of T cell tolerance to self-antigens is imparted principally through negative 
selection events during thymic ontogeny. However, this tolerance may be limited to antigens 
that are expressed in the thymus, and additional mechanisms are probably required to regulate 
autoimmune responses to tissue-specific antigens. Autoimmune diabetes can be induced 
experimentally by treating susceptible stains of mice with multiple low doses of streptozotocin 
(STZ). In this report we show that transplantation of isolated islets of Langerhans into the thymuses 
of adult C57BL/KsJ mice will induce tolerance to the subsequent induction of autoimmune 
diabetes. This tolerance is tissue specific and thymus dependent. It was not induced by thymic 
transfer of adrenal tissue or by kidney transfer of islets. Furthermore, depletion of mature T 
cells was required and the tolerant state was abrogated by the adoptive transfer of normal splenocytes. 
It is interesting that pretreatment of the islets with STZ enhanced their ability to induce tolerance, 
and suggests that antigen shedding induced by tissue damage may facilitate transfer of islet antigens 
to tolerizing cells in the thymus. These findings indicate that thymic tolerance specific for tissue 
can be stimulated to occur in the presence of atopical tissue-specific intrathymic antigens. Elimination 
of disease-related T cells in the absence of global immunosuppression represents a novel approach 
for the prevention of autoimmune disease. 

ntigens encountered by T cell precursors during matura- 
tion in the thymus shape the repertoire of peripheral 

T cells. Initially, cells capable of reacting with antigens 
presented in the context of self MHC antigens develop through 
a process of thymic learning termed positive selection (1). 
Those T cells with the potential for autoreactivity are elimi- 
nated during passage into the thymic medulla. This event, 
termed negative selection or clonal deletion, is though to pre- 
vent the escape of autoreactive T cells into the peripheral tissues 
and represents the major mechanism for tolerance to self- 
antigens (2-4). Negative selection has been shown for T cells 
reactive with antigens expressed in the thymus such as I-E 
(5) and Mls (6), or H-Y antigen (7). Although it is an effec- 
tive mechanism for deletion of cells reactive with antigens 
that are encountered in the thymus, clonal deletion may not 
always be complete, especially for antigens that are found only 
in the periphery (8-10). Thus, the repertoire of circulating 
T cells includes cells that are capable of responding to an- 
tigens expressed exclusively in the peripheral tissues (8, 9). 
These cells may be capable of causing autoimmune disease 
with appropriate activation signals and antigen presenta- 
tion (9). 

The multi-dose streptozotocin model (MDSDM) 1 of 
insulin-dependent diabetes meUitus (IDDM) is a T cell-medi- 
ated autoimmune disease (11). In this model, hyperglycemia 
and insulitis are induced about 10 d after administration of 
five subdiabetogenic doses of streptozotocin (STZ) in certain 
strains of male mice. Both insulitis and hyperglycemia can 
be prevented by T cell depletion using mAbs (12), and adop- 
tively transferred with splenocytes (13). The mechanism of 
the disease and the effects of STZ on the islet cells are incom- 
pletely understood, but recent studies by Weide and Lacy (14) 
have shown that STZ treatment of islets is required to render 
them antigenic. These results suggest that a specific antigen(s), 
as yet unknown, is expressed by damaged islets which triggers 
autoreactive T cells. 

Posselt et al. (15) have described a system whereby toler- 
ance to alloantigen can be induced by surgical implantation 
of allogeneic islet cells into the thymus. Their study suggests 
that if T cells mature in the thymus in the presence of alloan- 

1 Abbreviations used in this payer: IDDM, insulin-dependent diabetes mel- 
litus; MDSM, multi-dose streptozotocin model; STZ, streptozotocin. 
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tigen, deletion or inactivation of aUoreactive cells that nor- 
mally populate the periphery can be induced. However, this 
study with alloantigen, as well as those previously reported 
involving Mls (6), IE (5), or H-Y (7), involve antigens that 
are not tissue specific and for which there is a relatively high 
frequency of antigen-reactive T cell precursors. It is unknown 
whether in adult animals, thymic tolerance can be induced 
towards tissue-specific antigens and whether it can be used 
to prevent organ-specific disease. We have, therefore, deter- 
mined whether thymic transplantation of islet cells that ex- 
press antigens that are recognized in autoimmune diabetes 
can induce tissue-specific tolerance in a manner that will protect 
against the development of disease. 

Materials and Methods 

Animals. Male C57BL/KsJ mice were purchased from The 
Jackson Laboratory (Bar Harbor, ME) and used between the ages 
of 5 and 9 wk. The mice were housed under pathogen-free condi- 
tions in the animal barrier facility at The University of Chicago. 
The animals were allowed access to standard laboratory chow and 
water ad libitum. 

Preparation of Animals. Islets of Langerhans were isolated by 
standard collagenase technique (16). The islets were handpicked 
from the digest of pancreases with the aid of a stereomicroscope 
and placed in culture overnight with DMEM (containing 25 mM 
glucose) with 10% FCS, 10 mM morpholinopropane sulfonic acid 
(MOPS), penicillin (100 U/ml), streptomycin (100/~g/ml), and ad- 
ditional amino acids. The islets were again harvested by hand with 
a stereomicroscope and washed three times. They were treated for 
30 rain in Krebes-Hepes buffer (Hanks' buffered saline with 10 
mM Hepes, 1% BSA, 14 mM sodium bicarbonate) with STZ (0.5 
mg/ml), washed, and suspended in Krebs-Hepes buffer. Between 
100 and 125 islets (in 25 #1) were injected into each of two lobes 
of the thymus of adult C57BL/KsJ mice. Some animals received 
an equivalent number of islets that were not treated with STZ, 
or minced fragments of adrenal tissue, that were (n = 2), or were 
not (n = 2) treated with STZ for 30 min as described for islets. 
The adrenal tissue was taken from islet donors. In other mice, 
200-250 islets were transplanted under a kidney capsule. On the 
day after surgery, each of the mice was treated with anti-CD3 mAb 
(145-2Cll, 300 #g intraperitoneaUy, purified with protein 
A-Sepharose from ascites). A fourth group of mice received in- 
trathymic STZ-treated islets, but did not receive anti-CD3 mAb 
treatment. 

Induction of MDSDM. 3.5 wk after surgery and treatment with 
anti-CD3 mAb, the mice were given STZ (40 mg/kg, in citrate 
buffer, intraperitoneally) daily for 5 d, to induce diabetes (11, 12). 
This protocol causes insulitis and hyperglycemia in "~75-80% of 
normal C57BL/KsJ mice 1-2 wk after the final dose of STZ (12). 
Glucose levels were measured using a glucose analyzer (Beckman 
Instruments, Inc., Berkeley, CA) in plasma obtained from the retro- 
orbital sinus on days 12 and 16, corresponding to the 7th and 11th 
days after the fifth injection of STZ. In one experimental group, 
STZ-treated islets were placed into the thymus followed by anti- 
CD3 mAb as described, but the mice were administered 40 x 106 
splenocytes freshly isolated from another normal male C57BL/KsJ 
mouse 3 h before the first of five injections of STZ. The differences 
between the mean plasma glucose levels of each of the groups were 
compared by a Student's t test. Differences in the incidence of dia- 
betes between the treatment and control groups were analyzed by 
Fisher's exact test. 

Analysis of Splenocytes by Flow Cytometry. Single cell suspen- 
sions of splenocytes were prepared from mice receiving the indi- 
cated treatment and stained first with mAb 2.4G2 (17) (antimu- 
line Fc receptor) followed by mAbs against CD3 (mAb 145-2Cll; 
Boehringer Mannheim Diagnostics, Inc., Indianapolis, IN), CD4 
(Boehringer Mannheim Diagnostics, Inc.), CD8, and Thyl.2 
(Becton Dickinson & Co., Mountainview, CA), which were directly 
conjugated to FITC. The stained cells were analyzed on a FACScan | 
(Becton Dickinson & Co.) with electronic gates placed around the 
peak corresponding to lymphocytes. Data from 10,000 cells were 
collected. The percent positive cells represent the percentage of cells 
with fluorescence intensity above staining with a FITC-conjugated 
irrelevant mAb (anti-Leu4, Becton Dickinson & Co.). The data 
presented in Table 1 were collected from five to seven mice in each 
group and represent mean _+ SEM. The mean values in the ex- 
perimental groups were compared with control values by a Stu- 
dent's t test. 

Histologic Analysis of Insulitis. The pancreas from animals 
receiving the indicated treatments (14 from the group receiving 
intrathymic injection of buffer and anti-CD3 mAb and 7 from the 
group receiving intrathymic STZ-treated islets and anti-CD3 mAb) 
were harvested on days 16-18 and placed in formalin solution. Sec- 
tions of the fixed pancreases, embedded in paraf~n were prepared 
and stained with hematoxylin and eosin. Without knowledge of 
the source of the section, the presence of insulitis was evaluated 
by one of us (A. Montag), and graded as follows: 0, normal 
histology; 1, minimal cellular infiltrate into the islets, otherwise 
normal islet architecture; 2, extensive cellular infiltrate but preser- 
vation of islet architecture; 3, cellular infiltrate and loss of normal 
islet architecture. The differences in the scores between the two 
groups were compared by X 2. 

ImraunokistochemicalStainingforlnsulin. At the time of killing, 
12 d after the last dose of STZ, the thymuses and pancreases from 
animals were fixed in Bouin's fixative, and stained with guinea pig 
antiinsulin antibody using the avidin-biotin peroxidase method (18). 
Tissue sections were incubated with guinea pig antiinsulin anti- 
body (Dako Corp., Carpentelia, CA) washed, and incubated with 
biotinylated goat anti-guinea pig antibody (Vector Laboratories, 
Inc., Burlingame, CA) followed by streptavidin complex (Dako 
Corp.). After washing, antibody complexes on the sections were 
localized with diaminobenzidene and counterstained with hema- 
toxylin. 

Results 

p ntion of MDSDM after Placement A n- 
tigen, T Cell Depletion and Regeneration. Islets isolated from 
normal male (C57BL/KsJ) mice and treated with STZ in vitro, 
were placed into the thymuses of syngeneic adult C57BL/KsJ 
mice. Control mice received an intrathymic injection of Krebs- 
Hepes buffer. All mice then were given an injection of anti- 
TCR mAb. This treatment caused depletion of about 70% 
of T cells in the spleen by 72-96 h, modulation of the TCR 
on residual Thyl.2 + cells (Table 1), and dimination of vir- 
tually all T cells in the peripheral circulation. In previously 
reported studies, the residual T cells in spleen and lymph node 
have been found to have profound functional impairments 
(19, 20). 

We rested the animals for 3.5 wk to allow for regenera- 
tion of T cells, and then analyzed whether the presence of 
islet antigens in the thymus modulated the course of the au- 
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Table 1. Quantitative Analyses of Splenocytes by Flow Cytometry 

Group CD3* CD4* CD8* Thyl.2t 

Intrathymic buffer/anti-CD3 mAb, studied 72-96 h 
after anti-CD3 mAb 

Animals studied on days 11-13 after STZ: 
Intrathymic buffer/anti-CD3 mAb 

Intrathymic STZ-treated islets/anti-CD3 mAb 

Untreated control mice 

0.8 + 0.2* 5.9 -+ 1.7" 2.7 +_ 0.6* 8.6 + 2.5* 
(3%)s (36%) (28%) (30%) 

13.4 +_ 1.8" 9.6 +_ 1.6" 3.6 _+ 0.5* 15.4 + 2.3* 
(51%) (60%) (39%) (51%) 

13.4 _+ 1.1" 10.1 _+ 0.8* 3.4 +_ 0.3* 17.9 _+ 1.1" 
(51%) (63%) (37%) (59%) 

26.2 +_ 1.0 16.0 _+ 0.3 9.3 _+ 0.6 30.2 _+ 1.9 

Splenocytes were harvested from groups of five to seven mice at the indicated times and stained with mAbs as described. The percent positive cells 
was calculated by comparing the staining to an irrelevant FITC-conjugated mAb (anti-human CD3). 
* p <0.001 vs control 
* Mean _+ SEM % of 10,000 gated cells. 
S Percent control. 

toimmune disease induced by STZ. During this time, splenic 
T cells had reached 51% of control levels, and TCR modula- 
tion was no longer seen (Table 1). Five doses of STZ were 
given to all of the animals, and the mice were studied for 
the presence of hyperglycemia and insulitis 7-13 d later. 
Overall, 76% of mice receiving an injection of Krebs-Hepes 
buffer and anti-CD3 mAb developed diabetes (plasma glu- 
cose >240 mg/deciliter (dl)) whereas only 14% of mice that 
had received intrathymic STZ-treated islets and anti-CD3 mAb 
became diabetic (p <0.001) (Table 2). The incidence of dia- 
betes in the group receiving intrathymic Krebs-Hepes buffer 
and anti-CD3 mAb is similar to the frequency we have found 
previously in unmanipulated mice in this model (12, 21). Simi- 
larly, the plasma glucose levels on days 12 and 16 were re- 
duced in mice receiving intrathymic STZ-treated islets and 
anti-CD3 mAb compared with mice with an intrathymic in- 
jection of Krebs-Hepes buffer and anti-CD3 mAb (p = 0.011 
and p <0.001). Thus, exposure of developing T cells to islet 

cells or antigen within the thymus protected the animals from 
subsequent induction of experimental diabetes. 

The failure to develop diabetes was not due to insulin 
production by the intrathymic islet cells (15) that may have 
been sequestered from the effects of STZ on islets in the pe- 
riphery. Animals that had received intrathymic STZ-treated 
islets and were protected from diabetes underwent thymec- 
tomy (n = 6), and the thymus tissue was studied for the 
presence of insulin-containing cells by immunohistochemistry. 
Insulin-containing ceils were present in the thymuses of the 
protected mice, but after the thymectomy, the glucose levels 
did not increase (Figs. 1 and 2). In addition, the failure to 
induce MDSDM did not simply reflect general immunosup- 
pression because of the residual effects of the anti-CD3 treat- 
ment. Full thickness skin grafts from C3H/HeN mice im- 
planted on mice receiving intrathymic STZ-treated islets and 
anti-CD3 mAb were rejected at the same rate as grafts trans- 
ferred to mice receiving an intrathymic injection of Krebs- 

T a b l e  2. Prevention of Diabetes by Intrathymic Injection of STZ-treated Islets 

Plasma glucose 
(mg/di, mean _+ SEM) No. with diabetes*/Total 

Group Day 12 Day 16 Day 12 Day 16 

Intrathymic buffer/anti-CD3 mAb 
Intrathymic STZ-treated islets/anti-CD3 mAb 

269 + 22 
191 + 14t 

316 _+ 25 13/21 16/21 
212 _+ 15 u 2/14S 2/14LI 

* Diabetes was considered present if plasma glucose >240 mg/dl .  
*p = 0.011, Sp <0.01, and II p <0.001 vs. intrathymic saline and anti-CD3 mAb. 
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Figure 1. Effects of thymectomy on glucose levels, and adoptive transfer 
of diabetogenic cells with splenocytes from normal mice. Plasma glucose 
levels are shown from two mice that recdved intrathymic STZ-treated islets 
and anti-CD3 mAb that were studied further. These data are from a single 
experiment representative of four separate experiments. Both animals re- 
ceived five subdiabetogenic doses of STZ beginning on day 0, and both 
underwent thymectomy at day 16 (A). One animal received an injection 
(intraperitoneal) of 40 and 80 x 10 e splenocytes from normal male 
C57BL/KsJ mice ( @ - - @ )  or saline ( O - - O )  on days 22 and 31 (/3 and 
D). Both animals received a single injection (intraperitoneal) of STZ (40 
mg/kg in citrate buffer) on days 27 and 34 (C and E). Progressive hyper- 
glycemia was seen in the recipient of normal spleen cells. 

Hepes buffer and anti-CD3 mAb or to untreated control mice 
(data not shown). 

The absence of hyperglycemia in mice receiving intrathymic 
STZ-treated islets and anti-CD3 mAb correlated with a de- 
crease in the autoimmune response as indicated by a reduc- 
tion in cellular infiltrates into the islets (Table 3, Fig. 3). Histo- 
logic sections of pancreases from mice given either intrathymic 

STZ-treated islets and anti-CD3 mAb, or intrathymic Krebs- 
Hepes buffer and anti-CD3 mAb were evaluated in a blinded 
manner. Islets from normal C57BL/KsJ mice do not have 
insulitis. 61% of islets from animals receiving intrathymic 
injection of buffer showed evidence of insulitis, similar to 
that reported by ourselves and others in previous studies of 
MDSDM (11, 12, 21). Only half as many, 30%, of islets from 
mice receiving intrathymic injections of STZ-treated islets 
demonstrated cellular infiltrates (iv <0.001). Furthermore, 
none of the islets from the animals injected intrathymically 
with STZ-treated islets showed severe degrees ofinsulitis which 
included loss of normal islet architecture and cellular infiltrates. 
Probably as a result of the repeated intraperitoneal injections, 
one animal from the group receiving ST7_,treated islets de- 
veloped exocrine pancreatitis, and 23% of the total islets that 
had insulitis in the group were from that one animal. 

Immunohistochemical staining of the sections with an an- 
tiinsulin antibody indicated that a reduction in the number 
of insulin-containing cells accompanied more severe degrees of 
insulitis (Fig. 3). These data corroborate our evaluation 
of blood glucose levels, and indicate that placement of STZ- 
treated islets into the thymus during a period ofT cell regener- 
ation causes tolerance to MDSDM. 

Specificity of Tolerance to MDSDM and Requirements for its 
Induction. Tolerance to diabetes was found to be tissue specific. 
Diabetes was not prevented when fragments of adrenal gland 
with or without STZ treatment were placed into the thymus 
instead of islets (Table 4). In addition, the antigen-bearing 
cells had to be placed into the thymus for tolerance to occur. 
Transfer of equal numbers of STZ-treated islets under the cap- 
sule of a kidney, followed by anti-CD3 mAb, did not protect 

Figure 2. Identification of insulin 
containing cells in thymus removed 
from a tolerized mouse. A thymec- 
tomy was performed on mice that 
had received intrathymic STZ-treat- 
ed islets and anti-CD3 mAb and had 
not developed diabetes after STZ. 
The thymus was studied for the 
presence of insulin-containing cells 
with immunohistochemical tech- 
niques. Single ceUs and small clumps 
of insulin containing cells could be 
identified at the cortical-medullary 
junction of the thymus (arrows). 
x200. 
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Table  3. Effects of Treatment on the Development of Insulitis 

Group 0 

Grade of insulitis* 

1 2 3 Total no. islets 

Intrathymic Krebs-Hepes buffer and 

anti-CD3 mAb (n = 14) 

Intrathymic STZ-treated islets 

and anti-CD3 mAb# (n = 7) 

50 (39%) 42 (33%) 26 (20%) 10 (8%) 128 

46 (77%) 14 (23%) 4 (7%) 0 64 

Pancreases were fixed in formalin, and sections of tissue (two from each mouse) were stained with hematoxylin and eosin and graded for the presence 
of insulitis as follows: 0, Normal histology; 1, minimal cellular infiltrate into the islets, otherwise normal islet architecture; 2, extensive cellular 
infiltrate but preservation of islet architecture; and 3, cellular infiltrate and loss of normal islet architecture. The differences in the scores between 
the two groups were compared by X 2. 
* Insulitis was absent from the islets of untreated normal male C57BL/KsJ mice. 
* p <0.0001 vs intrathymic Krebs-Hepes buffer and anti-CD3 mAb. The data in this group includes one animal with exocrine pancreatitis. The 
distribution of lesions without that animal was: 0, 79%, 1, 21%, 2, 0%, and 3, 0%. 

against the induction of MDSDM (Table 4). It is interesting 
that pretreatment of islets with STZ was necessary to render 
islets effective tolerogens. There was an initial reduction in 
the plasma glucose levels and incidence of diabetes (p <0.05) 
12 d after STZ treatment in mice receiving intrathymic in- 
jection of islets that were not treated in vitro with STZ. How- 

ever, by day 16, diabetes had developed in 80% of the animals, 
and the blood glucose levels were similar to mice that had 
received intrathymic injection of Krebs-Hepes buffer (Table 4). 

In addition, T cell depletion with anti-CD3 mAb (Table 
4), was needed for tolerance to occur. When mice received 
intrathymic STY, treated islets but did not receive anti-CD3 
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Figure 3. Prevention of insulitis 
with intrathymic injection of STY_, 
treated islets and anti-CD3 mAb 
therapy. 11-13 d after the last dose 
of STZ, mice were killed, and the 
pancreases were fixed in formalde- 
hyde and embedded in paraifin. 
Some sections of the tissue blocks 
were cut and stained with hematax- 
ylin and eosin (A and B) and others 
were studied for the presence of 
insulin-containing cells with the 
islets of Langerhans (C and D) as 
described. (A and C) Insulitis (,4) 
and staining for insulin (C) in islets 
12 d after the last dose of STZ in 
an animal pretreated with intra- 
thymic injection of Krebs-Hepes 
buffer and anti-CD3 mAb. Lym- 
phocytes (,4, arrows) are found in- 
vading the parenchyma of the islet 
and there is loss of normal architec- 
ture. Only one insulin-containing 
cell can be identified (C, arrow). (/3 
and D) Islet from a mouse 12 d after 
the last dose of STZ that was 
pretreated with intrathymic in- 
jection of STZ-treated islets and 
anti-CD3 mAb. The islet is free of 
insulitis (B), and many insulin- 
containing cells can be identified (D, 
arrows). (A) x50; (B) xl00; (Cand 
D) x65. 



Table  4. Protection from MDSDM Requires that STZ-treated Islets be Present in the Thymus during T Cell Development 

Plasma glucose 
(mg/dl, mean + SEM) No. with diabetes*/Total 

Group Day 12 Day 16 Day 12 Day 16 

Intrathymic adrenal fragments/anti-CD3 mAb 
Intrarenal STZ-treated islets/anti-CD3 mAb 
Intrathymic non-STZ-treated islets/ 

anti-CD3 mAb 
Intrathymic STZ-treated islets/ 

no anti-CD3 mAb 
Intrathymic STZ-treated islets/anti-CD3 mAb, 

and syngeneic spleen cells before five 
doses of STZ 

275 _+ 29 368 _+ 11 4/5 

280 _+ 47 303 _+ 41 4/5 

224 _+ 25 314 _+ 40 1/5 '  

325 _+ 66 278 _+ 37 3/5 

272 + 46 349 _+ 36 3/4 

5/5 
4/5 

4/5 

3/5 

4/4 

* Diabetes was considered present if plasma glucose >240 mg/dl. 
p <0.05 vs. intrathymic saline and anti-CD3 mAb. 

mAb, 60% of animals developed diabetes, and their glucose 
levels were similar to animals receiving Krebs-Hepes buffer 
and anti-CD3 mAb. 

Tolerance to MDSDM Can Be Abrogated by Splenocytes from 
NormaIMice. To verify that tolerance had resulted from de- 
letion or inactivation of islet antigen-reactive T cells from 
the repertoire of the mice, we performed two additional ex- 
periments. First, mice that had received intrathymic, STZ- 
treated islets and anti-CD3 mAb received an adoptive transfer 
of 40 x 106 splenocytes from normal C57BL/KsJ mice on 
the day of the first injection of STZ (Table 4). All of these 
mice developed diabetes when given the five doses of STZ, 
and the glucose levels were similar to those of mice treated 
with intrathymic Krebs-Hepes buffer and anti-CD3 mAb. 
Second, after thymectomy (Fig. 1), individual mice protected 
from diabetes were given syngeneic spleen cells (n ~= 4) or 
saline (n = 3), and one or two injections of STZ (40 mg/kg). 
Mice that received splenocytes and STZ became hyperglycemic, 
whereas mice that received saline and STZ did not. Thus, 
susceptibility to MDSDM could be adoptively transferred to 
tolerized mice with splenocytes from normal animals. 

Discuss ion 

We have shown that intrathymic transfer of islets of Lang- 
erhans and T cell regeneration can induce T cell tolerance 
to the development of autoimmune diabetes. Tolerance was 
specific for islets and was not due to general immunosup- 
pression, since animals receiving the same anti-T cell mAb 
but without intrathymic islets developed diabetes similar to 
untreated mice, and animals with intrathymic islets rejected 
allogeneic skin grafts at a normal rate. Furthermore, the failure 
to develop hyperglycemia was not due to insulin production 
by the intrathymic islets that may have been protected from 

the autoimmune attack that occurs in the periphery, since 
thymectomy of the tolerized mice did not result in hyper- 
glycemia. The number of islets placed into the thymuses was 
relatively small (about 200/mouse), and in other experiments 
we have been unable to reverse hyperglycemia in mice with 
toxic diabetes using this number of syngeneic normal islets. 
Rather, our results indicate that tolerance to autoimmune 
diabetes was the result of clonal deletion or inactivation of 
islet-reactive T cells. 

The development of diabetes in the MDSDM model has 
previously been shown to be dependent on T cell responses 
(11-14, 21). Pretreatment of mice with anti-CD4, anti-CD8 
(12), or treatment with anti-CD3 mAbs (21) can prevent in- 
duction of disease. In addition, hyperglycemia can be adop- 
tively transferred with splenocytes from a diabetic animal to 
a recipient treated with a single dose of STZ (13). The events 
that occur after STZ treatment leading to the induction of 
diabetes are not clearly understood, and may involve expres- 
sion of novel antigens on the surfaces of 3 cells or presenta- 
tion of constitutive proteins to T cells. Although in our ex- 
periments STZ treatment of the islets in vitro was necessary 
to completely prevent diabetes, there was a small effect of 
non-STZ treated islets on the natural history of disease as 
well. These findings raise the possibility that islet-specific T 
cell antigen may be present in low levels or sequestered on 
normal ~ cells. With injury and possibly shedding of an- 
tigen, as might occur to some degree during isolation of the 
islets, or to a greater extent after STZ treatment, these an- 
tigens may become more available to the immune system. 
This concept is consistent with the observation that expres- 
sion of foreign antigens on the surfaces of ~ cells does not 
result in an inflammatory response against islets (8, 9) unless 
accessory signals are provided. These signals can be provided, 
for example, by viral infection or possibly cytokines (22). 
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In the thymus, antigens shed from islets may be presented 
to developing T cells by APCs that are either bone marrow 
or islet derived. Although bone marrow-derived cells are 
thought to be primarily responsible for mediating clonal de- 
letion in the thymus (1, 3, 4), extrathymic APCs have also 
been shown to be capable of mediating clonal deletion of 
immature CD4+CD8 + thymocytes in suspension (23). 
Thus, the cells that present islet antigen to the developing 
T cells may be found within the islets themselves, or may 
be host derived and can process antigens that are shed by STZ- 
treated islets. If, in fact, shed antigen is presented by thymic 
cells, this approach for induction of tolerance may not re- 
quire histocompatibility of the host and antigen-bearing cell, 
since transplantation of MHC incompatible tissues can be 
performed easily into the thymus with a single treatment 
with anti-T cell antibody (15). 

Treatment with anti-CD3 mAb was required to induce 
tolerance, and tolerance did not develop when islets were placed 
outside of the thymus. Our findings suggest that induction 
of nonresponsiveness to autoimmune diabetes was due to T 
cell maturation in the presence of islet antigens which was 
stimulated by anti-CD3 mAb treatment. A single injection 
of anti-CD3 mAb has been shown previously to completely 
remove mature T cells from the peripheral blood (16). The 
residual (,,o30%) T cells in the peripheral organs show pro- 
found functional impairments even after TCR reexpression 
has occurred. The repopultion of the peripheral organs with 
T cells most likely reflects accelerated maturation of T cell 
precursors through the thymus and emigration into the pe- 
ripheral sites. T cells on which the TCK has been modulated 
as a result of anti-CD3 mAb treatment may reexpress this 
complex, but evidence from thymectomized animals (16) in- 
dicates that T cell repopulation occurs in half the time if a 
thymus is present. It has previously been shown by Posselt 
et al. (25) that a reduction in the precursor frequency of al- 
loreactive T cells occurs when T cell development takes place 
in the presence of allogeneic islets in the thymus (15). While 
our work was in progress, Koevary and Blomberg (24) and 
Posselt et al. (25) have reported that autoimmune diabetes 
may be prevented by intrathymic transplantation of islets into 
young or neonatal BB/W rats. Thus, our studies and those 
previously reported support the notion that islet antigen- 
reactive T cells have been either depleted from the repertoire 
or inactivated as a consequence of interaction with foreign 

antigens in the thymus during T cell development. Mature 
T cells that have developed in a thymus that lacks islet cells 
abrogate this protective effect. Thus, potentially autoreactive, 
islet-specific T cells escape thymic deletion in normal 
C57BL/KsJ mice. Failure to delete these T cells during normal 
development may reflect the inaccessibility of islet antigens 
for antigen presentation possibility because the antigens are 
not shed or are in low concentration. 

Clonal deletion or clonal anergy may be the outcome of 
interaction of T cells with antigen present in the thymic 
medulla. For example, Hammerling et al. (25) have recently 
found that T cells reactive with the alloantigen K b may be 
rendered nonresponsive after encounter with the alloantigen 
in the thymic medulla, but do not necessarily undergo apo- 
ptosis. Because there is no specific phenotypic marker (i.e., 
TCR-V region gene) known as yet for the autoreactive T 
cells in this model, we cannot determine whether islet-reactive 
T cells have actually been deleted, or whether they are still 
present but are incapable of causing diabetes. Either clonal 
anergy or deletion of antigen-reactive T cells is consistent 
with our observation that responsiveness to MDSDM may 
be restored with normal spleen cells. However, our findings 
indicate that induction of regulatory ("suppressor") cells in 
the periphery is not responsible for the effect we have observed. 

When removed from mice 5 wk after surgery, the thymi 
of mice receiving intrathymic islets still contained insulin- 
producing cells. The small number of islet cells persisting 
in the thymus does not likely represent a significant source 
of insulin, but may be important in maintaining the tolerant 
state. We do not know how long the tolerant state will per- 
sist after thymectomy, but it is likely that continual main- 
tenance of tolerance will require that antigen remain in the 
thymus to ensure removal of antigen-reactive cells will occur 
as new T cells develop. 

The ability to induce antigen-specific tolerance, especially 
tolerance towards disease-related antigens, represents an op- 
timal approach for prevention of autoimmune diseases. We 
have shown that this may be induced in animals with a ma- 
ture T cell repertoire. With this technique, only T cells specific 
for disease-relevant antigens are eliminated as a consequence 
of the manipulation, and other cellular immune functions 
are left intact. Thus, the ability to eliminate disease-relevant 
T cells in the absence of global immunosuppression represents 
a novel approach to disease-specific immunotherapy. 
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