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Research on cancer in dogs and cats, among other diseases, finds an important source

of information in registry data collected from hospitals. These sources have proved to

be decisive in establishing incidences and identifying temporal patterns and risk factors.

However, the attendance of patients is not random, so the correct delimitation of the

hospital catchment area (CA) as well as the identification of the factors influencing its

shape is relevant to prevent possible biases in posterior inferences. Despite this, there is a

lack of data-driven approaches in veterinary epidemiology to establish CA. Therefore, our

aim here was to apply a Bayesian method to estimate the CA of a hospital. We obtained

cancer (n = 27,390) and visit (n = 232,014) registries of dogs and cats attending the

Veterinary Medical Teaching Hospital of the University of California, Davis from 2000 to

2019 with 2,707 census tracts (CTs) of 40 neighboring counties. We ran hierarchical

Bayesian models with different likelihood distributions to define CA for cancer cases and

visits based on the exceedance probabilities for CT random effects, adjusting for species

and period (2000–2004, 2005–2009, 2010–2014, and 2015–2019). The identified CAs

of cancer cases and visits represented 75.4 and 83.1% of the records, respectively,

including only 34.6 and 39.3% of the CT in the study area. The models detected variation

by species (higher number of records in dogs) and period. We also found that distance to

hospital and average household incomewere important predictors of the inclusion of a CT

in the CA. Our results show that the application of this methodology is useful for obtaining

data-driven CA and evaluating the factors that influence and predict data collection.

Therefore, this could be useful to improve the accuracy of analysis and inferences based

on registry data.
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INTRODUCTION

Data coming from laboratories or hospitals constitute an
important source of information to assess incidence, relative
risks, or to identify risk factors or temporal trends for several
diseases. The usefulness of these data sources is especially evident
in the epidemiological research of cancer in dogs and cats.
In these species, cancer is a major pathology and constitutes
the leading cause of death in dogs (1–3) as well as one of
the main causes of mortality in cats (4, 5). Research based on
the information collected from hospital cancer registries has
substantially contributed to increased knowledge on the risk and
incidence of different types of cancer in these species, and thus,
on how to prevent and combat this pathology (6–9).

However, these data are not exempt from biases. Cases are
not randomly obtained from the population but rather different
factors, such as the distance to the center or the socioeconomic
status of owners, among others, may influence first, the decision
of looking for veterinary care and seek specialty care and the
choice of a center instead of others in a competitive environment
(10–12). Misidentification of the underlying population that is
providing the data and the degree of underreporting affect the
accuracy and reliability of any subsequent analysis (7, 13). A first
step in addressing this issue is to determine the area from where
the cases collected by a hospital are drawn, i.e., its catchment area
(CA). Earlier and simpler attempts to estimate CAs in human
medicine were based primarily on establishing a threshold
distance (e.g., the spatial distance to the hospital or travel-time
distance by road) and including in the CA those geographic units
within this threshold (14–17). Another approach is including
areas within a CA if a geographical unit contributes a threshold
percentage of the center’s total patients (18, 19).

The main problem with these approaches is the subjectivity
and arbitrariness in the establishment of these thresholds for
parameters such as the proximity of clients. These parameters are
reported as highly variable in humans, depending on hospitals
and hospital services (20–22). As a result, different statistical
methodologies have been proposed as alternative data-driven
approaches to estimate CAs for hospitals. Some of these consisted
of the implementation of clustering methods based on K-
means (20) or on local spatial scans, (e g., SaTScan) (23–25).
Furthermore, more recently, generalized additive models (26) or
Bayesian models (25, 27) have been successfully used to describe
hospital service areas.

However, no similar statistically oriented approaches have
been applied in veterinary medicine, even though they may
provide similar benefits. A precise determination of the origin of
cases and the factors that affect their reporting will improve the
accuracy of subsequent inferences and analyses. This is of great
interest in cancer in dogs and cats due to the significance of this
pathology. The Bayesian analysis offers not only the possibility of
estimating the CA in a probabilistic framework but also allows
for making statistical inferences and considering the influence of
covariates (25). Therefore, in this study, we aimed to establish the
CA of a hospital for the cancer cases submissions in dogs and
cats using Bayesian models. In addition, we also evaluated the
influence of potential factors related to the constitution of the CA.

MATERIALS AND METHODS

Study Area and Data Collection
We obtained records of visits of dogs and cats from the
electronic medical record system of the Veterinary Medical
Teaching Hospital at the University of California, Davis (Davis,
California, United States) for the years 2000–2019. This database
includes patient demographics and clinical data as well as the
coordinates of the patients’ domicile. As the registry included
visits from distant areas, wemade an initial subset of this database
by selecting those records from a 145-mile (233 km) circular
buffer zone around the hospital to rule out distant sporadic
submissions in the whole period (20 years). This area was
empirically established and assumed to represent a reasonable
distance that an owner could drive to seek care and was used in
previous studies (28). Patients from census tracts (CTs) within
or intersecting the circle were included accounting for 2,707 CT
from 40 counties. This subset represented 91.6% of the entire
database and was used to obtain counts of two types of records:
records with a diagnosis of cancer (cancer cases) and total records
regardless of the diagnosis (visits). Cancer diagnosis was made by
the overseeing clinician based on histology or cytology, similarly
to other studies using veterinary medical databases (3, 29, 30). In
order to avoid overestimating visits due to repeated visits of the
same animal, only one record of the same animal per year was
considered. If an animal was diagnosed with cancer in a calendar
year, it was counted as one cancer record and additional records
of this animal in that year were excluded (e.g., following-up visits,
visits for other reasons, etc.). As a result, the dataset contained
232,014 visit registries (184,192 dogs and 47,822 cats) and 27,390
registries of diagnosed cancer cases (22,090 dogs and 5,300 cats).

Statistical Analysis
Hierarchical Bayesian models were used to estimate the CA
of cancer cases and visit records. Hierarchical modeling is
written in levels that take account of the clustering of the
population, such as CTs. A Bayesian approach in hierarchical
methods presents further benefits in terms of flexibility of the
models, for example, to capture possible correlations among
the observations of interest, which can be addressed using
conditional models (31), and which are not uncommon with
administrative separations, when they do not actually prevent
the movement across them (“edge effect”). These methods allow
the calculation of exceedance probabilities which are useful when
assessing the localized spatial behavior of the model and the
detection of clustering (32).

The Bayesian regression models were fitted using Stan with
the “brms” package (33) for the software R (34). Records were
grouped into four periods (P1–4) to explore temporal variability:
2000–2004, 2005–2009, 2010–2014, and 2015–2019. Species and
periods were included as fixed factors with CT as a random
effect. The number of cases and visits observed were expected
to follow a Poisson distribution with the expected number of
cases/visits in each CT as the offset. The dog and cat population
in CT were calculated from the estimate of the number of dogs
and cats per household for California reported by the American
Veterinary Medical Association (35) (average of 1.6 dogs and 1.7
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cats per household). We multiplied these values by the number
of households according to the United States Census (36) to
estimate the population. As a result, the expected count for
each observation was the total cases/visits count divided by the
population in the CT and then multiplied by the population in
the CT for each given combination of species and period.

Different alternative distributions were considered to fit the
data by running models with different likelihoods: zero-inflated
Poisson, negative binomial, zero-inflated negative binomial,
Conway-Maxwell Poisson, and zero-inflated Conway-Maxwell
Poisson. In addition, two different priors were considered for
the random effects: an exchangeable prior and a conditional
autoregressive (CAR) prior (31). The difference between these
approaches is that the former assumes that random effects are
independent, while CAR models take into consideration the
correlation among neighbors, thus assuming that observations
from neighbor CT tend to have similar values. The final selected
model was a negative binomial with a CAR prior and was
specified as:

Yij =

{

0 with probability πij

NB
(

µij

)

with probability (1− πij)

µij = eij × Rij

log

(

πij

1− πij

)

= β0 + β1 Speciesij + β2 Period ij + vij

log
(

Rij
)

= β0 + β1 Speciesij + β2 Period ij + vij

where Yij is the count of cases (cancer cases or visits) in CT i with
covariate j, µij is the unknown mean count, πij is the probability
of diagnosis, eij is the expected count in CTi covariate j over
all CT, Rij is the relative risk and νij is the CT-specific random
effect and β are the regression coefficients for each predictor. The
intrinsic CAR distribution may be expressed as

vi|v(l 6=i) ∼ N ((v̄i) , 1/(mi τ ))

wheremi is the number of adjacent counties for CT i.
The models were run with four Markov chains with 4,000

iterations and a burn-in of 25%. Chain convergence was
assessed using the packages “shinystan” (37) and “bayesplot”
(38). Diagnostics were made using the potential scale reduction
statistic (39), the ratio of the effective sample size to the total
sample size drawn from the posterior distribution, and trace plots
of Markov chain Monte Carlo. In summary, for each case/visit
database, we run 12 candidate models. The selection of the final
model was assessed by Bayesian leave-one-out cross-validation
(40) using the package “loo” (41) and was compared based on
the expected log pointwise predictive density (ELPD) using the
Pareto smoothing importance sampling. This has been shown to
be a robust method for model evaluation (42).

The methodology for estimating CA was similar to that
previously described by Wang and Wheeler (25) using
exceedance probabilities. This parameter was defined as the
probability that the relative risk (RR) of each CT exceeded the

null value (RR = 1) and was obtained from the posterior sample
distribution. The threshold of the exceedance probability for a
CT to be considered as part of the CA was set to 0.90 as this is a
conventional value in disease mapping (32). This means that a
CT exceeding a RR= 1 in 90% of the iterations was considered to
be within the CA.We additionally explored other solutions using
different thresholds for the exceedance probability including
0.95, 0.85, and 0.80.

We analyzed the influence of the average household income in
the CT and the distance to the hospital as possible determinants
for a CT to be included in the CA obtained in the finalmethod. To
do this, we run binary logistic regression models. The outcome
of these models were belonging to the AC or not and we
progressively included as predictors distance to the hospital,
median family income, and an interaction term between the
aforementioned factors. Average household income values per
CT were obtained from the United States census, and distances
were calculated as the driving distance from the centroid of the
CT to the hospital using the package “gmapsdistance” (43). The
values of these two predictors were centered on the mean for the
analysis. A ROC analysis was subsequently performed to evaluate
the accuracy of the logistic model with these factors to predict the
resulting CA. The function “glm” and the package ROCR (44)
were used in this part of the analysis. ANOVA tests were used to
analyze mean differences between groups. The finally presented
model was specified as:

logit
(

p
)

= β0 + β1 Distance to the hospital

+ β2 Average household income

+ β3 Distance to the hospital

×Average household income

where p is the probability of being included in the CA.

RESULTS

The models finally selected were those with a zero-inflated
binomial distribution and a CAR prior for both cancer cases
and visits. This model presented the best fit based on ELPD
The proposed CAs were based on the solution obtained with
a threshold for the exceedance probability of 0.90 (Figure 1).
Thus, 936 CTs were included in the cancer cases CAs (34.6%
of the CT in the buffer area) and 1,064 in the CA based on
visit records (39.3%). These CAs accounted for 75.4% of the
cancer cases and 83.1% of the visits registered by the hospital,
while they represented only 34.6% and 39.3% of the total CT in
the study area. The concordance in the classification obtained
by both methods was very high (91.3%; 2,471/2,707), and the
discrepancies were mainly due to the fact the CA obtained from
visit records was broader: 182 CT included in the visits CA were
not present in the cancer cases CAs (6.7 %). The opposite only
occurred 54 times (2.0 %). Solutions with thresholds other than
0.90 are also shown in Figure 1, but no large variations were
observed. Thus, the most liberal scenario (threshold of 0.80) only
included 141 and 108 additional CTs for cancer cases and visits,
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FIGURE 1 | Estimation of the catchment area using different thresholds for the exceedance probabilities (left) and proposed catchment area with a threshold of 0.90

(right) for cancer cases (A) and visits (B).

respectively, and represented only a small increase in the CA
compared to the solution at 0.90 (Figure 1).

As expected, the hospital was located in a central position and
the CAs consisted mostly of a set of contiguous CTs around it
(Figure 1, primary area) with a small proportion of CTs with no
geographical connection with the primary area (8.2% for cancer
cases and 8.6% for visits; secondary area). The models did not
identify 301 and 245 CTs within the primary area boundary as
members of the CAs for cancer cases and visits, respectively.

The parameters of the models are shown in Table 1. Dogs
had a higher number of records of both cancer cases and visits
(RR = 2.6 and 3.0, respectively, compared to cats). Regarding
time period, an increase of records was observed in the study

area during P3 in both models (RR = 1.2 and 1.1, respectively)
compared to P1, but the trend observed in the models was
different in P4. The estimation of the CA obtained in each period
was very similar (Figure 2) showing concordances between
periods that ranged from 85 to 91%.

The logistic regression identified both average household
income and distance to the hospital as predictors of the CA
(Table 2), and the model that included an interaction term
presented the best fit. As expected, the probability that a CT
would be included in the CA decreased with distance (OR= 0.1)
and the CT with higher annual household income were more
likely to be included (OR = 2.0). Distance modulated the effect
of the income. Thus, the effect of the income decreased (OR =
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TABLE 1 | Results of the factors included in the Bayesian hierarchical models to determine the catchment area for cancer cases and visits.

Cancer cases Visits

σ
2 R.E.* = 0.01 σ

2 R.E. = 0.01

Variable Category B SE RR CI 95 B SE RR CI 95

Species Feline ** **

Canine 0.9 0.02 2.6 2.4–2.6 1.1 0.01 3.0 2.9–3.1

Period P1: 2000–2004 ** **

P2: 2005–2009 −0.04 0.02 0.9 0.9–1.0 0.02 0.01 1.0 1.0–1.0

P3: 2010–2014 0.2 0.02 1.2 1.2–1.3 0.1 0.01 1.1 1.1–1.2

P4: 2015–2019 0.01 0.02 1.0 1.0–1.1 0.3 0.01 1.3 1.3–1.3

*σ2 R.E.: variance of the random effect (census tract).

**Reference category.

B, coefficient; SE, standard error; RR, relative risk; CI 95, Confidence interval at 95 %.

FIGURE 2 | Catchment area for each period (P1–4) and combining only the census tracts included in the catchment areas of all periods (combined) for cancer cases

(A) and visits (B). Threshold of the exceedance probability = 0.90.

0.4) with the distance to the hospital, being insignificant in CT
located over long distances (Figure 3). The ROC analysis showed
that models that only included distance had a high accuracy to
predict the inclusion of CT in the CA: area under curve (AUC)
= 0.83; but the accuracy increased to 0.87 including income and
the interaction term (same values in both CAs). CTs within the
boundaries of the primary area that were not estimated in the
CAs by the models also showed a significantly (p < 0.05) lower
average household income: $ 61,886 vs. $ 82,197 in cancer cases
CAs and $ 58,901 vs. $ 79,840 in visits.

DISCUSSION

The identification of a hospital CA has been a historical challenge
(45) that has not been well explored in veterinary medicine. In
human medicine, CAs have been traditionally determined by

including the local area surrounding the center (46) or capturing
the geographic area from which clients come to the center (19).
However, some of the criticism of traditional approaches is the
arbitrariness of establishing preset distance/visits thresholds (20).
Furthermore, setting the same thresholds for different situations
is not realistic and they need to be revised according to different
hospitals or hospital services (16). In fact, it is known that the CA
can be affected by different factors (e.g., geographical, cultural,
or historical) with variable effects, depending on the specialty or
socioeconomic characteristics of the potential clients in the area
(20, 47). For example, it is well known that catchments of urban
or rural environments may be different and may also differ based
on the type of disease (45, 48).

With this in mind, in this study, we have applied a data-driven
methodology to identify the CA and address these issues by
providing a framework that can be extrapolated to other centers,
services, and conditions (25). The solution proposed here was
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TABLE 2 | Results of the logistic regression to analyze the associations between distance to hospital and average household income with the inclusion in the catchment

area (CA) estimation for cancer cases and visits.

Cancer cases

Variable Deviance Estimate OR CI 95% Mean in all the census tracts (SD) Mean in CA vs. outside CA

Distance to hospital (km) 978.2 −2.2 0.1 0.1–0.1 125.6 (57.4) 86.1 vs. 146.5

Avg income* (x 1,000 $) 48.4 0.7 2.0 1.8–2.3 77.6 (35.5) 84.1 vs. 74.1

Avg income: distance 135.8 −0.9 0.4 0.3–0.5

Visits

Distance to hospital (km) 1042.4 −2.5 0.1 0.1–0.1 125.6 (57.4) 86.3 vs. 151.1

Avg income (x 1,000 $) 153.1 0.7 1.9 1.7–2.2 77.6 (35.5) 81.8 vs. 74.8

Avg income: distance 161.1 −1.1 0.3 0.2–0.4

*Avg income, average household income.

OR, odds ratio; CI 95 %, confidence interval at 95 %; SD, standard deviation.

FIGURE 3 | Likelihood of inclusion in the proposed catchment area by average household income [centered to the mean ($ 77,571)] for three levels of distance

(centered, mean = 125.6 km) to the hospital according to the results of the logistic regression for cancer cases and visits.

successful in accomplishing those requirements of distance to the
center and capturing the main areas that provide more clients
to the center since we identified a geographical area close to
the hospital that collects the vast majority of the visits. In order
to explore the impact in the estimation of considering diverse
outcomes, we additionally estimated the CA for visits. Despite

the good agreement between both CAs, the solution for visits
was slightly wider and included a higher number of CTs. The
significantly lower average income in the CA estimated for visits
than found for the CA of cancer cases (81,800 vs. 84,100; Table 2)
could help explain these differences. Owners’ income has been
identified as an influential factor in the under-ascertainment of

Frontiers in Veterinary Science | www.frontiersin.org 6 July 2022 | Volume 9 | Article 937904

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Díaz Cao et al. Bayesian Identification of Catchment Area

cancer in companion animals (10, 49). Pet owners with lower
incomes may be less likely to seek a veterinary cancer diagnosis
or to present their animal for regular veterinary check-ups, which
could result in fewer cancer diagnoses (10, 11). In contrast,
the number of reasons for visiting a hospital is varied and
may include less expensive than seeking treatment for cancer,
thereby having a less limiting effect on hospital presentation. The
possibility of identifying suspicious areas of undercounting by
comparing different types of CAs may be a secondary value to
the methods used here and could be useful to propose measures
and approaches to consider this issue in epidemiological studies.

The methodology we used also allows for assessing the
influence of multiple variables on the composition of a CA.
Dogs showed a higher risk of cancer cases and visits, which is
consistent with previous research for both cancer cases (13, 50)
and veterinary visits (35). Moreover, the latter may contribute to
a further under-ascertainment of cancer cases in cats (49). The
variation found by time period is not unexpected since CA is
expected to vary over time (20). Thus, in addition to an average
solution for the whole period of study (2000–2019) (Figure 1),
we also provide estimations for each period as well as those
CTs that were included in the CA in all the periods (Figure 2).
The high concordance (85–91%) of these estimations suggests a
high consistency of the results. Variation between periods may
simply reflect changes in different socioeconomic factors (e.g.,
economic context, trends in social behaviors and companion
animal ownership, change in the type of services offered by a
hospital, prices, etc.).

However, this temporal variation mainly affected the CT not
contiguous to the primary area. The inclusion of these CTs in
the CA is not a surprising finding, since an area may be a major
contributor to the cases registered by the hospital despite the
lack of physical contiguity. For example, this may happen if some
CTs present a higher socioeconomic status than their neighbors
or if patients are frequently referred from local clinics for less
available procedures (7, 8). Nevertheless, it cannot be ruled out
that some of these CTs in the secondary area may be artifacts
due to random variation. These CTs corresponded mainly to
large and sparsely populated areas and these characteristics may
favor the appearance of outliers (51) and lower statistical stability
(52). Therefore, we preferred being conservative and assigned
them to a secondary area because, in these circumstances, a
random increase on the records might overestimate the relative
contribution of those CTs to the hospital. In the opposite
situation, we found that some CTs were not included in the
CA despite being surrounded by the CA. The significant lower
income found in these CTs may be again the explanation and
indicate an under-ascertainment of cases from these areas due to
economic reasons, resulting in a lower contribution in records
to the hospital and then in the subsequent exclusion from
the CA. This shows the potential of this workflow to identify
areas with the least expected use of veterinary care, which is
of great importance to correctly characterize the distribution of
cancer cases (20).

The precise determination of the CA is important for the
statistical soundness of posterior inferences. This is beneficial
for the correct identification of the population at risk and

prevents biases in subsequent analysis. This is true, for example,
in the spatial analysis which is sensitive to the size and shape
of the area of analysis (53) and incomplete case reporting
(54). Misspecification of the underlying model may also have
a significant impact on the CA estimation, which is why we
tested different likelihood distributions in order to find the
best performance on a spatially autoregressive conditional zero-
inflated negative binomial model. The parameterization of this
model takes into account the spatial correlation between CT and
differentiate between zeros representing under-ascertainment
and lack of cases (55), which have been considered relevant issues
when assessing cancer incidence (10, 12). The better performance
of the CAR model suggests the existence of spatial effects in the
data and is consistent with the effects later associated by the
logistic regression with the inclusion in the CA (distance and
income), as they are likely to have a spatial component. CTs with
similar distances to the hospital may be correlated or high-/low-
income households may be clustered in specific groups of CT.
Although we are not aware of other data-driven CA estimations
for cat and dog cancer, the benefits of models considering spatial
components over conventional approaches have also been shown
when studying dog cancer incidences, having a greater influence
on a local scale (11). This indicates the need to contemplate
spatial clustering when dealing with this type of data.

While the methodology applied in this study worked
reasonably well, there are also some limitations to this approach.
The most important of which is the lack of reliable demographic
data, which is a persistent problem in cancer studies in
companion animals (7). Since no census was available, we
calculated the population data from the estimated average
number of dogs and cats by household in the state of California
(35). Therefore, we expect some degree of bias, but overall,
we believe this can give a realistic approximation. However,
this issue is more problematic if one intends to include
additional demographic data. For example, factors such as sex,
age, or breed are well-known risk factors for the incidence
of cancer (56, 57) and could be very useful to obtain a
better characterization, but could not be used here due to
the lack of population information. Therefore, this highlights
the need for better sources of population data in veterinary
epidemiology. The development of veterinary registries of
disease events and population demographics would constitute
a valuable tool that would help veterinary practitioners in the
diagnosis and control of diseases by providing information
controlled for important characteristics such as breeds, gender,
or age groups and related to the geographic area (7). Our
work may contribute to helping the identification of factors
affecting data collection and so in data standardization, but
major challenges are still ahead such as the frequent lack
of extensive census or the lack of a unique single coding
system, for example for cancer disease different from humans
(7), that are necessary to address to improve the quality of
the available data.

We found that distance to the hospital was the main
contributor to the estimated CA, which is expected and
has traditionally been the main parameter considered when
establishing a CA. However, our results highlighted the
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contribution of additional factors since adding the average
income with an interaction term significantly improved the
prediction of the CA. Other factors such as the distance to other
hospitals, their density, or the presence of geographical barriers
may affect a hospital CA (10, 12, 58) and their inclusionmay have
improved these estimations. Using these data-driven CAs allows
the identification of those factors that influence the arrival of
cases in specific hospitals, which is valuable since the influential
factors and the magnitude of their effect may vary significantly
between hospitals (21, 22). The methodology described in this
study may be helpful to achieve a better characterization of
factors that, by influencing the presentation of cases, may cause
biases and confounding effects in the analysis of data collected
by hospitals. Thus, it may improve the accuracy and reliability of
posterior inferences.

Bayesian hierarchical models present specific advantages to
analyzing this type of dataset since they allow control of the
influential covariates, include previous knowledge, specifying
different spatial relationships among the observations, etc.
However, despite the increased use of these approaches in
spatial epidemiology in the last decades in the context of
medical research and public health (32), the application
of Bayesian frameworks to CA estimation has only been
carried out in human medicine where its use is still very
limited (25, 59). Bayesian methods have the potential to
characterize a CA. However, they can be limited by the
scarce availability of population data for dogs and cats.
This may prevent the good identification of the model, its
predictability, and the extrapolation of models to other areas
where less population information is available. It is also
noteworthy that the application of this methodology is not
limited to hospital registries but may be useful for other data
registries. For example, laboratory results, which have also been
an important source of disease data, also face similar bias
submission problems.

In conclusion, the usefulness of registry data depends on the
quality of the characterization of the population at risk (7, 49) and
a starting point of a good analysis is the correct understanding

of the origin of the data and the factors that influenced their
collection. For this purpose, the available literature lacks a
dominant method to estimate CA but, in this study, we have
shown the application of a data-driven Bayesian framework to
delineate catchments in veterinary hospitals. This methodology
has worked well to characterize the catchment of cancer cases
and visits, and it can be easily adjusted to other diseases, centers,
and needs. Considering our results, the application of this type
of method could be of great interest to explore and rule out
possible biases in the collection of data and improve the accuracy
of analysis and inferences based on registry data.
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